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Abstract: - This paper presents a mathematical calculation for the temperature of a heat tank in a system with a 
solar collector and this is done by a first order differential equations. The obtained formula describes the 
temperature in the time domain and allows us to determine in advance the final temperature of the process. This 
is very important in a case when there is heating of the tank not only by solar energy, but also by means of some 
other energy source, for example, some type of fuel. Then we can plan the energy consumption and make 
savings, because in such a way we are able to  predetermine the temperature at the end of the process. In this 
paper we make a mathematical derivation that is model and example that enables  development of other formulas 
for  another different processes. 
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1  Introduction 

The work was motivated by the need to design a 
heating system where we can easily determine how 
efficient is a solar thermal system and what are its 
characteristics i.e. how quick it can heat a certain 
heat tank and to which temperature. So far, no 
known formula could calculate this. Knowing the 
characteristics of the system in the time domain 
allows us to select the power of the thermal solar 
collector as well as the mass of a heat tank so that it 
meets the desired requirements. 

   Using first-order differential equations, we will 
derive a general formula for the ideal process of heat 
transfer from a warmer tank of mass m2, which is a 
solar collector for heat energy of power P, to a colder 
heat tank of mass m1. Our intention is to derive a 
formula that can later be brought closer to the real 
process with additional coefficients. Based upon a 
such a mathematical model, formulas for much faster 
processes can be derived and allow computers to 
predict process flow in a single iteration in 
microseconds without the need to perform long 
numerical simulations involving millions of 
iterations that are time consuming. 

   This model allows us to predict the ongoing 
process with a simulator derived by formula in a 
time domain that describes the process. With this we 
are opening the possibility of iterations in the 
program to make parameter changes and to find the 
best that will meet our final goal. In this way we can 
make energy savings in process where the computer 

controls the parameters along the optimal curve and 
knows exactly how the process curve ends, with just 
one iteration. 

   In this paper we make a mathematical derivation 
which is model and example that enables  
development of other formulas for other different 
processes. 

 

2 Derivation of a formula describing 
the temperature of a heat tank in an 
ideal process 

   We will calculate the formula for the temperature 
of the heat tank shown in Fig.1. 

 

 

Fig. 1. Scheme of thermodynamic process of heat 

transfer from the collector to the heat tank      
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   The system consists of a warmer tank which is a 
thermal solar collector of mass m2 with a substance 
of specific heat capacity c2 and a colder tank which 
is a heat tank of mass m1 of a substance of specific 
heat capacity c1 and a system of exchangers passing 
through them within which the liquid flow qm of 
specific heat capacity c3. 

 

2.1. Defining variables in a process model: 

 

Index 1 - lower temperature, 

index 2 - higher temperature, 

 1p  - initial temperature of colder tank,         [K] 

 2p - initial temperature of warmer tank,       [K] 

 1 - temperature of colder tank variable in time,  [K] 

 2 - temp. of warmer tank variable in time,         [K] 

c - specific heat capacity of the substance in the         
system when the same substance is used in all parts 
of the system,                                                   [J/kgK] 

c1 - specific heat capacity of the substance in the 
colder tank,                                                      [J/kgK] 

c2 - specific heat capacity of the substance in the 
warmer tank,                                                    [J/kgK] 

c3 -  specific heat capacity of the substance inside the 
tube and heat exchanger,                                 [J/kgK] 

mq - fluid flow rate in pipes per second,     [kg/s] 

m1 - mass of colder tank medium,                 [kg] 

m2 - mass of warmer tank medium,               [kg] 

P – power of solar collector,                         [W] 

 

2.2. Substitution of differentials 

Differential substitution is derived from the 
differential equation of the system [1][2][3]. 

 

  1 2
3 2 1 1 1 2 2m

d d
q c m c m c

dt dt

 
            

                   (1) 

 

 3 2 1 1 1 1 2 2 2mq c dt m c d m c d              

                   (2) 

 

   From the equality (3) 

                1 1 1 2 2 2m c d m c d                      (3) 

we define temperature change differentials in tanks 
determined by their masses, 

and the differential for temperature change in a 
colder tank is equal to: 

      2 2
1 2

1 1

m c
d d

m c
 


 


      (4) 

while the temperature change differential in a 
warmer tank is also defined by the power of the solar 
collector. 

