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Abstract: - In the paper is presented some researches regarding the problem of local constraints, effective stiffness 
criterion and strength model, integrated relaxed stress constraint in the light of the newest approaches on handling 
stress constraints. By their very nature stress constraints are local constraints which result in large scale 
optimization problems that are often difficult to solve. As is known stress constraints induce the “singularity 
phenomenon” and low density regions sometimes remain highly strained. The limit of the stress state in 
the microstructure tends to a value, higher than the stress limit. The procedure cannot remove these 
regions, despite the fact that, removing totally the material, the stress constraint would not be active. The 
study analyzes this problem in order to obtain a coherent topology and convergent behavior of the numerical 
solver.  
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1 Introduction 
In structural design, the topology generation for 
the structure is traditionally associated with the 
conceptual phase of design [1]. The designer 
may consider many alternative topologies 
iteratively. Once an appropriate topology has 
been selected, only certain parameters such as 
cross-section of the elements of a truss or 
parameters describing the boundary of the 
geometry are varied This approach may yield 
suboptimal shapes due to the inability of the 
approach to modify the topology during the 
optimization. The truly optimal shape may 
require the creation of one or more new 
boundaries to change the topology of the 
component being designed. 
A more effective approach is Bendsoe-s and 
Kikuchi’s (1988) who developed Khon and Strang 
non-homogenous problem and assumed that the 
material is porous and solved the optimal distribution  

 
 
of porosity. A design domain is defined as the space 
within the structure has to fit. This domain is divided  
into a rectangular mesh. The loads to be carried by 
the structure and the support conditions are 
prescribed by the designer.  
The optimization problem can be formulated in terms 
of compliance (the minimization of the strain 
energy), restricted by varies conditions: volume, 
mass or equivalent stress. The shape and topology 
synthesis problem involves solving for a domain that 
optimizes some structural property for given loads 
and boundary conditions. One of the most 
challenging problems is to represent the domain as a 
variable. This is done [1], [5] describing it within the 
feasible domain so that the design variable – the 
shape density function has a value greater than the 
threshold value. The contours of this function 
corresponding to a threshold value are defined as the 
boundaries of the shape so that the regions where the 
value of the function is below the threshold are not 
part of the geometry. 
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Topology optimization has been extended from 
compliance design to other criteria [2, 3, 6]. Recently 
Cheng and Guo [3] proposed a new strategy – the ε 
relaxation technique – in order to approach the 
singularity phenomenon. Different integrated stress 
criteria developed further are presented in order to 
reduce computing time. 
 
2 Optimization problems 
The most common structural design problem requires 
finding the optimal topology of a structure, such that 
it can support the applied loads using a minimum 
amount of material. For a linear elastic structure built 
of a material with ultimate strength σl, the material 
distribution problem can be written as [4] 
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where ρ (x) is the material density at point x and σVM 
(ρ (x), x) is the von Misses stress at point x. The 
design problem is usually solved by discrediting the 
design domain with a number N of finite elements, 
using the shape density function as design variable, 
as in compliance design based optimization 
problems. Due to the uneven contours and 
convergence problems induced by the classical 0/ 1 
integer problem, authors used several methods to 
transform it in a continuous one Bendsoe and 
Kikuchi (homogenization method) [1], Allaire and 
Kohn  (penalty exponential function). This allows the 
variable ρ to take intermediate values and use of 
sensivity analysis and numerical methods to solve the 
problem. 
 
3 The numerical model 
The modeling of material properties in elements with 
intermediate densities is based on the power-law 
approach (SIMP method), which introduce a penalty 
exponential factor (η > 1) for the basic physical and 
mechanical properties of the material quantified with 
the design variable ρ. 
 
E* = ρηE0,        (2) 
 

where “*” denotes an effective or overall value and 
“O” indicates the value for solid material. The use of 
η allows obtaining more accurate solution in terms of 
void/ fully dense (solid) material. The most efficient 
value for η is 3 [1], [4]. 
For the stress, a model of the strength properties is 
given by a similar power law with the exponent η. 
This allows reformulating the failure criterion [4] 
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4 Stress criteria 
Stress constraints induce the “singularity 
phenomenon” [3]. Low density regions sometimes 
remain highly strained. When the density decreases 
to zero in these regions, the limit of the stress state in 
the microstructure tends to a value, higher than the 
stress limit. The procedure cannot remove these 
regions, despite the fact that, removing totally the 
material, the stress constraint would not be active. To 
circumvent this situation, Cheng and Guo replaced 
the solution of the singular problem with a sequence 
of perturbed non-singular problems which can be 
solved with usual optimization algorithms: the ε 
relaxation method. This method, initially developed 
for truss optimization problems, does not cover the 
continuum type topology optimization problems. The 
reduction of the perturbation parameter ε leads to 
constraint violations and slows down the 
convergence of the procedure. Duysinix and 
Sigmund [4] proposed a set of perturbed constraints, 
similar to the original relaxation technique. 
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The perturbation vanishes for ρ = 1 so that the 
solution remains feasible when ε is reduced. The 
permissible stress is increased for low densities, as 
shown by the rewritten form of equation (4). 
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The permissible stress is increased for low a density 
which gives the possibility to create or remove holes 
without violating the stress constraint. 
To control the local stress state, the stress is treated 
as a local constraint, for every finite element, as 
Duysinix and Bendsoe did . Due to the significant 
increase of the optimization problem induced by this 
approach, Duysinix and Sigmund proposed to include 
both the ε – relaxation technique that alleviates the 
singularity phenomena and the use of effective stress 
criterion into the global stress constraint. There are 
two global measures of the relaxed distributed stress 
criterion (5). 
The first global measure is the “p-norm” of the 
relaxed stress criterion. 
 

1,0max
p
1

N

1e

p

ele

*
e,VM ≤
















∑ 


























ρ
ε

−ε+
σρ

σ

=
η .(6) 

 
The second global stress constraint is the “p- mean” 
of the relaxed stress criterion 
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For a given p, the maximum stress value is always 
bounded from above by the p-norm and from below 
by the p-mean. Negative values of the relaxed 
criterion only appear for low stressed elements which 
can be truncated without influencing the global 
constraint, which remains continuous up to the p-1 
derivative – smooth enough. From the numerical 
experiments of Duysinix and Sigmund, the choice of 
parameter p must result from a compromise of the 
high values for the control the maximum value of the 
stress criterion and the p-norm and p-mean ill-
conditioning when p increases. Good results were 
obtained with p = 4 [4]. 
 
 
 
 
 

5 Conclusions 
The use of integrated equivalent stress constraints 
proposed by Duysinix and Sgmund proves an 
alternative to the use of local stress constraints for 
continuum-type structures. A theoretical study of the 
two integrated constraints shows that they bound the 
maximum value of the criterion, which is the limit 
value of the two p-norms and p-means as p grows to 
infinity. The p-mean function converges by lower 
value towards the infinite mean while the p-norm 
provides upper bounds to the maximum stress 
criterion. There is no relation identified yet between 
the p-norms and p-means to the maximum value and 
the number of elements considered in the constraint. 
With only one integrated constraint function is 
difficult to control the large number of elements 
which are close to the admissible stress. The 
convergence process becomes oscillatory and the 
constraint violation increases. For practical 
applications the parameter p was taken to 4 in order 
to consider a large influence of all active local stress 
criteria in the global constraints.  
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