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Abstract: In wireless communication multipath fading causes significant performance degradation and necessitates
channel estimation. Transmission of two consecutive chirps with different rates as a pilot sequence is a method
that has been used in the estimation of linear time-varying (LTV) channel parameters. In this paper, we propose an
improvement on the chirp based channel estimation method for LTV model. We show that combination of a chirp
with its complex conjugate, in particular a frequency modulated sinusoid, provides us an efficient pilot sequence.
Besides reducing the length of the pilot sequence by half, the length and the rate of our proposed pilot sequence
can be adjusted to comply with a-priori information on the channel. We implement the proposed method for an
orthogonal frequency division multiplexing (OFDM) communication system and compare with conventional two
chirps method.
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1 Introduction
Wireless communication channels have undesirable
affects on transmitted signals, such as attenuation, dis-
tortion, delays and phase shifts. Therefore, estima-
tion of the time-varying response of a communication
channel is crucial for improving the performance of a
wireless communication system [1, 2, 3]. In this pa-
per, we present a channel estimation method that uses
the characteristics of chirps as eigenfunctions of lin-
ear time-varying (LTV) channel models, as well as the
rate optimality of complex conjugate chirps [4, 5].

The application of chirp signals to parameter es-
timation of time-varying communications channels is
not a new approach. Chirps have also been used in
sonar and radar systems [6-11]. Our aim is to gen-
erate an efficient channel estimation method than the
one achieved by transmitting two consecutive chirps
with different rates [12, 4, 13]. By sending two con-
secutive chirps with different rates as pilots, and as-
suming the channel does not change during this inter-
val, channel estimation problem can be converted into
estimation of harmonic frequencies in noise [12]. Ad-
ditionally, as shown in [12], two complex conjugate
chirps minimize the Crammer-Rao bound. Instead of
sending two consecutive chirps, we propose a combi-
nation of a chirp and its complex conjugate, in par-
ticular a frequency modulated sinusoid as an efficient
pilot sequence.

As we showed in [5], using a linear chirp as input

to a LTV channel, the linear chirp simplifies the model
to that of a complex linear time-invariant (LTI) system
with effective time-shifts which are the combinations
of the actual time-shifts and Doppler frequency shifts.
Using the eigenfunction property and time-frequency
analysis, the frequency marginals of the dechirped re-
ceived signal provides us the information to estimate
channel parameters. We perform time-frequency anal-
ysis to provide a justification for the use of frequency
modulated sinusoids as pilots in the proposed method.

In Section 2, we briefly review the model used
for the multi-path communication channel; while in
Section 3, we show how to estimate the channel pa-
rameters using a frequency modulated (FM) sinusoid
pilot. In Section 4, we illustrate the performance of
our method for channel estimation in orthogonal fre-
quency division multiplexing (OFDM) [14] and com-
pare our results with those obtained using the two-
chirp method with conclusions following.

2 Time-varying Multipath Channel
Model

In mobile radio applications, because of the multi-
paths and relative motion between transmitter and re-
ceiver which causes Doppler effects, the communi-
cation channel is typically modeled as a linear time-
varying (LTV) system. In general, LTV channels are
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also known as time-frequency (TF) dispersive or dou-
bly dispersive. Their practical relevance, made LTV
models gain a lot of interest in the fields of signal
processing, communications, information theory, and
mathematics [17]. The time-varying frequency re-
sponse of the channel characterizes the channel in
terms of time delays, Doppler frequency shifts and
gains, all of which vary randomly in the modeling. An
L-path fading channel with Doppler frequency shifts
is generally modeled by a discrete-time separable im-
pulse response [4, 19]:

h(n,m) =
L−1∑
`=0

h`(n−m)f `(n)

=
L−1∑
`=0

α`δ(n−N`)e
−jφ`n, (1)

where h`(n) = δ(n − N`), as the impulse response
of the all-pass systems corresponding to time delays
{N`} and f `(n) = α`e

−jφ`n. The Doppler frequency
shifts can be represented with {φ`} and gains with
{α`}. Although the model in (1) is assumed to be
valid for the duration of a symbol, it changes with time
and provides an approximation to the actual channel.
Accordingly, the effect of the channel on the transmit-
ted signal s(n) is

y(n) =
L−1∑
`=0

α`s(n−N`)e
−jφ`n, (2)

where y(n) is the channel output. Both determin-
istic and stochastic approaches are equally useful in
describing a time-varying channel even though they
are appealing for different aspects. The stochastic
model is better suited for describing global behaviors
whereas the deterministic one is more useful to study
the transmission through a specific channel realization
[18]. As the channel effects cause the transmitted sig-
nal disperse in time and frequency, coherent demodu-
lation requires estimating the channel parameters.

