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Abstract: - An infinite homogeneous isotropic elastic medium with a penny shape crack is considered. The crack 
is subjected to the pressure of fluid injected in the crack center with a positive injection rate. Description of the 
crack growth is based on the lubrication equation (balance of the injected fluid and the crack volume), equation 
for crack opening caused by fluid pressure on the crack surface, Poiseullie equation related local fluid flux with 
crack opening and pressure gradient, and the criterion of crack propagation of linear fracture mechanics. The 
crack growth is simulated by a discrete process consisting of three basic stages: increasing the crack volume by 
a constant crack size, crack jump to a new size defined by the fracture criterion, and filling the new appeared 
crack volume by the fluid. It is shown that the model results a reasonable dependence of the crack radius on the 
time as well as the pressure distribution on the crack surface. The model is applied to the case of media with 
filtration, and numerical examples of hydraulic fracture crack growth with the “leak-off” effect are presented. 
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1 Introduction 
For importance in gas and petroleum industry, the 
process of hydraulic fracture has been the object of 
intense theoretical and experimental studies for about 
sixty years. The number of publications dedicated to 
this problem is huge. Publications before 21-st 
century can be found in the books [1], [2]. More 
recent publications are mentioned, e.g., in [3], [4], 
[5]. Mathematically the problem can be reduced to a 
system of non-linear integro-differential equations in 
the region with moving boundary. Analytical 
solutions of this system do not exist even in simplest 
cases, and only numerical methods are efficient. By 
application of conventional numerical methods, the 
original integro-differential equations are to be 
discretized with respect to time and space variables, 
and then, hydraulic fracture crack geometry should 
be reconstructed at each discrete time step.  The 
principal unknown of the problem is pressure 
distribution on the crack surface. It turns out that 
construction of this distribution is an ill-posed 
problem. Application of conventional numerical 
methods for solution of ill-posed problems can result 

substantial numerical errors, and only specific 
methods are efficient [6]. Because the ill-posed 
problem should be solved at each time step of the 
crack growth, the errors accumulate and a reliable 
solution can be lost. In addition to non-linearity and 
moving boundary, this is another principal difficulty 
in numerical solution of the hydraulic fracture 
problem. 
   In the present work, hydraulic fracture growth of a 
penny shape crack in homogeneous and isotropic 
elastic medium is considered. The fluid is injected in 
the crack center with an arbitrary positive injection 
rate. Description of the crack growth is based on the 
lubrication equation (balance of the injected fluid and 
the crack volume), equation for crack opening in 
elastic media caused by fluid pressure distributed on 
the crack surface, the Poiseullie equation related local 
fluid flux with the crack opening and pressure 
gradient, and the classical criterion of crack 
propagation of linear fracture mechanics. Time 
discretization of these equations is interpreted as an 
actual process that consists of three stages: growth of 
the crack volume by a constant crack radius, an 

Sergey Kanaun, Daniel Morales
International Journal of Mechanical Engineering 

http://www.iaras.org/iaras/journals/ijme

ISSN: 2367-8968 28 Volume 2, 2017



instant crack jump to a new radius, and filling the new 
appeared volume by the fluid. For solution of the ill-
posed problem of reconstruction of the pressure 
distribution at each time step of crack growth, a 
specific class of approximating functions is used. 
These positive, monotonously decreasing functions 
are appropriate for approximation of actual pressure 
distributions and allow solving the ill-posed problem 
with sufficient accuracy. The case of the medium 
with filtration is considered, and the “leak-off” effect 
is taken into account.  
 
 

2 A Penny Shape Crack Subjected to 
Fluid Injection 
Consider an infinite isotropic homogeneous elastic 
medium containing an isolated penny shape crack. 
The crack is subjected to internal pressure caused by 
the fluid injected in the crack center with given 
positive injection rate Q(t) (Fig.1).  

