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Abstract: This study is related to the unsteady magnetohydrodynamic (MHD) squeezing flow of a viscous incom-
pressible fluid between two parallel discs one of which is fixed and permeable. The flow is assumed 2-D and the
effects of heat transfer are taken into account. The governing Navier Stokes and heat equation given in cylindrical
coordinates with the help of the similarity transformations are reduced into a system of coupled non-linear ordi-
nary differential equations. Then, the solution of the resulting system is obtained in the form of truncated Taylor
series where the coefficients are evaluated by using differential transform method, namely DTM. This method is a
generalized algebraic way for obtaining Taylor series coefficients of a smooth function and that reduces the com-
putational cost. Here, we have investigated the flow properties in terms of suction/injection coefficient as well as
the other flow parameters. The illustrative examples show that the present results are very consistent with existing
ones.

Magnetohydrodynamic Fluid, Navier Stokes Equations, Heat Equation, Differential Transform Method: Typing
manuscripts, LATEX

1 Introduction
The flow of a fluid between parallel plates, which
move symmetrically towards to each other, produces
squeezing flow. Under the influence of Magneto-
Hydro-Dynamics (MHD) fields, such squeezing flow
problems are suitable for thrust bearing applications
of liquid-metal lubrication. Since it prevents the un-
expected change of viscosity of the lubricant using
MHD fluid as a lubricant for many industrial appli-
cations is meaningful [1].

The laminar flow through channel with porous
walls problem was first considered by [2],[3], [4] and
[5] for low Reynolds number and higher Reynolds
number. Additionally, effects of a magnetic field in
lubrication through a channel were first investigated in
[6],[7]. In [6], Hughes and Elco investigated the elec-
trically conducting, incompressible viscous fluid flow
between two parallel discs in the presence of magnetic
field and one of the discs rotates at angular velocity. In
[7], magnetohydrodynamic squeezed films have been
both studied experimentally and theoretically and the-
ory of MHD was applied to squeezed films between
circular plates. This study was extended to include
liquid-inertia effects and lift forces.

The flow between two rotating discs, consider-
ing the magnetic field effects, was studied in [8],
where the magnetic field is applied perpendicular to
the discs. In his study, Hamza also investigated the
effects of the magnetic field and centrifugal inertial

forces on the velocity and the load capacity and the
torques. Later, S. Bhattacharyya ([9]) studied the mo-
tion of a conductive viscous fluid film between two
parallel discs. He assumed that the lower disc rotates
at arbitrary angular velocity and he searched uniform
axial magnetic field effects on the flow.

Heat transfer in machines with fast moving mo-
tors and lubricants inside is an active research area
because such hydrodynamic machines are used for
loading of mechanical components, liquid metal lu-
brication bearings and squeezed films in power trans-
mission. From all this point of view, in [10], two di-
mensional, viscous and unsteady MHD flow between
two infinite parallel plates was considered. Two par-
allel plates which moves symmetrically towards to
each other or away from each others cause squeezing
flow. Domairry, G. Aziz examined the MHD squeez-
ing flow between two parallel infinite discs. Here, one
of the discs is impermeable and the other is porous by
suction or injection. The combined effects of inertia,
electromagnetic forces and suction or injection have
been investigated in [11]. Joneidi, A.A. Domairry, G.
Babaelahi, M. ([12]) examined the magnetohydrody-
namic squeezing flow between two parallel discs by
increasing the porosity of the discs. Moreover, they
considered the suction or injection of the permeable
wall, as well as the Reynolds and Hartmann numbers
effects on velocity profiles. In [14], heat transfer ef-
fects on squeezing flow between parallel discs were
analyzed and additional details which related to the
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subject can be obtained from [14]. The present work
is devoted to seven sections. In section 2, descrip-
tion and mathematical formulations of the problem are
given and by using the similarity transformation, par-
tial differential equations are reduced to a couple of
ordinary differential equations. In section 3, we give
fundamental properties of DTM and in section 4, the
solutions of the ordinary differential equations are ob-
tained as Taylor series, in which the series coefficients
are computed algebraically without differentiating the
function. In section 5, we mention about the error
estimes and Chapter 6 illustrates the figures in terms
of flow parameters and the present solution technique
matches with the results of [14]. The last section is
the Conclusion.

