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Abstract: Steady heat distribution problems with point sources are considered. The problems are governed by
Poisson equations. Such Poisson equations, generally, may not be solved analytically. To solve these equations,
numerical methods called Dual Reciprocity Methods (DRM) are employed. The DRM is applied to solve prob-
lems involving steady heat distribution on a thin plate with point sources. Variations in the sources position are
considered. The sources are located along a diagonal line and a line of symmetry of the plate. Applying these
methods, numerical solutions of the problems are presented and discussed. Sources located near the center of the
plates result in higher value of total temperature. Moreover, total temperature of the plate, with sources placed
along the diagonal line, is higher than that resulted from sources at the line of symmetry.
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1 Introduction
Heat distribution in media is one of Physics problems
that is modelled mathematically. One of the purpose
of modelling the problems mathematically is to study
and solve the problem. A number of researchers have
derived and study mathematical model of heat distri-
bution problems. Such researchers are Haberman [3],
Persson [4], and Tsai and Eagar [7].

There are, generally, two methods to solve mathe-
matical models, analytically and numerically. For an-
alytical method, the problems that can be solved using
this method are limited, mostly simple problems. For
more general problems, the method used are numer-
ical methods. A class of the numerical methods that
may be applied to solve heat distribution problems are
Boundary Element Methods (BEM). These methods
have been employed to solve various problems such
as infiltration problems [2, 6], crack problems [5], and
stress intensity [1]. In this paper, we employ a BEM
which is known as Dual Reciprocity Method (DRM)
to solve the problems.

2 Problem Formulation
We consider a homogeneous isotropic square thin
plate. The temperature of the sides of the square is
maintained at 0. Here, dimension of the temperature
is omitted. The plate with the boundary conditions is
illustrated in Figure 1.

There are point sources in the square thin plate
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Figure 1: A thin plate with temperature of all the sides
are maintained at 0.

with temperature maintained at 100. Given this situa-
tion, it is required to determine distribution of temper-
ature on the thin plate.

3 Basic Equations
Problems involving two dimensional heat conduction
is governed by

cρ
∂u

∂t
= K0

∂2u

∂x2
+
∂2u

∂y2
+Q(x, y), (1)

where u is the temperature, c is specific heat capac-
ity, ρ is the density of the material, K0 is the thermal
conductivity, and Q is the source.
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For steady heat conduction problems on thin
plates with n point heat sources, Equation (1) can be
written as

K0

cρ

[
∂2u

∂x2
+
∂2u

∂y2

]
+

n∑
i=1

Qiδ(x, y;xi, yi) = 0, (2)

where (xi, yi) is point of source i, i = 1, 2, · · · , n,
Qi is the source at point (xi, yi), and δ(x, y;xi, yi) is
the Dirac delta function with source at (xi, yi). In this
studyK0/cρ is set to be 1. The governing equation (2)
is defined over a region Ω and its boundary, denoted by
Γ. The region Ω is defined as

{(x, y) : 0 < x < 1 and 0 < y < 1}. (3)

Equation (2), which is defined over Ω ∪ Γ, may be
solved numerically using a DRBEM. Following the
procedure of the DRBEM, an integral equation for so-
lution of Equation (2) is

λ(a, b)u(a, b) =

∫
Γ

[
u(x, y)

∂

∂n
U(x, y; a, b)

−U(x, y; a, b)
∂

∂n
u(x, y)

]
ds

−
n∑

i=1

U(x, y; a, b)×

Qiδ(x, y;xi, yi)dxdy, (4)

which can be written as

λ(a, b)u(a, b) =

∫
Γ

[
u(x, y)

∂

∂n
U(x, y; a, b)

−U(x, y; a, b)
∂

∂n
u(x, y)

]
ds

−
n∑

i=1

QiU(xi, yi; a, b), (5)

where

U(x, y; a, b) =
1

2π
ln
√

(x− a)2 + (y − b)2,

is the fundamental solution of Laplace equation, and

λ(a, b) =

{
1, if (a, b) ∈ Ω
1
2 if (a, b) on smooth part of Γ

.

Implementing DRBEM needs a number of ele-
ments and interior collocation points. The boundary
Γ is discretized into a number of elements or seg-
ments joined end to end. Let K be the number of

segments and L be the number of interior colloca-
tion points. Segments Γ(k), k = 1, 2, · · · ,K are the

elements or segments such that Γ ≈
K⋃
k=1

Γ(k). For

k = 1, 2, · · · ,K, point (a(k), b(k)) is the mid point of
segment C(k), which is the collocation points at C(k).
Points (a(l), b(l)), l = K + 1,K + 2, · · · ,K + L, are
the interior collocation points. Using these elements
and collocation points, Equation (5) may be approxi-
mated by

λ(a, b)u(a, b) =

K∑
k=1

[
G

(k)
2 (a, b)u(k)

−G(k)
1 (a, b)u(k)

n

]
+

n∑
i=1

QiU(xi, yi; a, b). (6)