3 Proposed Chirp-based Channel
Estimation

The channel parameters can be estimated either by
transmitting a pilot sequence or by blind estima-
tion. We concentrate on pilot-based channel estima-
tion where we use a chirp signal as our pilot sequence.
As it is well known, complex exponentials are the
eigenfunctions of linear time-invariant (LTI) systems,
as they appear at the output of the system with am-
plitude and phase changed by the system. In [4, 5],

it was shown that chirps are eigenfunctions of the lin-
ear time-varying (LTV) channel and chirps can enable
us to model a LTV channel as LTI. Let us start with
defining the chirp signal g(n) that we are going to use
[20],

g(n) = e−j
π
8 ej

2π
N

1
2
n2

0 ≤ n ≤ N − 1

= ejθn
2
, (3)

as input to a LTV channel where the instantaneous fre-
quency IF (n) = 2θn = 2π tan(β) nN , and the chirp
rate θ = π tan(β)/N for 0 < β ≤ π/2. We can ob-
tain the Discrete Fourier Transform (DFT) equivalent
of g(n) as G(k) = ej

π
8 e−j

2π
N

1
2
k2 , 0 ≤ k ≤ N − 1.

The initial and final instantaneous frequencies are 0
and 2π tan(β), respectively. These DFT pairs g(n)
and G(k) are also related in another way such that
G(k) = g(k)∗, where ∗ denotes complex conjugate.
As we showed in [5], these chirp signals have the fol-
lowing properties :

1. A time delay N0 on g(n), corresponds to a fre-
quency shift on g(n) and a multiplication by a
complex exponential depending on N0 and the
chirp rate,

proof: g(n−N0) = e−j
π
8 ej

2π
2N

(n−N0)2

= g(n)e−j
2π
N
N0nej

π
N
N2

0 .

which is also g(n−N0) = g(n)e−j2θN0nejθN
2
0 .

In the equation above, e−j
2π
N
N0n corresponds to

a Doppler shift of φ0 = 2πN0/N and ej(πN
2
0 /N)

is a constant.

2. A frequency shift φ1 = 2πN1
N on g(n) (i.e., multi-

plying g(n) by e−jφ1n) corresponds to an equiv-
alent time delay N1 = 0.5φ1/θ on g(n) and a
multiplication by a complex exponential depend-
ing on N1 and the chirp rate,

proof: g(n)e−jφ1n = e−j
π
8 ej

2π
N

1
2
n2
e−jφ1n

= g(n−N1)e
−jθN2

1

where g(n−N1) showing delay on g(n) by N1

samples and e−j(2πN
2
1 /2N) is a constant.

3. Using the properties obtained above, a time delay
and a frequency shift at the same time on g(n),
correspond to an equivalent time shift Ne =
N0 +N1 on g(n) and a multiplication by a com-
plex exponential,

g(n−N0)e
−jφ1n = g(n)e−j

2π(N0−N1)n

N ej
πN2

0
N

= g(n−Ne)e
j
π(N2

1−2N0N1)

N
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Generalizing (1), output of the channel corresponding
to the input s(n) = g(n) can be derived as

y(n) =
L−1∑
`=0

α`e
jθ(N2

`−N
2
e`)g(n−Ne`), (4)

where {Ne` = N` + φ`/2θ} are referred to as equiv-
alent time delays depending on the actual time delays
{N`} and the Doppler frequency shifts {φ`} in each
path.