 
Fig.1 

It follows from the symmetry of the problem that the 
growing crack remains circular with increasing 
radius ܴሺݐሻ. Crack opening ݓሺݎ,  ሻ and pressureݐ
distribution ݌ሺݎ,  ሻ on the crack surface are functionsݐ
of time t and the distance r from the crack center. Let 
us introduce the fractional crack volume ݒሺݎ,  ሻ byݐ
the equation 

,ݎሺݒ ሻݐ ൌ ߨ2 ׬ ,ݔሺݓ .ݔ݀ݔሻݐ
ோሺ௧ሻ
௥                    (1) 

Thus, ݒሺݎ,  ሻ is the crack volume between the circleݐ
of radius r and the crack edge ݎ ൌ ܴሺݐሻ. Let ݍሺݎ,  ሻݐ
be the fluid flux in the radial direction through the 
crack cross-section with coordinate ݎ. For non-
compressible fluid, the equation of balance of 
fractional volume ݒሺݎ,  ሻ and the injected fluidݐ
(lubrication equation) has the form  

డ௩

డ௧
ൌ ,ݎሺݍݎߨ2  ሻ.                               (2)ݐ

The fluid flux ݍሺݎ, ,ݎሺݓ ሻ, crack openingݐ  ሻ, andݐ
pressure ݌ሺݎ,  ሻ relate by the Poiseuille law [1]ݐ

,ݎሺݍ ሻݐ ൌ െ
௪ሺ௥,௧ሻయ

ଵଶఎ

డ௣ሺ௥,௧ሻ

డ௥
 .                      (3) 

It is assumed that the fluid is Newtonian with 
constant viscosity η. From equations (2) and (3) 
follows that the lubrication equation can be written in 
the form 

డ௩ሺఘ,௧ሻ

డ௧
ൌ െ2ߩߨ

௪ሺఘ,௧ሻయ

ଵଶఎ

డ௣ሺఘ,௧ሻ

డఘ
.             (4) 

Here dimensionless radial coordinate ߩ ൌ  ሻ isݐሺܴ/ݎ
introduced. For an isotropic elastic medium and 
radially symmetric pressure distribution ݌ሺߩ,  ሻ onݐ
the crack surface, crack opening ݓሺߩ,  ሻ andݐ
fractional volume ݒሺߩ,  ሻ of a penny shape crack ofݐ
radius ܴ is defined by the equations [7,8] 

,ߩሺݓ ሻݐ ൌ
ସሺଵିఔሻ

గఓ
ܴሺݐሻ ׬ ,ߩሺܩ ߫ሻ݌ሺ߫, ሻ݀߫ݐ

ଵ
଴ ,    (5) 

,ߩሺݒ ሻݐ ൌ
ସሺଵିఔሻ

గఓ
ܴሺݐሻଷ ׬ ,ߩሺܭ ߫ሻ݌ሺ߫, ሻ݀߫ݐ

ଵ
଴ .   (6) 

Here μ and ߥ  are shear modulus and Poisson ratio of 
the medium. The kernel ܩሺߦ, ߫ሻ has the form 

,ߦሺܩ ߫ሻ ൌ ቐ

చ

ఘ
ሺsinെ1ሺܨ ,ሻߢ చ

క
ሻ,				߫ ൏ ߦ

ሺsinെ1ሺܨ ,ଵሻିߢ క
఍
ሻ,				߫ ൐ ߦ ,

	     (7) 

where  

ሺ߶,݉ሻܨ ൌ ׬
ௗఏ

ඥଵିሺ௠ sinఏሻమ
థ
଴ , ߢ ൌ ට

ଵିకమ

ଵିచమ
.     (8) 

The kernel ܭሺߩ, ߫ሻ is expressed in terms of  ܩሺߦ, ߫ሻ 
,ߩሺܭ ߫ሻ ൌ ߨ2 ׬ ,ߦሺܩ ߫ሻߦ

ଵ
ఘ  (9)                       ߦ݀

and is a smooth integrable function of the variables 
ሺߩ, ߫ሻ. The integral operators with the kernels ܩሺߩ, ߫ሻ 
and  ܭሺߩ, ߫ሻ have the following remarkable 
properties. Actions of these operators on polynomial 
functions of ρ with even exponents  