2 Problem statement and mathemat-
ical formulation

Here, we consider the unsteady MHD flow of an in-
compressible viscous fluid flows through two parallel
infinite discs with the presence of the heat transfer ef-
fects. The distance between the discs as a function of
time is h(t) = H(1 − at)1/2 (see Figure 1). Here, H
denotes the distance between discs at t = 0 and a de-
fines a constants. It is assumed that the magnetic field,
B0(1 − at)1/2, is employed normal to the discs. Tw
and Th indicate the constant temperatures of the lower
and upper disc respectively. At z = h(t), the up-
per impermeable disc moves toward or away from the
lower permeable disc with the velocity aH(1−at)−1/2

2 .
For the sake of simplicity, cylindrical coordinates,
(r, φ, z) , can be used and due to the rotational sym-
metry of the flow (∂/∂φ = 0) the azimuthal velocity
v of V = (u, v, w) disappears. Hence, the governing

Figure 1: Flow configuration of the flow.

equations can be written as in [13],[14]as follows,
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Boundary conditions are:

At z = h(t), u = 0, w =
dh

dt
, T = Th (5)

At z = 0, u = 0, w = w0, T = Tw (6)

where u and w are the velocity components in the r
and z direction respectively, µ is the kinematic vis-
cosity, P is the pressure and ρ is the density of the
fluid. Apart from these, T denotes temperature, T0 is
the thermal conductivity, ϑ is the kinematic viscosity
and w0 is the injection/suction velocity. If we use the
following transformations

u =
ar

2(1− at)
f ′(η), ω = − ah

(1− at)
1
2

f(η),

B(t) =
B0

(1− at)
1
2

, η =
z

H(1− at)
1
2

, (7)

θ =
T − Th
Tω − Th

.

Then, Eqs.(1)-(5) are reduced to

f ′′′′ − S(ηf ′′′ + 3f ′′ − 2ff ′′′2f ′′ = 0, (8)
θ′′ + S.Pr(2fθ′ − ηθ′) + Pr.Ec(f ′′2

+ 12χ2f ′2) = 0. (9)

In Eqs.(8)-(9), S = aH2

2ϑ , M =
√

σB2
0H

2

ϑ ,
Pr =

µCp

K0
, Ec = 1

Cp(Tω−Th)(
ar

2(1−at))
2, denote the

squeezing, Hartman, Prandtl and Eckert number re-

spectively. Moreover, χ =
√

H2(1−at)
r2

is the non-
dimensionalized length. Hence, boundary conditions
can be rewritten as follows,

f(0) = A, f ′(0) = 0, θ(0) = 1 (10)

f(1) =
1

2
, f ′(1) = 0, θ(1) = 0, (11)

where A is the permeability of the lower disc which is
related to suction/injection cases.
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3 Approximation by DTM

In this section, we will look for Taylor series solutions
for Eqs.(8)-(9) in the form,

y(x) =
∞∑
n=0

an(x− x0)n, (12)

where an ’s are Taylor series coefficients and x0 is
taken as zero for simplicity. To compute the series
coefficients where we will use differential transform
method (DTM), which is an iterative way for obtain-
ing the series coefficients without differentiating the
function.

With this method, given differential equation or
system of equations together with the initial condi-
tions (including with boundary condition(s)) are trans-
formed into an algebraic system of equations which
gives the recurrence relation for the coefficients. As a
result, the succesive coefficients are obtained in terms
of the previous ones. This method is an useful tool for
solving linear/non-linear, ordinary and partial differ-
ential equations as well as the system of such equa-
tions. It does not require any linearization or per-
turbation and usually large computational work is no
needed.

The basic definitions of DTM can be found in the
references [15, 16, 17] and some properties of DTM
are given here as follows:

Definition 1 If f(η) is an analytic function in the do-
main Ω = [0, T ] then, this function is continuously
differentiable with respect to η :

dkf(η)

dηk
= φ(η, k),∀η ∈ Ω. (13)

For any point η = ηi in [0, T ], the function φ is defined
as φ(η, k) = φ(ηi, k), where k ∈ N and N0, denotes
non-negative integers. Therefore, Eq.(13) is written as

F (k) = φ(ηi, k) = (
dkf(η)

dηk
)η=ηi , ∀k ∈ N0, (14)

where F (k) is called the differential transform of f(η)
and F (k) ∈ Rnxn.

