
Data Collecting Protocol Based on a Rooted Tree for Wireless Ad Hoc
Networks

SATORU OHTA

Department of Information Systems Engineering, Faculty of Engineering
Toyama Prefectural University

5180 Kurokawa, Imizu-shi, Toyama 939-0398
JAPAN

ohta@pu-toyama.ac.jp https://www.researchgate.net/profile/Satoru_Ohta

Abstract: - A simple communication protocol that effectively enables a base station to collect data from nodes in
wireless ad hoc networks is proposed. The proposed protocol assumes that the network is constructed using a
data transmission modem that does not support network functions; moreover, the network is assumed to be multi-
hop. Because radio waves transmitted from nodes may generate interference, packets issued simultaneously will
collide. Thus, the protocol must provide a routing function and avoid packet collisions. To satisfy these
requirements, the proposed method employs a token passing method that utilizes a rooted tree structure, which is
extracted from a given network. By utilizing the tree structure, the routing mechanism is significantly simplified.
Furthermore, packet collisions are avoided by allowing only one node to transmit a packet. The algorithm that
extracts a rooted tree from a given network is also shown. The feasibility and performance of the proposed
protocol was examined on a prototype network.

Key-Words: - ad hoc network, tree, routing, token passing, communication protocol, wireless network

1 Introduction
Wireless ad hoc networks are extensively used for
various applications [1–3]. The technical
requirements for ad hoc network implementation can
differ greatly depending on the application. Such
differences can include wireless transmission
distance, bandwidth, and node mobility. Thus, the
wireless transmission system and communication
protocol must be selected optimally according to the
target application requirements.

Some wireless systems, such as the IEEE 802.11
series (wireless LANs) and IEEE 802.15 (ZigBee),
are standardized and can be used to build ad hoc
networks without modification; however, these
methods are not always optimal for a particular
application, and other wireless systems may be more
appropriate for some applications. As an alternative
system, wireless data transmission modems, which
are attractive as data links for some applications
because they provide robust transmission over long
distances, are commercially available. Unfortunately,
the modems are often designed for point-to-point
transmission; thus, developing a network protocol to
apply them to ad hoc networks is necessary.

Here, we consider a backbone network for a
climber surveillance system, which is being
developed to ensure mountain climber safety. The
network connects mountain huts and enables base
stations to collect climber position data. For this

application, a network protocol is required to send
data stored at the huts to the base station. We plan to
use a 429-MHz wireless data transmission modem
[4] for data links because of its low radio wave
attenuation against obstacles and rainfall. However,
this wireless modem was designed for point-to-point
data transmission and it does not provide network
functions. Thus, to use this modem in the mountain
hut network, we must develop a network protocol
that provides routing and avoids packet collision.

We propose a simple data collecting protocol that
satisfies these requirements. The proposed protocol
enables a base station to collect data from every node
in a mesh, multi-hop network by executing a simple
algorithm at each node. The algorithm does not
require each node to manage the global network
information; moreover, a node only has to know very
partial neighbour node information. This protocol is
based on a token passing approach [5–7], and every
packet is transmitted over a rooted tree embedded in
the mesh topology network. By employing the token
approach and the rooted tree, packet collision is
completely avoided and the routing mechanism is
significantly simplified. The feasibility of the
protocol was confirmed using a prototype network
with nodes implemented using a small computer
board and wireless data transmission modem.
Moreover, the performance of the prototype system
was evaluated.

Satoru Ohta
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 110 Volume 1, 2016

The remainder of this paper is organized as
follows. In Section 2, we explore the target
application and describe the technical problems. In
Section 3, the proposed protocol is explained. In
Section 4, the prototype implementation is presented.
In Section 5, experimental results are reported and
conclusions are presented in Section 6.

2 Problem Description
The target application is the ad hoc network for the
climber surveillance system, which is shown in Fig. 1.
The system collects and manages position
information of climbers in mountainous terrains. The
climber position is identified using a GPS (Global
Positioning System) terminal that is carried by each
climber. The terminal has a wireless data transmitter
that sends position information to neighbouring
mountain huts. A communication node is placed at
each hut to form a network and position data
collected at each node is transmitted to a base station
via this network. Consolidated position data
facilitates the discovery and rescue of missing or
injured climbers. The scope of this paper is to
develop a network that connects mountain huts.

Fig. 1 Target climber surveillance system.

For the mountain hut network, building
telecommunication infrastructure such as cables is
not feasible because of construction difficulties,
economic constraints, and environmental
considerations. Thus, communication should be
provided by a wireless ad hoc network.