ሻߩሺ݌ ൌ ܽ₀ ൅ ²ߩ₁ܽ ൅ .⁴൅ߩ₂ܽ . . ൅ܽ௡²ߩⁿ,       (10) 
are polynomials of the same power 2n multiplied 

with ሺ1 െ ଶሻߩ
భ
మ (for the G-kernel) and  ሺ1 െ ଶሻߩ

య
మ (for 

the K-kernel). Coefficients of these polynomials are 
expressed in terms of the coefficients   ܽ଴, ܽଵ, . . , ܽ௡ 
in equation (10) in explicit analytical forms [9].  
   Note that calculation of pressure distributions 
,ߩሺ݌  ሻ from equation (6) with the given left hand sideݐ
,ߩሺݒ  ሻ is in fact solution of the Fredgholm integralݐ
equations of the first kind with integrable kernel 
,ߩሺܭ ߫ሻ. It is a well-known ill-posed problem [6]. For 
such problems, small deviations (errors) of the left 
hand sides ݒሺߩ,  ሻ cause large errors in the pressureݐ
distribution ݌ሺߩ,  .ሻݐ
For calculation of the crack radius in the hydraulic 
fracture process, the classical criterion of linear 
fracture mechanics is used. For radial pressure 
distribution ݌ሺߩሻ, the stress intensity factor ܭூ for the 
fracture mode I at the crack edge is [7] 

,݌ூሺܭ ܴሻ ൌ
√ଶோ

గ
׬

௣ሺఘሻఘ

ඥଵିఘమ
ଵ
଴  (11) 															,ߩ݀

and the fracture criterion takes the form 
,݌ூሺܭ  ܴሻ ൌ  ூ௖,                         (12)ܭ

where ܭூ௖  is the so-called fracture toughness. This 
specific physical parameter defines resistance of the 
medium to crack propagation. 
   Lubrication equation (4), equations (5) and (6), and 
fracture criterion (12) compose a complete system of 
equations for penny shape crack growth in a 
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homogeneous isotropic elastic medium by fluid 
injection. A natural principal unknown of the 
problem is the fluid pressure ݌ሺߩ,  ሻ on the crackݐ
surface. All other crack parameters (crack radius, 
crack opening, and fractional volume) are expressed 
in term of the pressure.  
 
 

3 Discretization of the Equations of 
Hydraulic Fracture process 
The system of equations of crack growth can be 
solved only numerically. Conventional numerical 
methods of solution of partial differential equations 
are based on (time and space) discretization 
procedure. Taking a discrete time step ݐ߂ and 
changing the partial time derivative with the finite 
difference equation (4) can be presented in the form 

,ߩሺݒ ݐ ൅ ሻݐ߂ ൎ ,ߩሺݒ ሻݐ െ
ଶగ௪³ሺఘ,௧ሻ

ଵଶఎ
ߩ
డ௣ሺఘ,௧ሻ

డఘ
 (13)   .ݐ߂

If the right hand side of this equation is known at the 
moment t, one can calculate the function ݒሺߩ, ݐ ൅ Δݐሻ 
at the moment ݐ ൌ ݐ ൅  The difficulty in carrying .ݐ߂
out this scheme is that the crack radius at ݐ ൌ ݐ ൅  ݐ߂
is unknown in advance (the crack has a moving 
boundary). As the result, the variables ρ on the left 
hand side of (13) ߩ ൌ ݐሺܴ/ݎ ൅  ሻ differs from theݐ߂
similar variable on the right hand side ߩ ൌ  ሻ. Ifݐሺܴ/ݎ
the time step ݐ߂ is sufficiently small, one can accept 
that ܴሺݐሻ ൎ ܴሺݐ ൅  ሻ, calculate the fractionalݐ߂
volume ݒሺߩ, ݐ ൅  ሻ from equation (13), obtain theݐ߂
new pressure distribution from equation (6), and 
then, find the new crack radius from the fracture 
criterion (12). As it was mentioned above, calculation 
of the pressure distribution ݌ሺߩ, ݐ ൅  ሻ fromݐ߂
equation (6) with known left-hand side ݒሺߩ, ݐ ൅  ሻݐ߂
is an ill-posed problem, and small errors in ݒሺߩ, ݐ ൅
,ߩሺ݌ ሻ result large errors in calculation ofݐ߂ ݐ ൅  .ሻݐ߂
Nevertheless, if the pressure ݌ሺߩ, ݐ ൅ Δݐሻ is 
constructed, one can obtain new crack radius ܴሺݐ ൅
Δݐሻ from the fracture criterion (12) 