1 1
2 1

2 2 2 2

m c Pdt
d d

m c m c
 


  

 
   (5) 

From the differential we get a mathematical evidence 
of the temperature of the colder tank: 

        2 2
1 1 1 1 2

1 10 0

t t

p p

m c
d d

m c
    


   

   (6) 

The temperature of the warmer tank is: 

2 2 2

0

t

p d      

1 1
2 1

2 2 2 20 0

t t

p

m cP
dt d

m c m c
 


    

    

 

1 1
2 1

2 2 2 2 0

t

p

m cP
t d

m c m c
 


   

       (7) 

 

2.3. Determination of the general formula for        
the temperature of a colder tank  

   Here we determine the general formula for the 

temperature of a colder tank of an ideal heat 
transfer process in a system with a collector that 
is a tank of a higher temperature. 

   Differential equation for cooler tank 
temperatures is: 

        31
2 1

1 1

mq cd

dt m c


 


 


    (8) 
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    By substituting the temperatures   1 and  2 

defined in (5) and (6), we obtain the differential 
equation for the lower temperature expressed only by 
the lower temperature variable: 

 31 1 1
2 1 1 1

1 1 2 2 2 2 0

t

m
p p

q cd m cP
t d d

dt m c m c m c


   
  

      
   

   

31 1 1
2 1 1

1 1 2 2 2 2

1m
p p

q cd m cP
t d

dt m c m c m c


  
   

       
    

  

31 1 1 2 2
2 1 1

1 1 2 2 2 2

m
p p

q cd m c m cP
t d

dt m c m c m c


  
     

      
    


 

(9) 

When we solve the integral at the end we get: 

1 1 1d k               (10) 

Let's include it in the equation and get: 

 31 1 1 2 2
2 1 1 1

1 1 2 2 2 2

m
p p

q cd m c m cP
t k

dt m c m c m c


  
     

        
    

 

 
 3 1 1 2 2 31

1 1 2 1

1 1 2 2 1 1 2 2

m m
p p

q c m c m c q cd P
k t

dt m c m c m c m c


  

      
         

     

 

 
 3 1 1 2 21

1 1

1 1 2 2

3
2 1

1 1 2 2

m

m
p p

q c m c m cd
k

dt m c m c

q c P
t

m c m c




 

    
   

  

 
     

  

 

 

 

 
 

3 1 1 2 21
1

1 1 2 2

3 1 1 2 23 3
2 1 1

1 1 2 2 1 1 1 1 2 2

m

mm m
p p

q c m c m cd

dt m c m c

q c m c m cq c q cP
t k

m c m c m c m c m c




 

    
  

  

     
       

     

 

 

 

 

3 1 1 2 21
1

1 1 2 2

1 1 2 23 3
2 1 1

1 1 2 2 1 1 2 2

m

m m
p p

q c m c m cd

dt m c m c

m c m cq c q cP
t k

m c m c m c m c




 

    
  

  

    
        

    

 

 

 

 

3 1 1 2 21
1

1 1 2 2

1 1 2 23
2 1 1

1 1 2 2 2 2

m

m
p p

q c m c m cd

dt m c m c

m c m cq c P
t k

m c m c m c




 

    
  

  

   
       

   

 

                            (11) 

   Using equation (12) to solve the 1st order 

differential equation   

                         
dy

p x y q x
dx

                   (12) 

From (11) we define polynomials p(t) (13),  q(t) 

(14) and a polynomial µ(t) (15): 

              
 3 1 1 2 2

1 1 2 2

mq c m c m c
p t

m c m c

    


  
          (13) 

 

 
 1 1 2 23

2 1 1

1 1 2 2 2 2

m
p p

m c m cq c P
q t t k

m c m c m c
 

   
       

   

               (14) 

 

 
 

 3 1 1 2 2

1 1 2 2

mq c m c m c
dtp t dt m c m c

t e e

    


      

      

 3 1 1 2 2

1 1 2 2

mq c m c m c
t

m c m ce

    