Because of the distance between huts and
expected radio wave attenuation, employing IEEE
802.11 or 802.15 wireless systems is considered
impractical because the 2.4 or 5 GHz radio waves
used in these systems demonstrate larger attenuation

against rainfall or obstacles. To establish a reliable
link, the 429-MHz data transmission modem [4] is
more suitable because the 429 MHz frequency
demonstrates less attenuation against obstacles and
adverse weather conditions.

Although the data transmission modem is
attractive for building the mountain hut network, the
modem does not provide network functions. Thus,
developing a protocol that can collect data from the
huts and transmit the data to the base station is
necessary. The data collecting protocol must satisfy
the following technical requirements.

 Multi-hop packet transmission is mandatory
because the area is too large to be covered by the
wireless range of the modem.

 A link can be established between two nodes if
the distance is not greater than the wireless range.
Thus, the network has a general mesh topology.

 Radio waves generated from different sender
nodes may interfere with each other. Thus,
possible packet collision must be avoided.

For the first and second requirements, the protocol
must provide a routing mechanism. Packet collision
must be also avoided for the third requirement. The
aim is to establish a network protocol that provides
these mechanisms using point-to-point data
transmission using a modem.

3. Proposed Protocol
Routing over a network becomes very simple when
the network topology is a tree because the path
between the source and destination is uniquely
determined. In particular, if a base station is placed in
the network, the rooted tree topology can be
constructed by assigning the root to the base station.
The rooted tree is a tree structure that comprises a
root and the parent-child relationship, as shown in
Fig. 2.

Fig, 2. Rooted tree.

In this topology, it is very easy for the root to
collect data from other nodes. It is enough that each

A

B C D

Root

E

Child of B

Parent of F and G

F G

Satoru Ohta
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 111 Volume 1, 2016

node simply sends data to its parent node. Then, the
parent node transmits the received data to its parent.
By repeating this process, data will arrive at the root
node. With this procedure, the information required
at each node is its parent node. To request data
collection from the root to other nodes, each node
only needs to send request packets to its children.
Thus, to collect data, it is sufficient for a node to
know its parent and child nodes, and global network
information is not required, which simplifies the node
process and implementation. Because of this
simplicity, the proposed protocol utilizes a rooted
tree topology.

To avoid packet collision, this study investigates a
protocol based on the token passing method [5–7]. In
this method, only the node that has the token can
transmit packets; therefore, packet collision never
occurs. When the node with the token completes the
data transmission, the token is delivered to the next
node. To implement this mechanism, the order in
which the token is passed must be determined. If the
network topology is a rooted tree, token passing order
is determined easily using a tree search algorithm
such as depth-first search [8]. Fig. 3 shows how the
token is circulated in depth-first search order.

Fig. 3. Token passing in depth-first search order.

As described above, the rooted tree topology
simplifies the routing for data collection as well as
the token passing for collision avoidance; however,
the network topology in the target application is a
mesh rather than a tree. Fortunately, constructing a
rooted tree for a mesh network by selecting a subset
of links in the network is easy. As shown later, this
selection is performed using a simple algorithm.

Based on the above considerations, this study
proposes a tree-based token protocol for data
collection. The protocol relies on three types of
messages: request, response, and token. The request
message is transmitted from a node to its children.
This message is used to order each child to send data
stored at the child node. The response message is sent
from a node to its parent. The data stored at the node
and its descendants is transmitted by this message.
The token is passed after the transmission of request

or response messages is completed. This shows that
the sender node does not have more messages to send,
and the right to transmit packets moves to the receiver
node. A node is allowed to transmit packets during
the period from token receipt to token transmission.
Only one token message circulates in the network;
thus, packet collision is strictly avoided.

The protocol initiates when the root node sends a
request message. Then, if a node other than the root
receives a request with the token from its parent, the
node executes an algorithm to collect and send the
data stored at the node and its descendants. Let n
denote a node in the network. The algorithm is
described as follows.