ݐሺ݌ூ൫ܭ ൅ Δݐሻ, ܴሺݐ ൅ Δݐሻ൯ ൌ  ூ௖ ,        (14)ܭ
and then, go to the next time interval. 
Formal discretization of equation (4) permits the 
following physical interpretation. Let at the moment 
ሻݐሻ, crack volume ܸሺݐthe crack radius be ܴሺ ,ݐ ൌ
,ሺ0ݒ  ሻ, and the pressure distribution on the crackݐ
surface is ݌ሺߩ,  ሻ. For such radius and pressureݐ
distribution, the stress intensity factor at the crack 
edge is ܭூሺ݌, ܴሻ ൌ ூ௖ܭ . Suppose that the process of 
crack radius growth from ܴሺݐሻ to ܴሺݐ ൅  ሻ consistsݐ∆
of three stages (Fig.2). First, during the time interval 
 the fluid is injected inside the crack but the crack ,ݐ߂
radius does not change. For incompressible fluid, 
balance of the injected fluid and increment of the 

crack volume (the lubrication equation (4)) should be 
satisfied, meanwhile fracture condition (12) is 
neglected. At the end of this stage, the crack volume 
increases (dashed line in Fig.2) from ܸሺݐሻ to ܸሺݐ ൅
,ߩାሺ݌ ሻ, and the pressure distribution isݐ∆ ݐ ൅  .ሻݐ∆
For this distribution, the stress intensity factor at the 
crack edge is more than ܭூ௖. At this moment, the 
crack jumps instantly to the new radius ܴሺݐ ൅  ሻݐ∆
(second stage). Pressure on the crack surface 
changes, and we assume that it is define by the 
equation 

݌ ቀ
௥

ோሺ௧ା∆௧ሻ
, ݐ ൅ ቁݐ∆ ൌ ା݌ߙ ቀ

௥

ோሺ௧ା∆௧ሻ
, ݐ ൅  ቁ,    (15)ݐ∆

where coefficient ߙ	ሺߙ ൏ 1ሻ is to be defined from 
fracture criterion (12). Because of an instant jump, 
the fluid inside the crack fills the new region near the 
crack edge (third stage). The new crack radius ܴሺݐ ൅
 in equation (15) are to be ߙ ሻ and the coefficientݐ∆
found from the equations  

ݐሺܴ/ݎሺݒ ൅ ,	ሻݐ∆ ݐ ൅ ሻ|௥ୀ଴ݐ∆ ൌ ܸሺݐ ൅  ሻ;    (16)ݐ∆
ݐሺܴ/ݎሺ݌ூሾܭ ൅ ,	ሻݐ∆ ݐ ൅ ,ሻݐ∆ ܴሺݐ ൅ ሻሿݐ∆ ൌ  ூ௖.  (17)ܭ
where left hand sides of equations (16) and (17) are 
defined in (6) and (11).  
   At the end of the third stage, the crack volume   
ܸሺݐ ൅ ݐሻ is filled with fluid, and the radius ܴሺݐ∆ ൅
,ݎሺ݌ ሻ and pressureݐ∆ ݐ ൅  ሻ are such as the fractureݐ∆
criterion (17) is satisfied. The total time ΔT of this 
three stages can be calculated from the equation 

ܶ߂  ൌ
௏ሺ௧ା∆௧ሻି௏ሺ௧ሻ

ொሺ௧ሻ
.                     (18) 

 
Fig.2 

 
 

4 Approximation of the pressure 
distribution and solution of the ill-
posed problem (6) 
By positive injection rate ܳሺݐሻ, the pressure ݌ሺߩ,  ሻݐ
is a continuous function of variable ρ monotonously 
decreasing from the injection point to the crack edge. 
In addition, at the crack center, the following 
equation holds 

డ௩

డ௧
|௥ୀ଴ ൌ െ2ߨ

௪యሺ଴,௧ሻ

ଵଶఎ
lim
ఘ→଴

ߩ
డ௣

డఘ
ൌ ܳሺݐሻ.        (19) 

Because crack opening at the center ݓሺ0,  ,ሻ is finiteݐ
the limit in this equation should be also finite. It 
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means that the function ݌ሺߩ,  ሻ has logarithmicݐ
asymptotics at the crack center. Therefore, the 
function ݌ሺߩ,  ሻ can be approximated by theݐ
following series 