3.1 Frequency Modulated Sinusoids for
Channel Estimation

The channel output corresponding to (4) indicates that
it is possible to model the time-varying channel as a
complex LTI system. The effect of the channel on
the input chirp can be visualized in the time-frequency
domain as that of delaying the chirp in time by N`

samples, and then shifting the resulting chirp in the
frequency axis by φ` radians, which correspond to an
equivalent time shift of Ne` samples. Accordingly,
by dechirping y(n) with g∗(n), we obtain Ne` values.
However, this would not be enough to find the actual
time and the Doppler frequency shifts but two chirps
with opposite rates θ and −θ are necessary [12]. In
this paper, we use the properties explained in [5] for
rewriting the channel output y(n) in (4) and obtain
an eigenfunction relation in terms of the chirp g(n).
Rewriting (4) according the to properties given above

y(n) =
L−1∑
`=0

g(n)α`e
jθN2

` e−j2θNe`n

= g(n)
L−1∑
`=0

α`e
jIF (0.5N2

` )e−jIF (Ne`)n, (5)

g(n) acts as the eigenfunction of the LTV model of the
channel. The response of the system occurs at instan-
taneous frequencies IF (Ne`) and IF (0.5N2

` ), with
e−jIF (Ne`)n corresponding to the equivalent shift in
time.

Let us now consider the use of g(n) and g∗(n) as
pilots for channel estimation [12, 13] (as suggested in
[12] we are taking θ and −θ as the chirp rates), but
instead of sending two consecutive chirps as pilots,
we propose to use a combination of these chirps, for
instance, a frequency modulated sinusoid:

gT (n) = g(n) + g∗(n) = 2 cos(θn2), (6)

where Wigner-Ville time-frequency representations
are as shown in Fig. 1. With this combination as in-
put, the channel output due to linearity of the model
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Figure 1: Wigner distributions for chirp and FM sinu-
soid

is

yT (n) = g(n)

[
L−1∑
`=0

α`e
jθN2

` e−j2θN
(1)
e`
n

]

+ g∗(n)

[
L−1∑
`=0

α`e
−jθN2

` ej2θN
(2)
e`
n

]
= g(n)f1(n) + g∗(n)f2(n), (7)

where f1(n) and f2(n) are the terms in the brackets,
and from (4) the equivalent delays are

N
(1)
e` = N` + φ`/2θ

N
(2)
e` = N` − φ`/2θ, (8)

which can be used to calculate the actual time delays
{N`} and the Doppler frequency shifts {φ`}. Fig. 2
shows the channel output for a 4-path channel with
different Doppler frequencies as multiples of 2π/N ,
and delays of [40 80 120 160] samples. Dechirping
the output yT (n) by g∗(n) and g(n), we get h1(n) =
yT (n)g∗(n) and h2(n) = yT (n)g(n) or

h1(n) = f1(n) + e−j2θn
2
f2(n)

h2(n) = ej2θn
2
f1(n) + f2(n). (9)

3.2 Time-Frequency Approach
Using a time-frequency distribution that localizes
chirps well, such as the Wigner distribution [21],
the corresponding frequency marginals of h1(n) and
h2(n) (See Fig. 3) will provide the information
needed to obtain the channel parameters. Indeed,
these marginals are related to the Fourier transform
of h1(n) and h2(n) as shown in Fig. 4. Thus the con-
nection of the frequencies where the peaks occur in
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Wigner distribution for channel output  y(n)
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Figure 2: Wigner distribution for 4-path channel out-
put with input g(n) and gT (n)
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Figure 3: Frequency marginal obtained by Wigner
distribution for 4-path channel
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Figure 4: Spectrum for 4-path channel.

Fig. 3 with the parameters can be shown by comput-
ing the Fourier transform of h1(n) and h2(n) as well.
To do so, we consider the Fourier transform of a signal
f(n) multiplied by a chirp c(n), with Fourier trans-
form C(ω). Representing f(n) by its inverse trans-

form we have:

F [f(n)c(n)] =
∑
k

F (k)C(ω − ωk), (10)

which shows a flat spectrum if the chirp is broadband.
The Fourier transforms of f1(n) and f2(n) are given
by

F1(ω) = 2π
L−1∑
`=0

α`e
jθN2

` δ(ω − 2θN
(1)
e` )

F2(ω) = 2π
L−1∑
`=0

α∗
`e

−jθN2
` δ(ω − 2φ` − 2θN

(1)
e` ).(11)