              (15) 

we get the equation for the temperatures of the 

colder tank written in the form: 

             
 

   1

1
q t t dt konst

t
 


    
         (16) 

 

After including all polynomials, the first-order 

differential equation to be solved takes the form: 

      

 
 3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

1 1 2 23
1 2 1 1 2

1 1 2 2 2 2

1
m

m

q c m c m c
t

m c m cm
p pq c m c m c

t
m c m c

m c m cq c P
t k e dt k

m c m c m c
e

  

    


  

    


  

    
          

     
  

 

                  
 

 

 
 

3 1 1 2 2

1 1 2 2

3 1 1 2 2 3 1 1 2 2

1 1 2 2 1 1 2 2

3

1 1 2 2

1

1 1 2 23
2 1 1 2

1 1 2 2

1

m

m m

q c m c m c
t

m c m cm

q c m c m c q c m c m c
t t

m c m c m c m cm
p p

q c P
t e dt

m c m c

m c m cq c
e k e dt k

m c m c



 

    


  

         
 

     

 
    

  
   

    
          





        (17)
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The part within the first-order differential equation 

needs to be solved by partial integration 

 

 

 

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

3

1 1 2 2

3

1 1 2 2

m

m

q c m c m c
t

m c m cm

q c m c m c
t

m c m cm

q c P
t e dt

m c m c

q c P
t e dt

m c m c

    


  

    


  


   

 


   

 




     

                                                         (18)

                                 

Partial integration: 

           ' 'u x v x dx u x v x v x u x dx       

                (19) 

 

We define u(t) i v(t):    

  

 

 

 

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 21 1 2 2

3 1 1 2 2

,

,

m

m

q c m c m c
t

m c m c

q c m c m c
t

m c m c

m

u t dv e dt

m c m c
du dt v e

q c m c m c

    


  

    


  

 

  
  

    

    

 

 

 

 

Then we solve the partial integral: 

 3 1 1 2 2

1 1 2 23

1 1 2 2

mq c m c m c
t

m c m cmq c P
t e dt

m c m c

    


  
   

    

 

 

 

 

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

1 1 2 2

3 1 1 2 23

1 1 2 2
1 1 2 2

3 1 1 2 2

m

m

q c m c m c
t

m c m c

mm

q c m c m c
t

m c m c

m

m c m c
t e

q c m c m cq c P

m c m c m c m c
e dt

q c m c m c

    


  

    


  

   
  

     
    

     
       


 

 

 

 

 

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

1 1 2 2

3 1 1 2 2
3

2 2 2 2
1 1 2 2

1 1 2 2

22 2

3 1 1 2 2

m

m

q c m c m c
t

m c m c

m
m

q c m c m c
t

m c m c

m

m c m c
t e

q c m c m cq c P

m c m c m c m c
e

q c m c m c

    


  

    


  

   
  

     
    

     
  

     

 

 

 

 

3 1 1 2 2

1 1 2 2

3 1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

2

3 1 1 2 2

m

m

q c m c m c
t

m c m c

q c m c m c
t

m c m c

m

P t
e

m c m c

P m c m c
e

q c m c m c

    


  

    


  


 

  

   
 

    

               (20) 

 
and we include the solution of partial integration in 

the equation and get:

 

 

 

 

 

 

 

3 1 1 2 2 3 1 1 2 2

1 1 2 2 1 1 2 2

3 1 1 2 2

1 1 2 2

1 1 2 2

2

1 1 2 2 3 1 1 2 2

1

1 23 1 1 2 2
2 1 1

1 1 2 3

1

m m

m

q c m c m c q c m c m c
t t

m c m c m c m c

m

q c m c m c
t

m c m c m
p p

m

P m c m cP t
e e

m c m c q c m c m c

m mq c m c m ce k
m c m q c



 

         
 

     

    


  

   
   

       
 

    
      

    

 3 1 1 2 2

1 1 2 2

2

1 1 2 2

mq c m c m c
t

m c m c
e k

m c m c

    


  

 
 
 
 
 

  
    

 

                    

