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Abstract: We calculate the linear complexity of almost perfect binary sequences. Also we study the linear com-
plexity of binary sequences obtained from series of almost perfect ternary sequences and the ternary sequences
with two nonzero autocorrelation sidelobe levels.
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1 Introduction
Pseudorandom sequences are widely used in cryp-
tography and communication. The autocorrelation
and the linear complexity are important parameters of
pseudo-random sequences [2, 3]. Periodic sequences
with good correlation properties have important appli-
cations in various areas of engineering [3].

Let (ut) be a binary sequence of period N , i.e.
ut = ut+N and ut = 1 or 0 for t = 0, 1, 2, . . . . The
autocorrelation of the sequence at shift τ is defined by

Cu(τ) =
N−1∑
t=0

(−1)ut+τ−ut .

The sequence (ut) is said to be almost perfect if
Cs(τ) = 0 for all τ 6≡ 0 (mod N) with exactly one
exception. Almost perfect sequences were introduced
by Wolfmann [13]. It is worth pointing out that there
is other definition of almost perfect sequences. The
sequence is called almost perfect if all the off-peak au-
tocorrelation coefficients are as small as theoretically
possible - with exactly one exception [5].

In this paper we will use the definition of Wolf-
mann. By [13] such binary sequence exist only if
the period of sequence is a multiple of 4. In this
case two definitions are the same (see [5]). Pott
and Bradley [12] proved that an N -periodic sequence
(ut) is almost perfect if and only if support of (ut)
(C = {t|0 ≤ t < N and ut = 1}) is a cyclic divisible
difference set with the parameters

(N/2, 2, (N − 2θ)/2, θ(θ − 1), (N − 4θ)/4)

where (N −2θ)/2 is the number of entries 1 in a gen-
erating cycle. There are no almost perfect sequences

for θ = 0 with period N > 4 [13]. The case θ = 1
was investigated in [13, 12, 10]. In this case, almost
perfect sequences exist provided that N = 2(q + 1)
for some odd prime power q = pn. It has been proved
in [1, 11] that almost perfect sequences with θ = 2 ex-
ist if and only if N = 8; 12 or 28. The almost perfect
sequences still poorly understood for case θ > 2.

Further, almost perfect ternary sequences have
been proposed by Langevin [9], Schotten and Luke
[14], and Krengel [6, 7]. Krengel used the decomposi-
tion of m-sequences of length pn−1 over Fp, n = km,
with p being an odd prime.

The linear complexity L of a sequence is an im-
portant parameter in its evaluation as a key stream
cipher for cryptographic applications. A high lin-
ear complexity is necessary for a good cryptographic
sequence. The linear complexity (also called linear
span) of ut is defined to be the smallest positive in-
teger L such that there are constants c1, . . . , cL ∈ F2

satisfying

ui = c1ui−1 + c2ui−2 + · · ·+ cLui−L

for all i ≥ L. The linear complexity also may be de-
fined as the length of the shortest linear feedback shift
register that is capable of generating the sequence.
Knowledge of just 2L consecutive digits of the se-
quence is sufficient to enable the remainder of the se-
quence to be constructed. Thus, it is reasonable to
suggest that ’good’ sequences have L bigger than a
half of the period of the sequence [2].

In this paper we prove that the almost perfect bi-
nary sequences of length 2(pn + 1) have high linear
complexity. Also we investigate the linear complex-
ity of the series of binary sequences obtained from
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almost perfect ternary sequences [7] and the ternary
sequences with two nonzero autocorrelation sidelobe
levels. We have proved conjectures made in [7, 8]
about the linear complexity of sequences.

2 The linear complexity of almost
perfect binary sequences of length
2(pn + 1)

Let p be an odd prime, q = pn, n = 1, 2, . . . .
Throughout this paper, let (ui) be almost perfect bi-
nary sequence with period N = 2(q + 1) for θ = 1.
In this section we will investigate the linear complex-
ity of (ui).

It is well known that if (ut) is a sequence with
period N , then the minimal polynomial m(x) and the
linear complexity L of this sequence can be defined
by

m(x) = (xN − 1)/ gcd
(
xN − 1, Su(x)

)
,

L = N − deg gcd
(
xN − 1, Su(x)

)
, (1)

where Su(x) = u0 + u1x + ... + uN−1x
N−1 [2].

Hence, in order to find the value L and m(x) it is suf-
ficient to find the gcd

(
xN − 1, Su(x)

)
. It is worth

pointing out that the minimal polynomials of m(x)
defined here may be the reciprocals of the minimal
polynomials defined in other references.

Before we give the main result of this section, we
establish the following lemmas.

Lemma 1 Let a = min
uj=0

j. Then:

(i) ua = ua+q+1 = 0.
(ii) uj + uj+q+1 = 1 for 0 < j < q + 1, j 6= a.