Algorithm Data_Collection
Given: list Ln, the children of node n;
1. if n is not the root
 then
2. p:= the source of request; // parent of n
3. Send response including the data stored at n

to p;
 else
4. Send the data stored at n to the application;
 end if
5. for each c in Ln do
6. Forward the request and token to c;
7. Receive the responses from c and put them into

the buffer;
8. Wait for the token to be returned from c;
 end for
 if n is not the root
 then
9. Forward the responses in the buffer to p;
10. Return the token to p;
 else
11. Send the responses in the buffer to the

application, and wait for the next command
from the application;

 end if

With this scheme, the token message is first sent
from the root node and then circulated in the network.
Evidently, from the algorithm, the token arrives at
every node in depth-first search order. If a node
receives a request, its local data is returned to the
parent (line 3). Furthermore, data stored in its
descendants is collected (lines 6–7) and forwarded to
the parent (line 9). By performing these steps at every
node recursively, the root can collect the data stored
at every node.

As seen above, global network information is not
required at each node. The node only has to know the
list of its child nodes, i.e., very partial information on
the rooted tree, which simplifies the process and

A

B C D

Root

E F G

1

2 3

4
5 6

7

8
9
10

11

12

Satoru Ohta
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 112 Volume 1, 2016

implementation of the protocol. The children list Ln
can be obtained by the following method.

To determine a rooted tree in the mesh topology
network and obtain the children list Ln for node n, the
proposed method employs a “tree maker” message,
which is issued by the root and forwarded from a
node to its child node. The tree maker message
includes a list of nodes that have not been included in
the tree. Let U denote this list. If a node, which is
denoted by n, receives the tree maker, it deletes itself
from U. This occurs because n is now connected to
the tree. Then, the node looks for its children among
the elements in U. If some nodes in U are found to be
reachable from n, they are added to the children of n.
Then, n sends the tree maker to its newly discovered
children, and the process is executed recursively.
Finally, n returns the updated U to its parent.

This procedure adds reachable nodes to the tree in
a greedy manner until all nodes are included. When a
node is added to a tree, it is deleted from U. The
deleted node will not be checked again as a child
candidate of other nodes; thus, a cycle will not occur
in the resultant topology. In other words, the obtained
topology is assured to be a tree. This computation is
summarized as follows.

Algorithm Build_Tree
1. Ln:= {}; // Children of n
2. if n is the root
3. then U:= {all nodes}
 else
4. U:= node list given by the tree maker;
5. p:= the source of the tree maker; // Parent
 end if
6. U:= U – {n};
7. for each c in U do
8. if c is reachable from n then
9. Ln:= Ln {c};
10. U:= U – {c};
 end if
 end for
11. for each c in Ln do
12. Send tree maker to c with node list U;
13. U:= node list replied from c;
 end for
14. if n is not the root then reply U to p;

Fig. 4 shows an example of a tree found by the
above algorithm. The thick lines are the links used for
the tree, and the dotted lines are the links that are not
used for the tree. The algorithm starts at the root node
A. Initially, U is set to {A, B, C, D, E, F, G} (line 3).
Since node A is the root and is included in the tree, A
is deleted from U (line 6). Then, lines 7–10 find that
nodes B and C among {B, C, D, E, F, G} are

reachable from A. Thus, children list LA will be set to
{B, C}. Next, the algorithm is executed at B and C
(lines 11–13). By executing the algorithm at B, it
finds that D, E, and F are reachable from B. Thus, D,
E, and F become the children of B, and B returns {C,
G}. This list is sent to C and the algorithm is executed
at C. Then, G, which is reachable from C, is added to
the tree. Node C will reply with an idle list to root A.
After this procedure is completed, the children lists
LA,…, LG are correctly set up.

Fig. 4. Tree discovered by algorithm
Build_Tree.

4. Prototype Implementation
A prototype ad hoc network was implemented using
the proposed protocol. The feasibility of the proposed
protocol was confirmed using the prototype. This
section explores the hardware and software of the
implemented prototype.

4.1 Hardware
Each node of the network was constructed by
connecting a wireless data transmission modem and
a computer board. The computer board is a Raspberry
Pi 2 Model B [9], which has a BCM2836 processor
and 1 GB RAM. The Linux Raspbian distribution
was installed as the OS. The computer exchanges
commands and data with the modem through a
universal asynchronous receiver transmitter (UART)
serial interface.
This prototype included a Circuit Design Inc. MU-
1N wireless modem [4]. This modem provides
considerably stable wireless communication by
utilizing a 429-MHz radio wave. The proposed
protocol was implemented using the following
modem commands.

 Data transmission (sends data to the specified
destination)

root A

B

C

D

E

F

G

Satoru Ohta
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 113 Volume 1, 2016

 Packet transmission check (tests whether the
destination responds)

 Received signal strength indication (RSSI)
measurement (estimates the signal and noise
levels at the specified destination node)

 Identifier setting
 Carrier sense
Each modem command is performed by sending a

particular character sequence, e.g., @DT for data
transmission, from the computer through the UART
interface. The data size for the data transmission
command is limited to 255 Bytes. The bit rate of the
wireless link is 4800 bps; thus, the modem link is
relatively narrow-band. However, the current target
application does not require higher bit rate, and the
modem specifications are adequate for this
application.