 
 3 1 1 2 2

1 1 2 2

1 1 2 2
1 2

1 1 2 2 3 1 1 2 2

2 2 1 1 2 2
2 1 1 2

1 1 2 2 2 2

m

m

q c m c m c
t

m c m c

p p

P m c m cP
t

m c m c q c m c m c

m c m c m c
k k e

m c m c m c



 

    
 

  

   
   

       

    
       

    

(21)
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The solution of the differential equation for a colder 

tank finally has the form: 

 

 

 
 3 1 1 2 2

1 1 2 2

1 1 2 2
1 2

1 1 2 2 3 1 1 2 2

2 2
2 1 1 2

1 1 2 2

m

m

q c m c m c
t

m c m c

p p

P m c m cP
t

m c m c q c m c m c

m c
k k e

m c m c



 

    
 

  

   
   

       


     

  

               (22) 

3 Determining coefficients k1 and k2  

It is necessary now to determine the coefficients 

k1 and  k2, and they should be determined 

within the boundary conditions. 

The first boundary condition is defined at the initial 

moment: 

for 0t   =>   1 10 p   

This means that the parts containing t are equal to 

zero, the temperature has an initial value of ϑ1p, and 

the exponential part containing t is equal to 1, so 

after inclusion t=0 in equation (22) we get the 

equation of the first boundary condition: 

         

 

1 1 2 2
1 2

3 1 1 2 2

2 2
2 1 1 2

1 1 2 2

p

m

p p

P m c m c

q c m c m c

m c
k k

m c m c



 

   
  

    


    

  

      (23) 

If we single out the coefficients on the left side, then 

the equation has the form: 

 
 

2 2 1 1 2 2
1 2 1 2 1 2

1 1 2 2 3 1 1 2 2

p p p

m

m c P m c m c
k k

m c m c q c m c m c
  

    
      

       

               (24) 

If we take the final boundary condition for  t  , 

we will define it so that we know the solution (and 

not the infinite temperature). We will do this by 

introducing a special case when the power of the 

solar collector 0P  , so we will know the final 

boundary condition, that will not be infinite 

temperature but the known temperature of the 

mixture, the temperatures in the warmer and colder 

tanks will be the same and will be: 

                  1 1 1 2 2 2

1

1 1 2 2

p pm c m c

m c m c

 


    
 

  
        (25) 

In the solution of the differential equation (22) when 

we include that t  , the exponential part 

disappears, is equal to zero, and with it the 

coefficient k2 = 0, also the term containing P=0 is 

equal to 0: 

          2 2
1 2 1 1

1 1 2 2

p p

m c
k

m c m c
  


    

  
        (26) 

We include (25) on the left side of the equation, so 

the equation of the second boundary condition takes 

the form: 

 1 1 1 2 2 2 2 2
2 1 1

1 1 2 2 1 1 2 2

p p

p p

m c m c m c
k

m c m c m c m c

 
 

     
   

     

                                                (27) 

Also, when the coefficient is separated to the left 

side we get: 

  1 1 1 2 2 22 2
1 2 1

1 1 2 2 1 1 2 2

p p

p p

m c m cm c
k

m c m c m c m c

 
 

    
   

     

                          (28) 

From the two boundary conditions we have a system 

of two equations with two unknown variables: 

 
 

2 2 1 1 2 2
1 2 1 2 1 2

1 1 2 2 3 1 1 2 2

p p p

m

m c P m c m c
k k

m c m c q c m c m c
  

    
      

       

 

  1 1 1 2 2 22 2
1 2 1

1 1 2 2 1 1 2 2

p p

p p

m c m cm c
k

m c m c m c m c

 
 

    
   

     
 

When we solve the equation system we get the 

coefficients: 

1 1pk              (29) 

 
 

2 2 1 1 2 2
2 2 1 2

1 1 2 2 3 1 1 2 2

p p

m

m c P m c m c
k

m c m c q c m c m c
 

    
    

       

                         (30) 

By including the coefficients and after sorting, we 

obtain the final form of the formula for the 

temperature of a warmer tank in the ideal process of 

heat transfer from a collector of mass m2 with a 

substance of specific heat c2 to a heat tank of mass 

m1 with a substance of specific heat capacity c1, via 

a heat exchanger with a specific heat capacity c3 and 

a flow rate qm: 