Proof: Since

((−1)u0 + (−1)u1 + · · ·+ (−1)uN−1)2 =
N−1∑
w=0

Cu(w)

and Cu(0) = 2(q + 1), it follows that Cu(q + 1) =
−2(q − 1), i.e.,

2q+1∑
t=0

(−1)ut+q+1−ut = −2(q − 1).

Thus, there is a unique a such that ua = ua+q+1 = 0
and uj + uj+q+1 = 1 for 0 < j < q + 1, j 6= a. ut

Let Su(x) =
∑2q+1

i=0 uix
i. Introduce the sub-

sidiary polynomial T (x) =
q∑
i=0

uix
i.

Lemma 2 Su(x) = T (x)(1 − xq+1) + xa+q+1 +
xq+1(xq+1 − 1)/(x− 1).

Proof: From our definition it follows that

Su(x) =

2q+1∑
i=0

uix
i = T (x) +

2q+1∑
i=q+1

uix
i.

By Lemma 1 we see that uj+q+1 = 1 − uj for 0 <

j < q + 1, j 6= a. Hence, we obtain
∑2q+1

i=q+1 uix
i =

xq+1
∑q

i=0(1−ui)xi−xa+q+1 = xq+1(1+x+ · · ·+
xq)− T (x)xq+1 − xa+q+1. This completes the proof
of Lemma 2. ut

Theorem 3 Let (ui) be the almost perfect binary se-
quence of period N = 2(q + 1). Then L = 2(q + 1)
and m(x) = xN − 1.

Proof: By Lemma 2 we have gcd(xN − 1, Su(x)) =

gcd
(
x2(q+1) − 1, xa+q+1 + (xq+1 − 1)/(x −

1)(T (x)(x − 1) + xq+1)
)

= 1. The conclusion of
this theorem then follows from (1). ut

It is worth noting that high linear complexity can
not guarantee that the sequence is secure. For exam-
ple, if changing one or few terms of a sequence can
greatly reduce its linear complexity, then the resulting
key stream would be cryptographically weak.

The k-error linear complexity of a sequence is
defined by Lk(u) = min

t
L(t), where the minimum

is taken over all binary N -periodic sequences r =
(rn) for which the Hamming distance of the vectors
(r0, r1, . . . , rN−1) and (u0, u1, . . . , uN−1) is at most
k. Sequences that are suitable as keystreams should
possess not only a large linear complexity but also the
change of a few terms must not cause a significant de-
crease of the linear complexity.

From the proof of Theorem 3 it follows that here
1-error the linear complexity L1(u) ≤ q + 2.

3 Notes about the linear complexity
of Krengel’s sequences

The almost perfect autocorrelation ternary sequence
of period N = 4(q + 1) and the four zeros on the pe-
riod were investigated by Krengel in [7]. E. Krengel
hazards a conjecture that the linear complexity of bi-
nary sequences obtained from of these almost perfect
ternary sequences is equal to N = 3(q + 1). Here we
prove this conjecture.

First, we briefly repeat the basic definitions from
[7]. From now on, we suppose that q = pn, n =
1, 2, . . . be an integer of the form q ≡ 1(mod 4).
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Let γ be the primitive element of Fq2 and θ =

γq+1. It is easy to prove that θ ∈ Fq and θ is the prim-
itive element of Fq. We consider the ternary sequences
defined by

yi = ψ(Tr(γi), i = 0, 1, . . . , 4(q + 1)− 1, (2)

where

ψ(x) =

{
(−1)b(indηx mod 4)/2c, if x 6= 0,

0, if x = 0.
x ∈ Fq,

indηx is a discrete logarithm on base η, buc =
max{k : k < u, k ∈ N}, and Trx = x + xq +

· · ·+ xq(q−1) is a trace function from Fq2 in Fq.
By [7] (yi) is the almost perfect autocorrelation

ternary sequence of period N = 4(q + 1) and four
zeros in the period.

Let {wi} be a binary sequence of period 4(q+ 1)
defined as

wi =

{
1, if yi = 0, 1,

0, if yi = −1.
(3)

To begin with, we give another definition of the se-
quence. By definition, put Hk = {θk+4s mod p; s =
1, ..., (q − 1)/4}, k = 0, 1, 2, 3, where the arithmetic
is as in Fq. Then Hk are cyclotomic classes of order
four [4].

Let ξi = Trγi, i = 0, 1, . . . , 4(q + 1) − 1. From
our definitions, (2) and (3) it follows that

wi =

{
1, if ξi ∈ H0 ∪H1 ∪ {0},
0, if ξi ∈ H2 ∪H3.

(4)

Lemma 4 (i) Let b = min
ξi=0

i. Then wb+k(q+1) = 1 for

k = 0, 1, 2, 3.
(ii) Let j : j 6= b + k(q + 1), k = 0, 1, 2, 3, 0 ≤

j ≤ 2q + 1. Then wj + wj+2(q+1) = 1.

Proof: (i) By definition we have that ξb = 0 and

ξb+k(q+1) = Trγb+k(q+1) = θkTrγa = θkξb = 0.