,ݎሺ݌ ሻݐ ൌ െ₀݌ሺݐሻ݈݊
௥

ோሺ௧ሻ
൅ ∑ ሻ߮௡ݐ௡ሺ݌ ቀ

௥

ோሺ௧ሻ
ቁே

௡ୀଵ ,(20) 

where ݌௡ሺݐሻ ൒ 0 (݊ ൌ 0,1,2, … , ܰሻ, and ߮௡ሺߩ	ሻ are 
monotonously decreasing functions with the 
derivatives equal to zero at the crack center. For 
instance, the following ten functions ߮௡ሺߩሻ can be 
used for approximation of the pressure distribution 
߮ଵ ൌ 1, ߮ଶ ൌ 1 െ ,ଵ଴ߩ ߮ଷ ൌ 1 െ  ,ସߩ
߮ସ ൌ 1 െ ,ଶߩ ߮ହ ൌ ሺ1 െ ,ଶሻଶߩ ߮଺ ൌ ሺ1 െ  		,ଶሻଷߩ
߮଻ ൌ ሺ1 െ ,ଶሻସߩ ଼߮ ൌ ሺ1 െ ,ଶሻ଼ߩ ߮ଽ ൌ ሺ1 െ  ,ଶሻଵହߩ

߮ଵ଴ ൌ ሺ1 െ                        (21)	ଶሻସ଴.ߩ
The graphs of these functions are presented in Fig.3. 

 
Fig.3 

Because all these functions are polynomials similar 
to (10), action of the operators G and K in equations 
(5) and (6) on these functions can be presented in 
explicit analytical forms. The crack opening ݓሺߩ,  ሻݐ
and fractional volume ݒሺߩ,  ሻ take formsݐ

,ߩሺݓ ሻݐ ൌ
ସሺଵିఔሻ

గఓ
ܴሺݐሻ∑ ,ሻߩ௡ሺݓሻݐ௡ሺ݌

ே
௡ୀ଴     (22) 

,ߩሺݒ ሻݐ ൌ
ସሺଵିఔሻ

గఓ
ܴሺݐሻଷ ∑ ,ሻߩ௡ሺݒሻݐ௡ሺ݌

ே
௡ୀ଴     (23) 

where  

ሻߩ௡ሺݓ ൌ ׬ ,ߩሺܩ ߫ሻ߮௡ሺ߫ሻ݀߫
ଵ
଴ ,             (24) 

ሻߩ௡ሺݒ ൌ ׬ ,ߩሺܭ ߫ሻ߮௡ሺ߫ሻ݀߫
ଵ
଴ ,             (25) 

and ߮଴ሺ߫ሻ ൌ െ ln ߫. For ߮௡ሺߩሻ in (21), the functions 
 ௡(ρ) can be found in explicit analyticalݒ ௡(ρ) andݓ
forms [8]. 
The stress intensity factor ܭூሺݐሻ at the crack edge is 

ሻݐூሺܭ ൌ
ඥଶோሺ௧ሻ

గ
∑ ,ሻ݇௡ݐ௡ሺ݌
ே
௡ୀ଴ 	           (26) 

݇௡ ൌ ׬
ఝ೙ሺఘሻ

ඥଵିఘమ
ଵ
଴  (27)                          .ߩ݀

If we denote the right hand side of equation (13) as 
,ߩሺݏ݄ݎ  ሻݐ

,ߩሺݏ݄ݎ ሻݐ ൌ ,ߩሺݒ ሻݐ െ
ଶగ௪యሺఘ,௧ሻ

ଵଶఎ
ߩ
డ௣ሺఘ,௧ሻ

డఘ
 (28)    ,ݐ߂

and take into account equation (6), the lubrication 
equation (13) can be rewritten in the form 

 
ସሺଵିఔሻ

గఓ
ܴሺݐሻ³׬ ,ߩሺܭ₀¹ ߫ሻ݌⁺ሺ߫, ݐ ൅ Δݐሻ݀߫ ൌ ,ߩሺݏ݄ݎ  .ሻݐ

(29) 
The function ݌⁺ሺߩ, ݐ ൅ Δݐሻ is approximated by the 
series similar to (20) 