 
Krešimir Orozović, Branko Balon International Journal of Mechanical Engineering 

http://www.iaras.org/iaras/journals/ijme

ISSN: 2367-8968 42 Volume 6, 2021



      
 

 

 
 

 3 1 1 2 2

1 1 2 2

1 1 2 2 2 2
1 2 12

1 1 2 2 1 1 2 23 1 1 2 2

2 2 1 1 2 2
1 2 1 2

1 1 2 2 3 1 1 2 2

m

p p

m

q c m c m c
t

m c m c

p p p

m

P m c m c m cP
t

m c m c m c m cq c m c m c

m c P m c m c
e

m c m c q c m c m c

  

  

    
 

  

    
      

         

     
       
         

        (31) 

 

      

 

 

   3 1 1 2 2

1 1 2 2

1 1 1 2 2 2 1 1 2 2
1 2

1 1 2 2 1 1 2 2 3 1 1 2 2

2 2 2 11 1 2 2

2

1 1 2 23 1 1 2 2

m

p p

m

q c m c m c
t

p p m c m c

m

m c m c P m c m cP t

m c m c m c m c q c m c m c

m cP m c m c
e

m c m cq c m c m c

 


 
    

 
  

        
   

          

      
   
        

   (32) 

We can write the same formula in different ways, for example: 

      

 
 

 

   3 1 1 2 2

1 1 2 2

2 2 2 1 1 1 2 2
1 1 2

1 1 2 2 3 1 1 2 2

2 2 2 11 1 2 2

2

1 1 2 23 1 1 2 2

m

p p

p

m

q c c m c m
t

p p c m c m

m

P t c m P m c m c

c m c m q c c m c m

c mP m c m c
e

c m c mq c c m c m

 
 

 
    

 
  

        
   

       

      
   
        

   (33) 

 

      

 

 

   3 1 1 2 2

1 1 2 2

1 1 1 2 2 2 1 1 2 2
1 2

1 1 2 2 3 1 1 2 2

2 2 2 11 1 2 2

2

1 1 2 23 1 1 2 2

m

p p

m

q c c m c m
t

p p c m c m

m

P t c m c m P m c m c

c m c m q c c m c m

c mP m c m c
e

c m c mq c c m c m

 


 
    

 
  

          
  

       

      
   
        

   (34) 

 

       
 

 3 1 1 2 2

1 1 2 2

1 1

1 1 2 2

2 2 2 1 1 1 2 2

2

1 1 2 2 3 1 1 2 2

1

m

p

q c c m c m
t

p p c m c m

m

P t

c m c m

c m P m c m c
e

c m c m q c c m c m

 

 
    

 
  


  

  

        
     

             

  (35) 

If we assume that each part of the system, a warmer tank, a colder tank and a system of exchangers 

have the same type of fluid, and thus the same specific heat capacity, then we get  

 

     

   1 2

1 2
2 2 11 1 2 2 1 2 1 2

1 2 2

1 2 1 2 1 21 2 1 2

mq m m
t

p pp p m m

m m

mm m P m m P m mP t
p e

m m c m m m mq c m m q c m m

  






     
       
          

            (36) 
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The time constant of the system in which each part 

of the system may be of another substance is: 

               
 

1 1 2 2
0

3 1 1 2 2

=  
m

c m c m

q c c m c m



           (37) 

And the time constant of a system made of the same 

heat medium in each part of the system, ie. equal 

specific heat capacities c = c1 = c2 = c3 is equal to: 

                   
 

1 2
0

1 2

=  
m

m m

q m m



                  (38) 

 

4 Conclusion 
Based on the derived formula in the time domain for 

the temperature of the heat tank in the ideal process, 

with realistic coefficients by which we can describe 

the losses, the formula can also describe the real 

process. Our derived formula makes it possible to 

predict tank temperatures at a certain interval, and if 

we are talking about a heat source that uses some 

other form of energy, the formula can provide 

savings and optimize fuel consumption. Based upon 

a such a mathematical model, formulas for much 

faster processes can be derived and allow computers 

to predict process flow in a single iteration.  
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