Definition 2 If f(η) can be expressed as a Taylor se-
ries about fixed point ηi, then,

f(η) =
∞∑
k=0

fk(ηi)

k!
(η − ηi)k. (15)

If fn(η) is the n-partial sums of Taylor series, Eq.(15),
then

fn(η) =
n∑
k=0

fk(ηi)

k!
(η − ηi), (16)

where fn(η) is also called nth Taylor polynomial for
f(η) about ηi and Rn+1(η) is the remainder term. By
using Eq.(14), Eq.(15) is written as follows;

f(η) =
n∑
k=0

F (k)(η − ηi)k +Rn+1(η). (17)

Assuming that ηi = 0, and remainder term ap-
proaches zero for sufficiently large n, then Eq.(17) be-
comes,

f(η) ≈
n∑
k=0

F (k)ηk. (18)

From the above definitions, it is clear that the con-
cept of DTM is to compute Taylor series coefficients
algebraically. By the help of Eqs.(14)-(15), the funda-
mental mathematical operations of one-dimensional
differential transform can readily be obtained and
listed below.
◦ w(η) = u(η)± v(η) , W (k) = U(k)± V (k)

◦ w(η) = cu(η) ,W (k) = cU(k)

◦ w(η) = d
dηu(η) , W (k) = (k + 1)U(k + 1)

◦ w(η) = dn

dηnu(η) , W (k) = (k + 1)(k + 2) · · · (k +

m)U(k +m)

◦ w(η) = u(η)v(η) , W (k) =
k∑
l=0

U(l)V (k − l)

◦ u(η) = ηmf(η) , U(k) = δ(k −m)F (k −m)
Here, lower case letters denote original functions and
upper case letters are transformed functions.

4 Solution of the problem by DTM

In this part, by using the DTM, we will evaluate the
Taylor series coefficients, F [k],Θ[k], of f(η), θ(η),
which are velocity and temperature distribution of
MHD squeezing flow between paralle discs with the
presence of heat transfer. Then, Eqs.(8)-(9) are ap-
proximated by:

f(η) =
N∑
k=0

F [k]ηk, (19)

θ(η) =
N∑
k=0

Θ[k]ηk, (20)
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and transformed into:

(k + 1)(k + 2)(k + 3)(k + 4)F [k + 4]

− S(
k∑
s=0

δ(s− 1)(k − s+ 1)(k − s+ 2)

x(k − s+ 3)F [k − s+ 3]

+ 3(k + 1)(k + 2)F [k + 2]− 2
k∑
s=0

(k − s+ 1)

x(k − s+ 2)(k − s+ 3)F [k − s+ 3]F [s]

− M2(k + 1)(k + 2)F [k + 2] = 0, (21)

(k + 1)(k + 2)Θ[k + 2]

+ S.Pr(2
k∑
s=0

(k − s+ 1)F [s]Θ[k − s+ 1]

−
k∑
s=0

δ(s− 1)(k − s+ 1)θ[k − s+ 1])

− Pr.Ec(
k∑
s=0

(s+ 1)(s+ 2)(k − s+ 1)

x(k − s+ 2)F [s+ 2]Θ[k − s+ 2])

+ 12α2
k∑
s=0

(s+ 1)(k − s+ 1)F [s+ 1]F [k − s+ 1]

= 0. (22)

Hence, the successive series coefficients are obtained
from Eqs.(21)-(22). From the first three conditons
(Eq.(10)), we have:

F [0] = A,F [1] = 0, θ[0] = 1. (23)

To include all the boundary conditions to the
problem, we also define:

F [2] = a1, F [3] = a2, and θ[2] = a3, (24)

where a1, a2, and a3 are unknown parameters. From
Eqs.(21)-(22), for k = 0, 1, 2 . . . , N , by using the re-
currence relations, the successive series coefficients
can be obtained in terms of a1, a2, and a3 and some
of them follow as,

F [4] = −1

2
A.S.a2 +

1

12
M2a1 +

1

4
S.a1, (25)

Θ[2] = −A.Pr.S.a3 + 2Ec.Pr.a21, . . . (26)

As a result, the computed coefficients are substituted
into Eqs.(19)-(20) and the values of a1, a2, and a3 are
solved by applying the last three boundary conditions
(Eq.(11)) to the series solutions.