,ߩାሺ݌ ݐ ൅ Δݐሻ ൌ 
െ݌଴

ାሺݐ ൅ Δݐሻln	ሺߩሻ ൅ ∑ ݐ௡ାሺ݌ ൅ Δݐሻ߮௡ሺߩሻ
ே
௡ୀଵ . (30) 

Substituting this approximation in (29) and satisfying 
the resulting equation at M points ߩ௞ (nodes) 
homogeneously distributed along the crack radius 

௞ߩ ൌ ሺ݇/ܯሻ		ሺ݇ ൌ 0,1,2, . . . ,  ሻܯ
we obtain the following system of linear algebraic 
equations for the coefficients ݌௡ାሺݐ ൅  ሻݐ∆

∑ ܵሺ௞,௡ሻ݌௡ାሺݐ ൅ Δݐሻே
௡ୀ଴ ൌ ,௞ߩሺݏ݄ݎ  ሻ,         (31)ݐ

ܵሺ௞,௡ሻ ൌ
ସሺଵିఔሻ

గఓ
ܴሺݐሻଷ ׬ ,௞ߩሺܭ ߫ሻ

ଵ
଴ ߮௡ሺ߫ሻ݀߫,     (32) 

݇ ൌ 0,1,2, . . . ,  .ܯ
This system can be presented in the matrix form as 
follows 

ࡿ ⋅ ࢄ ൌ ࢄ					,ࡿࡴࡾ ൌ ሼ₀݌⁺, ,⁺₁݌ . . . ,      (33)	ே⁺ሽ்.݌
Here ܶ is the transposition operator. According to the 
method of solution of ill-posed problems [6], the 
vector X can be found from the equation 

min
௒
ࡿ‖ ⋅ ࢅ െ ‖ࡿࡴࡾ ൌ ࡿ‖ ⋅ ࢄ െ  (34)   		,‖ࡿࡴࡾ

‖ࢅ‖	 ൌ ∑ ௡ܻ
ଶே

௡ୀଵ .                 (35) 
Here minimum is to be found on vectors Y with 
positive components 

ܻ₁ ൒ 0, ܻ₂ ൒ 0, . . . , ேܻାଵ ൒ 0.           (36) 
The matrix S in equation (32) can be not square: the 
numbers of the approximating functions and the 
nodes on the crack radius can be different. For 
seeking minimum in equation (34) with restrictions 
(36), standard methods of linear programming can be 
used. 
   According to the discrete model, at the first stage 
of the (i+1)th step of crack growth, the crack radius 
remains fixed ܴ ൌ ܴሺݐ௜ሻ, and pressure distribution 
,ߩሺ⁺݌ ௜ݐ ൅ Δݐሻ is to be constructed from equations 
(30), (34) and (36). The appropriate value of the time 
interval Δt in equations (28)-(31) should be taken 
such as the relative error ߜ of the solution of equation 
(33) 

ߜ ൌ
‖ࡿࡴࡾିࢄ⋅ࡿ‖

‖ࡿࡴࡾ‖
                           (37) 

does not exceed a prescribed tolerance (in the 
calculations, δ<0.01 was taken). Then, the new crack 
radius ܴሺݐ௜ ൅   and pressure distribution are	ሻݐ∆
calculated from equations (16) and (17). 
   Example of evolution of the pressure distributions 
on the crack surface in the process of hydro fracture 
is shown in Fig.4-6 for the fluid with viscosity  ߟ ൌ
0.01ܲܽ ⋅ 0.1ܲܽ ,ܿ݁ݏ ⋅ 1ܲܽ ,ܿ݁ݏ ⋅  the material ,ܿ݁ݏ
fracture toughness ܭூ௖ ൌ   .݉√ܽܲܯ1.6
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Dependences of the crack radius R on time and 
fracture toughness ܭூ௖ are shown in Fig.7	ሺߟ ൌ
0.1ܲܽ ⋅  ሻ, and on time and fluid viscosity η inܿ݁ݏ
Fig.8 (	ܭூ௖ ൌ  .(݉√ܽܲܯ1
Dependence of crack opening w(r,t) on time is shown 
in Fig.9 for ߟ ൌ 0.01ܲܽ ⋅ ߟ and in Fig.10 for ,ܿ݁ݏ ൌ
1ܲܽ ⋅ ߤ൫ ,ܿ݁ݏ ൌ ,ܽܲܯ6.25 ߥ ൌ ூ௖ܭ			,0.2 ൌ
 .൯݉√ܽܲܯ1
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5 Hydraulic crack propagation in the 
medium with filtration  
In the case of a medium with filtration, a portion of 
the fluid is leaked into the medium, and lubrication 
equation (2) should be changed as follows 