The prototype node is shown in Fig. 5.

Fig. 5. Prototype node.
4.2 Software
The proposed data collecting protocol was
implemented as two programs that run on the
computer board. One program is performed on the
root node. This program waits for command input by
the operator. If the program receives a command, the
data-collecting algorithm is initiated. The other
program is executed on nodes other than the root.
This program starts the algorithm if the node receives
a request message from its parent node. These
programs were written in Perl with optional packages
to control serial communication and the BCM2836
processor.

Request, response, and token messages are
exchanged by the data transmission command
provided by the modem. The packet structure of these
messages is shown in Fig. 6. The first field of the
packet is the message type, i.e., request, response, or
token. The next field is option length, followed by
option field. Currently, the option field is used to
indicate the identifier of the source node. The fourth
and fifth fields are used for the application. The
fourth field identifies the application level command,

whereas the fifth field includes the arguments given
to the command. The algorithms shown in Section 3,
i.e., Data_Collection and Build_Tree, were
implemented using this packet format.

Fig. 6. Packet format.

The application level commands were developed
for two purposes. The first purpose is to demonstrate
the feasibility of the proposed protocol for the
mountain hut network application. From this
perspective, we implemented several commands that
allow the root node to collect the data stored in each
node. Second, to operate the network in real-world
applications, network management functions are
indispensable; thus, some basic management
commands were developed.

The application level commands include get,
watch, update, copy, ping, rssi, build, and showtree.
The get command collects and shows the content of
a specified text file stored at each node. The watch
and update commands are used together. The update
command dumps the latest addition to the file being
monitored at each node. The monitored file is
specified through the watch command. The copy
command fetches a file from a remote node and stores
a copy at the root node. The feasibility of the
mountain hut network can be confirmed using these
commands.

Other commands are provided for management
purposes. The ping command confirms that all nodes
in the network are alive. For this command, the
packet transmission check function of the modem is
used to see whether a child node is reachable. The
result is reported to the root node by response
messages. The wireless link performance is checked
using the rssi command. When this command is
initiated, each node measures the signal and noise
levels for its parent and children nodes using the
modem’s RSSI function. The result is notified to the
root as a response message. The build command
constructs the tree structure by executing the
Build_Tree algorithm at each node. The current tree
structure can be traced using the showtree command,
which lists the child nodes of each node in the
network.

Message
Type

Option
Length

Option
Application Command

Modem
Command

Data

Satoru Ohta
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 114 Volume 1, 2016

5. Experimental Results
The proposed method was examined through
experiments using a small network that consisted of
four prototype nodes. First, the tree construction
algorithm was examined using two different node
placements in our laboratory. These placements are
shown in Fig. 7. In the placement shown in Fig. 7 (a),
only node B is reachable from the root node. The
other nodes are unreachable because of radio wave
attenuation caused by walls. Meanwhile, node C is
out of the wireless range of the root node A in the
placement shown in Fig. 7 (b).

Fig. 7. Floor map and experimental node placement.

For these node placements, the build command
was executed, and the obtained tree was extracted by
the showtree command. Consequently, the trees
shown in Fig. 8 were discovered. Fig. 8 (a) and (b)
show the trees found for the placements shown in Fig.
7 (a) and (b), respectively. For both cases, the trees
were constructed adequately with two nodes
connecting within reachable distance. From this
result, it is confirmed that the tree construction
algorithm works successfully.

For the trees constructed using the build command,
all application level commands worked correctly. For
example, the output of the rssi command is shown in
Fig. 9.

Note that the response time varies depending on
the command. The response for the showtree
command is completed within 1.9 s. The ping
command takes longer, i.e., 2.6 s because each node
issues test packets to its children and waits for the
replies. Note that the build command took 10 s. The
response of the build command is slower because a
timeout mechanism is used to verify node
reachability.

Fig. 8. Obtained trees for (a) node placement 1 and
(b) node placement 2.

Fig. 9. Results of executing the rssi command.