By substituting (a, b) with (a(m), b(m)), m =
1, 2, · · · ,K + L we may obtain a system of linear al-
gebraic equations

λ(m)u(m) =
K∑
k=1

[
G

(k)
2 (a(m), b(m))u(k)

−G(k)
1 (a(m), b(m))u(k)

n

]
+

n∑
i=1

QiU(xi, yi; a
(m), b(m)),

m = 1, 2, · · · ,K + L, (7)

where λ(m) = λ(a(m), b(m)), u(m) and u(m)
n are res-

pectively the values of u and ∂u/∂n at (a(m), b(m)),

G
(k)
1 (a(m), b(m)) =

∫
Γ(k)

U(x, y; a(m), b(m))ds,

and

G
(k)
2 (a(m), b(m)) =

∫
Γ(k)

∂

∂n

[
U(x, y; a(m), b(m))

]
ds.

Solving the system of linear algebraic equation (7),
we obtain the values of u and ∂u/∂n at collocation
points. Value of u at any point (a, b) ∈ Ω∪ Γ, may be
computed using Equation (6).

4 Results and Discussion
The method described in Section 3 is applied to solve
problems involving steady heat distribution on thin
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plates described in Figure 1. The number of point
sources in this study are two, Q1 and Q2. The values
of the two sources are Q1 = Q2 = 100. We consider
two classes of problems. The first class of problems
are problems with sources at a diagonal. The other
class of problems are problems with sources at the line
y = 0.5. The position of sources are summarized in
Table 1.

Table 1: List of the sources positions.

Source position Source Points

Along
diagonal

(0.1,0.1) (0.25,0.25) (0.4,0.4)
and and and

(0.9,0.9) (0.75,0.75) (0.6,0.6)
Notation D1 D2 D3

Along
y = 0.5

(0.1,0.5) (0.25,0.5) (0.4,0.5)
and and and

(0.9,0.5) (0.75,0.5) (0.6,0.5)
Notation L1 L2 L3

To apply the method presented in Section 3, the
numbers of elements and interior collocation points
used are 200 and 225 respectively. Some of the re-
sults obtained using the method with these elements
and interior collocation points are presented in Figure
2 - Figure 4, and Table 2.
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Figure 2: Graphs of u along x-axis at selected values
of y.

Figure 2 shows numerical values of u along se-
lected lines. The selected lines are y = 0.15, y =
0.30, and y = 0.45. It can be seen that as the sources
go nearer the middle of the plates, temperature of the
plates gets higher. It can also be seen in the figure that
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Figure 3: Surfaceplot of u for problems with sources
at a diagonal.
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Figure 4: Surfaceplot of u for problems with sources
at line y = 0.5.
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the highest temperature occurs at the line y = 0.45
for sources at the line y = 0.5, especially when the
sources are nearer to point (0.5,0.5).

The distribution of the temperature over the plates
are shown in Figure 3 and Figure 4. The surface
plots are generated by computing numerical values of
99 × 99 point equally spaced for each plate. Figure
3 shows surface plots of temperature over plates for
sources at diagonal. From the surface plots, we can
observe that the nearer the sources to point (0.5,0.5)
the higher temperature distribution on the plates. Fig-
ure 4 presents surface plots of temperature with source
at line y = 0.5. As before, the sources at (0.4,0.5) and
(0.6,0.5), which are nearest to point (0.5,0.5), result in
higher temperature over the plates.

Total temperature over the plates may be com-
puted using formula

1∫
0

1∫
0

u(x, y) dxdy.

Since u may not be obtained analytically, the formula
above may be approximated using the numerical val-
ues of u used to generate the surface plots. Using these
values of u, the formula may be approximated by

0.01 ×

 99∑
i=1

99∑
j=1

u(i, j) +
99∑
i=1

u(i, 99)

+
99∑
j=1

u(99, j) + u(99, 99)

 , (8)

where u(i, j) is the numerical value of u at point
(0.01 × i, 0.01 × j). The results obtained using For-
mula (8) are shown in Table 2.

Table 2: Total amount of temperature on the plates.

Source position D1 D2 D3
Total temperature 261.86 906.14 1375.31
Source position L1 L2 L3
Total temperature 581.26 1147.12 1423.48

From Table 2, the lowest value of total tempera-
ture occurs when the sources are placed at (0.25,0.25)
and (0.75,0.75). The highest value of total temperature
is on the plate with sources at (0.5,0.4) and (0.5,0.6).
These results indicate that sources at a diagonal and
near the boundary result in lower total temperature.
On the other hand, sources at line y = 0.5 and near
the centre of the plates result in higher total tempera-
ture on the plates.

5 Conclusion
The results described and presented in the Section 4
show that the sources of heat affect the distribution
of temperature on the plates. The sources near the
boundary, especially at a diagonal of the plates, re-
sult in lower value of total temperature of the plates.
Higher value of total temperature of the plates occurs
when sources are placed near the centre of the plates,
especially along line y = 0.5 or x = 0.5.
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