డ௩ሺ௥,௧ሻ

డ௧
ൌ ,ݎሺݍݎߨ2 ሻݐ ൅ ߨ4 ׬ ݈ሺݖ, ݖ݀ݖሻݐ

ோሺ௧ሻ
௥ .      (38) 

Here the integral term is the rate of the fluid flux 
filtrated into the medium from the crack surfaces 
between the circle of radius r and the crack edge 
r=R(t). The fluid filtration rate l(r,t) depends on the 
pressure distribution on the crack surface and is 
defined by the equation 

݈ሺݎ, ሻݐ ൌ െ
௞೑
ఎ

డ௉ሺ௥,௭,௧ሻ

డ௭
|௭ୀ଴.               (39) 

Here ݇௙ is the filtration coefficient of the medium, η 
is the fluid viscosity, ܲሺݎ, ,ݖ  ሻ is the fluid pressure inݐ
the medium, ሺݎ,  ሻ are cylindrical coordinates withݖ
the origin at the crack center and the z-axis 
orthogonal to the crack plane. If ݖ ൌ 0, the function 
ܲሺݎ, ,ݖ  ሻ coincides with the pressure distributionݐ
,ݎሺ݌  .ሻ on the crack surfaceݐ
   The function ܲሺݎ, ,ݖ  ሻ satisfies the filtrationݐ
equation [10] 

డ௉ሺ௥,௭,௧ሻ

డ௧
ൌ ܦ ቀ

డ²

డ௥²
൅

ଵ

௥

డ

డ௥
൅

డ²

డ௭²
ቁ ܲሺݎ, ,ݖ  ሻ,       (40)ݐ

The boundary conditions on the crack plane ݖ ൌ 0 
ܲሺݎ, 0, ሻݐ ൌ ,ݎሺ݌ ,ሻݐ ݎ ൑ ܴሺݐሻ; 

	
డ௉ሺ௥,௭,௧ሻ

డ௭
	|௭ୀ଴ ൌ 0, ݎ ൐ ܴሺݐሻ,               (41) 

conditions at infinity (ܲሺݎ, ,ݖ ሻݐ → 0, ,ݎ ݖ → ∞ሻ, and 
the initial condition at t=0 

ܲሺݎ, ,ݖ 0ሻ ൌ 0.                            (42) 
Coefficient D in equation (40) is the hydraulic 
diffusivity coefficient [m²/sec] defined by the 
equation 

ܦ ൌ
௞೑
ఎథ௖೟

,                               (43) 

where ߶ܿ௧ is the so-called the storativity [ܲܽ⁻¹] of 
the medium (߶ is rock porosity, ܿ௧ is compressibility 
of the rock material with fluid) [10]. 
Because filtration in the z-direction dominates, 
partial derivatives with respect to r in equation (40) 
can be neglected in comparison with the z-derivative, 
and this equation takes the form 

డ௉ሺ௥,௭,௧ሻ

డ௧
ൌ ܦ

డ²௉ሺ௥,௭,௧ሻ

డ௭²
.                     (44) 

The boundary and initial conditions keep forms (41) 
and (42). The solution of this problem is presented in 
the form of the following integral [11] 

ܲሺݎ, ,ݖ ሻݐ ൌ
௭

ଶ√గ஽
׬

௘௫௣൬ି
೥మ

రವሺ೟షഓሻ
൰

ሺ௧ିఛሻ
య
మ

,ݎሺ݌ ߬ሻ݀߬
௧
଴ .   (45) 

The equation for filtration flux ݈ሺݎ,  ሻ from the crackݐ
surface follows from equations (45) and (39) in the 
form 

݈ሺݎ, ሻݐ ൌ െ
݇௙

ܦߨ√ܦߟ4
ൈ 

lim
௭→଴

׬
ଶ஽ሺ௧ିఛሻି௭²

ሺ௧ିఛሻఱ/మ
௧
଴ ݌ݔ݁ ቀെ

௭మ

ସ஽ሺ௧ିఛሻ
ቁ ,ݎሺ݌ ߬ሻ݀߬.    (46) 

Let the function ݌ሺݎ,  ሻ be pice-wise constant withݐ
respect to time 

,ݎሺ݌ ሻݐ ൌ ,ݎ൫݌ ௝൯ݐ ൌ            (47)	ሻ,ݐሺݐݏ݊݋ܿ
௝ିଵݐ ൏ ݐ ൏ ,௝ݐ ݆ ൌ 1,2, . . . .. 