For the data collecting application, assessing the
data transmission performance is important.
Therefore, the time taken to complete the copy
command was measured to evaluate this performance.
For this purpose, three files of different sizes were
stored on the microSD card of the computer. Then,
the copy command was executed to transmit these
files from a node to the root, and the elapsed time
from the command input to the end of transmission
was measured. The speed of reading data from the
microSD card is much higher than the modem’s bit
rate; thus, its effect on performance is negligible. The
file sizes were 103, 104, and 105 Bytes.

Fig. 10 shows the response time of the copy
command against file size for single hop transmission.
As shown in Fig. 10, the response time increases
nearly proportionally with increased file size. From
the increase rate against transmitted data size, the
estimated bit rate is approximately 3500 bps. Thus,
the obtained bit rate is less than the modem speed
(4800 bps) because some overhead process exists for
sending and receiving a packet in the modem.

A

B

CD

A

B

C

D

(a)

(b)

A

B

C

D

A

B D

C

root
root

(a) (b)

Node 31 -> Node 33
S: -75 dBm, N: -119 dBm

Node 33 -> Node 31
S: -72 dBm, N: -113 dBm

Node 33 -> Node 47
S: -83 dBm, N: -117 dBm

Node 47 -> Node 33
S: -84 dBm, N: -121 dBm

Node 47 -> Node 48
S: -70 dBm, N: -113 dBm

Node 48 -> Node 47
S: -70 dBm, N: -116 dBm

-- response completed --

Satoru Ohta
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 115 Volume 1, 2016

Fig. 10. Response time versus file size for single hop
transmission.

Moreover, overhead exists in the developed
software that runs on the computer board. For
example, the software checks the response from the
child node before sending a request message.
Furthermore, before every packet transmission,
carrier sense is executed to assure the absence of
other transmissions. Currently, these processes are
performed to ensure reliable communication.
However, the necessity of the response check and
carrier sense is currently uncertain. If the overhead
processes can be omitted, the response time and bit
rate can be improved.

Fig. 11 shows the relationship between hop count
and the response time of the copy command for a 104
Byte file. Fig. 11 shows that the response time
increases linearly with increased hop count. This
characteristic is obtained because data cannot be
transmitted simultaneously from two or more nodes
using the token mechanism. Suppose that it takes T
seconds for a node to send data for a single hop. Then,
for three-hop transmission, the origin and two transit
nodes require T seconds to send the same data and the
transmissions cannot be performed simultaneously.
Obviously, this requires a data transfer time of 3T
seconds. This characteristic may be a limitation for
delay-sensitive applications.

6. Conclusion
A simple data collecting protocol has been proposed
for a wireless ad hoc network. The proposed protocol
provides packet collision avoidance and routing
functions based on a token passing approach and a
rooted tree topology. We have demonstrated how a
rooted tree topology is extracted from a mesh
network with a simple algorithm. The feasibility of
the proposed method was confirmed with a prototype,
which included a computer board and a data
transmission modem.

Fig. 11. Relationship between response time and
hop count.

References:
[1] C.-K. Toh, Ad Hoc Mobile Wireless Networks:

Protocols and Systems, Prentice Hall, 2002.
[2] S. Misra, I. Woungang, and S. C. Misra, Guide to

Wireless Ad Hoc Networks, Springer, 2010.
[3] M. Frodigh, P, Johansson, and P. Larsson,

“Wireless ad hoc networking - the art of
networking without a network,” Ericsson Review,
77, 4, pp. 248–263, April 2000.

[4] Circuit Design Inc., MU-1N-429 Manual,
http://www.circuitdesign.jp/jp/products/product
s2/doc/MU-1N-429.pdf (in Japanese).

[5] W. Stallings, “Local network performance,”
IEEE Communications Magazine, 22, 2, pp.27–
36, Feb. 1984.

[6] Token-Passing Bus Access Method, ANSI/IEEE
Standard 802.4, 1985.

[7] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees,
and M. Welsh, “Monitoring volcanic eruptions
with a wireless sensor network,” in proc. the 2nd
European Workshop on Wireless Sensor
Networks, pp. 108–120, Istanbul, Turkey, Jan.
2005.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, Third
Edition, The MIT Press, 2009.

[9] Raspberry Pi, https://www.raspberrypi.org/,
2015.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+03 1.0E+04 1.0E+05

Re
sp

on
se

 T
im

e
(s

)

File Size (Bytes)

0

20

40

60

80

1 2 3

Re
sp

on
se

 T
im

e
(s

)

Hop Count

Satoru Ohta
International Journal of Communications

http://www.iaras.org/iaras/journals/ijoc

ISSN: 2367-8887 116 Volume 1, 2016