Hence, by (4) we get wb+k(q+1) = 1 for k = 0, 1, 2, 3.
(ii) Suppose wj = 1 and j 6= b + k(q + 1), k =

0, 1, 2, 3; then by (4) ξj ∈ H0 ∪H1. Since

Trγj+2(q+1) = θ2Trγj = θ2ξj ,

it follows that ξj+2(q+1) ∈ H2 ∪H3. So, wj+2(q+1) =
0. The case when wj = 0 may be proved similarly as
the first. ut

Let Pw(x) =
∑2q+1

i=0 wix
i , Sw(x) =∑4q+3

i=0 wix
i. With similar arguments as above we ob-

tain the following results for Sw(x).

Lemma 5 Sw(x) = P (x)(1 − x2(q+1)) +

x2(q+1)(x2(q+1)− 1)/(x− 1) +xb+2(q+1)(1 +xq+1).

Theorem 6 Let (wi) be defined by (3). Then L =
3(q + 1) and m(x) = (xq+1 − 1)3.

Proof: Since by Lemma 4 Sw(x)/(1 + xq+1) =

P (x)(1 + xq+1) + x2(q+1)(xq+1 − 1)/(x − 1) +

xb+2(q+1) and

x(q+1) − 1)/(x− 1)| |x=1= 0,

it follows that

gcd(x4(q+1) − 1, Sw(x)) = xq+1 + 1.

This completes the proof of Theorem 6. ut

Remark 7 We can also consider the balanced binary
sequence (w̃i) of length 4(q + 1) defined by

w̃i =

{
wi, if i 6= b, b+ 3(q + 1),

0, if i = b, b+ 3(q + 1).

In this case we also have that Sw(x) = P (x)(1 +

x2(q+1)) +x2(q+1)(x2(q+1)− 1)/(x− 1) +xb+2(q+1).
Hence, the linear complexity of (w̃i) is equal to L =
3(q + 1).

Remark 8 If (w̄i) is defined by

w̃i =

{
1, if ξi ∈ H0 ∪H1,

0, if ξi ∈ H2 ∪H3 ∪ {0}.

then the linear complexity of (w̃i) is also equal to L =
3(q + 1).

Remark 9 From the proof of Theorem 6 it follows
that 2-error the linear complexity L2(w) ≤ 2q + 4.

4 About the linear complexity of the
sequences of length 8(q + 1)

New ternary sequences of length 8(q + 1) with two
nonzero autocorrelation sidelobe levels and peak fac-
tor close to unity were proposed in [8]. Authors haz-
ard a conjecture that the linear complexity of binary
sequences obtained from these new ternary sequences
is equal to N = 6(q + 1). Here we prove this conjec-
ture.

Let (hi) be a sequence of length 4(q+1) obtained
by combining two perfect binary sequences (ui), i.e.,
hi = ui for i = 0, 1, . . . , 4q + 3.
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Let (zi) be a balanced sequence of length 8(q+1)
defined as

zk =

{
hi, if k = 2i,

wi, if k = 2i+ 1,
k = 0, 1, . . . , 8(q+1)−1.

(5)
Thus the above expression is equivalent to the follow-
ing z = I(h,w) where I is the interleaved operator.

Let Sz(x) =
∑8q+7

i=0 zix
i, Sh(x) =

∑4q+3
i=0 vix

i.
From our definition it follows that [15]

Sz(x) = Sh(x2) + xSw(x2) (6)

Theorem 10 Let (zi) be a binary sequence of period
N = 8(q + 1) defined by (5). Then L = 6(q + 1) and
m(x) = (xq+1 − 1)6.

Proof: By definition,

Sh(x) = Su(x) + x2(q+1)Su(x)

so that

Sh(x2) = Su(x2)(1 + x4(q+1)).

Further, by Lemma 5 we have
Sw(x2) = P (x2)(1 + x4(q+1)) +

x4(q+1)+1((x4(q+1) − 1)/(x2 − 1) + x2b+4(q+1)(1 +

x2(q+1)).
From this by (6) we can establish that

Sz(x) = (1 + x2(q+1))R(x)

where

R(x) = Sh(x2)(1+x2(q+1))+xP (x2)(1+x2(q+1))

+ x4(q+1)+1(x2(q+1) − 1)/(x2 − 1) + x2b+4(q+1).

To conclude the proof, it remains to note that in this
case gcd(x8(q+1) − 1, R(x)) = 1. ut

Remark 11 From the proof of Theorem 10 it follows
that 2-error the linear complexity L2(z) ≤ 4q + 4.

5 Conclusion
We calculated the linear complexity of almost perfect
binary sequences. Also we studied the linear com-
plexity of binary sequences obtained from series of
almost perfect ternary sequences and the ternary se-
quences with two nonzero autocorrelation sidelobe
levels. All sequences considered in this paper have
high linear complexity.
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