On the other hand, the Fourier transforms of
h1(n) and h2(n) are composed of a wide-band low-
amplitude part and impulses at the frequencies {ω` =

2θN
(1)
e` } for F1(ω) and {ω` = 2φ` + 2θN

(1)
e` } for

F2(ω). Once we obtain N (1)
e` from the first equation

we will use the second equation to obtain the Doppler
shifts φ`, after which we can find the actual time de-
lays N` using the definition of N (1)

e` in (8). The num-
ber of peaks is an estimate of L and an estimate of the
attenuations α` can be found by looking at the am-
plitudes of the peaks. Indeed, estimates of α` can be
found from

H1(2θN
(1)
e` ) ≈ 2πα̂`e

jθN2
` . (12)

In the above derivations we assumed no noise was
present. When using the received signal

r(n) = yT (n) + η(n), (13)

where η(n) is the channel noise, we need to use the
dechirped signals r(n)g∗(n) and r(n)g(n). Again the
Wigner distribution can be used to find the frequency
marginals of the dechirped signals or we can use the
periodogram [22] to estimate the frequencies where
the peaks of the spectra of r(n)g∗(n) and r(n)g(n)
occur.

In the discrete implementation of the method, we
need to consider the significant difference in scale
between the time and the Doppler frequency shifts.
Given as a-priori information the possible range of
values for the time and frequency delays, the length
of the FM sinusoid, N , and the rate θ can be adjusted.
After choosing the value of N to represent the range
of time delays, one can then choose the chirp rate
θ = π tan(β)/N by letting the angle β be so that
the instantaneous frequency goes from 0 to φmax, the
maximum value of the Doppler shift expected. Thus
the resolution is set appropriately for both the time and
the frequency delays.
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4 Simulation Results
We implement the transmission of 1024 symbols in
each OFDM block. The data symbols are QPSK
modulated. The FM cosine and two-chirp pilots are
used for channel estimation, and in each case pilot se-
quences are sent every 6 symbols. Letting the band-
width be BW = B kHz, if we wish to transmit M
bits/frame the center frequencies of the sub-channels
are B/M kHz, k = 0, · · · ,M − 1.
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FM sinusoid for different Dopplers in each path

Two−chirp for different Dopplers in each path

FM sinusoid for the same Doppler in each path

Two−chirp for the same Doppler in each path

Figure 5: BER vs SNR for chirp channel estimation
in OFDM using 1024 symbols

The model we use in our simulation for the com-
munication channel is noisy, frequency-selective fad-
ing channel, valid for the duration of an OFDM frame,
has L = 4 paths, each with attenuation α`, time
and frequency shifts τ` and Φ`, respectively. For the
discrete-time model it is assumed that the sampling
frequency rate Fs is chosen appropriately so that the
time shifts are τ` = N`Ts and likewise the Doppler
frequency shifts are Φ` = φ`Fs for some integers
{N`}. We assume that the relative velocity between
the transmitter and the receiver is between 0 and 150
km/hr so that the Doppler frequency shifts vary be-
tween 0 to 150 Hz, and used a sampling frequency
Fs = 2B where the available bandwidth B = 30
kHz. As expected, in Fig. 5 the BER is larger for the
case where each path is assigned a different Doppler
frequency shift, than in the case where the Doppler
frequency shift is the same for each path. The BERs
obtained using two-chirp pilots and the proposed FM
sinusoid for channel estimation method are very close
to each other using just the half length of the two-chirp
pilot sequence.

5 Conclusion
In this paper we proposed an improvement on chirp
channel estimation. The pilot signal in our system is
an FM sinusoid obtained by combining a linear chirp

and its conjugate which allows accurate estimation of
the channel parameters needed in developing coherent
detectors without the need of sending two consecutive
chirps during two symbol time. We are able to esti-
mate channel parameters by sending an FM sinusoid
of one symbol duration. Our method is justified us-
ing time-frequency analysis and showing that linear
chirps have eigenfunction properties. We simulated
an OFDM system and compared our method with the
two-chirp method which showed a very similar perfor-
mance to the two-chirp method without sending two-
consecutive chirps. We will explore other channel
models such as basis expansion model (BEM) using
the proposed estimation method as our future work.
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