5 Error Estimate For the Solution

Eqs. (19),(20), the truncated Taylor series, are the ap-
proximate solutions to Eqs.(8),(9), with given initial
and boundary conditions (Eqs.(10),(11)). Since these
solutions should approximately satisfy the governing
equations hence, we define the residuals by the nota-
tion D1, D2 as:

|D1(f(η), θ(η)), D2(f(η), θ(η))| . (27)

These residuals correspond to error at particular points
η = ηi , i = 0, 1, 2, . . . , N for Eqs.(8) and (9)
and denoted by E1(ηi) , E2(ηi) respectively. Since
the global error functions should approach zero or
E(ηi) ≤ ε, where ε is positive small number for de-
sired accuracy, we define max(ε) = 10−α of E1(ηi).
Thus, the truncation limit of N is increased up to
Ej(ηi) < 10−α, j = 1, 2. When N is sufficently large
then Ej(x)→ 0 and the global error decreases.

6 Results and Discussion

The present solutions examine the effects of some
flow parameters on the velocity and temperature
distrubitions of the squeezing flow between parallel
discs. Here,especially, the cases where the perme-
ability parameter, A, either is positive or negative
denoting the suction and injection of the permeable
wall respectively have been investigated. Moreover,
velocity and temperature profiles for given A have
been computed in terms of the following flow param-
eters; squeezing number, magnetic parameter, Prandtl
number, Eckert number and the dimensionless length.
When the illustrative figures are compared by the
work of [14] and it is seen as follow below that all the
results match very well indeed.

Suction Case (A > 0): Figure 2(a) indicates
the effects of permeability parameter A on the ra-
dial velocity. With increasing A, the radial velocity
of the fluid decreases. Moreover, permeable structure
of the upper disc allows the fluid particles to move
closer to the boundary and the boundary layer be-
comes thinner. In Figure 2(b), for A = 1, in the in-
terval 0.0 < η < 0.4, with increasing S the radial
velocity increases , on the other hand, decreases with
increasing S in the interval 0.4 < η < 1.0. This de-
crease in speed is related to the fineness of the bound-
ary layer.

Figure 3(a) shows that θ(η) is an increasing
function of A. In other words, the thermal boundary
layer is thinned by the increase in A. Figure 3(b)
shows that θ(η) increases for the increasing values of
S. On the other hand, the thermal boundary layer is
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inversely proportional to Pr in Figure 4(a). The low
values of Pr are related to high viscous fluids with
high thermal conductivity and high viscosity Pr,
which corresponds to low viscous liquid. Figure 4(b)
indicates that inverse relation holds for Ec number
as in Figure 3(b). In Figure 5, it has been shown that
θ(η) increases with increasing χ.

Injection Case (A < 0): Figures 6(a),6(b) to
Figure 9 show the effects of physical parameters on
the radial velocity and temperature distribution when
A < 0. An inverse relationship is observed in physical
properties on axial velocity for suction and injection
cases. On the other hand, the temperature distribution
figures remain the same as in the suction case.

(a)

(b)

Figure 2: (a)Effects of A on radial velocity profiles
(b)Effects of S on radial velocity

(a)

(b)

Figure 3: (a)Effects of A on temperature profile, (b)
Effects of S on temperature profile for A = 1.0
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(a)

(b)

Figure 4: (a)Effects of Pr on temperature profile for
A = 1.0, (b)Effects of Ec on temperature profile for
A = 1.0.

Figure 5: Effects of χ on temperature profile for A =
1.0

(a)

(b)

Figure 6: (a)Effects of negative values of A on the
radial velocity profiles, (b)Effects of varying S on the
radial velocity for A = −1.0.

Fatma Ayaz et al.
International Journal of Mechanical Engineering 

http://www.iaras.org/iaras/journals/ijme

ISSN: 2367-8968 6 Volume 3, 2018



(a)

(b)

Figure 7: (a) Effects of the negative values of A on
the temperature profile, (b)Effects of varying S on the
temperature profile for A = −1.0.

(a)

(b)

Figure 8: (a)Effects of varying Pr on the temperature
profile for A = −1.0,(b)Effects of varying Ec on the
temperature profile for A = −1.0

Figure 9: Effects of χ on temperature profile for A =
−1.0
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7 Conclusion

The basic goal of this work is to obtain solutions
to the governing equations, which model the move-
ment of MHD fluid in a channel with one permeable
wall under the effects of the heat transfer, by DTM.
This method evaluates the coefficients of Taylor se-
ries without differentiating the function and reduces
the cost of computation. In [0, 1] interval, reliable re-
sults are achieved by few terms in the series. The com-
putations of the velocity and the temperature distribu-
tion are obtained by using the symbolic computation
software, Maple. It is worth to note here that we also
easily solve similar flow problems by using DTM.
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