In this case, equation (46) for the flux rate ݈ሺݎ,  ሻݐ
takes the form 

݈ሺݎ, ௜ሻݐ ൌ
݇௙

ܦߨ√ߟ
ൈ 

൤∑ ൬ ଵ

ඥ௧೔ି௧ೕషభ
െ

ଵ

ඥ௧೔ି௧ೕ
൰௜ିଵ

௝ୀଵ ,ݎሺ݌ ௝ሻݐ ൅
௣ሺ௥,௧೔ሻ

ඥ௧೔ି௧೔షభ
൨.   (48) 

The discretized form of the lubrication equation (38) 
is 

,ߩሺݒ ݐ ൅ ሻݐ∆ ൌ ,ߩሺݒ ሻݐ െ 

െ2ߨ
௪యሺఘ,௧ሻ

ଵଶఎ
ߩ
డ௣ሺఘ,௧ሻ

డఘ
ݐ߂ ൅ ,ݎሺܮ  (49)          .ݐ߂ሻݐ

,ݎሺܮ ሻݐ ൌ ߨ4 ׬ ݈ሺ߫, ሻ߫݀߫ݐ
ோሺ௧ሻ
௥ .                (50) 

For calculation the integral ܮሺݎ,  ௜ሻ, we assume thatݐ
in each time interval ሺݐ௝,  ௝ାଵሻ the pressure is constantݐ
with respect to time ݌ሺݎ, ሻݐ ൌ ,ݎሺ݌  ௝ሻ, and one canݐ
use equation (48) for calculation of ݈ሺݎ,  ௝ሻ. Forݐ
approximation (20) of ݌ሺݎ,  ሻ, the integral in equationݐ
(50) takes the form of the following sum 

,ݎሺܮ ௜ሻݐ ൌ 

2∑ ,ሺ݆ߣ ݅ሻ௜
௝ୀଵ ௝ܴ

ଶ ∑ ݏ ൬݊,
௥

ோೕ
൰ே

௡ୀ଴  (51)		௝൯,ݐ௡൫݌

௝ܴ ൌ ܴሺݐ௝ሻ, 

,ሺ݆ߣ ݅ሻ ൌ ݇௖ ቈ
1

ඥݐ௜ െ ௝ݐ
െ

1

ඥݐ௜ െ ௝ିଵݐ
቉ ,			݅ ൐ ݆, 

,ሺ݅ߣ ݅ሻ ൌ
௞೎

ඥ௧೔ି௧ೕషభ
,			݇௖ ൌ

௞೑
ఎ√గ஽

.                     (52) 

,ሺ݊ݏ ሻߩ ൌ ߨ4 ׬ ߮௡ሺ߫ሻ߫݀߫,
ଵ
ఘ ߩ		 ൑ 1; 

,ሺ݊ݏ ሻߩ ൌ 0, ߩ ൐ 1.                                (53) 
For functions ߮௡ሺߩሻ in equation (21), the integrals 
,ሺ݊ݏ  ,ሻ are calculated in explicit analytical formsߩ
and the first six such integrals are 
,ሺ0ݏ ሻߩ ൌ ሺ1ߨ െ ଶߩ ൅  ,ሻߩଶ݈݊ߩ2
,ሺ1ݏ ሻߩ ൌ ሺ1ߨ2 െ  		,²ሻߩ
,ሺ2ݏ ሻߩ ൌ ሺ3/ߨሻሺ5 െ ²ߩ6 ൅  ,¹⁸ሻߩ
,ሺ3ݏ ሻߩ ൌ ሺ23/ߨሻሺ2 െ ଶߩ3 ൅  ,଺ሻߩ
,ሺ4ݏ ሻߩ ൌ ሺ1ߨ െ  	,ଶሻଶߩ
,ሺ5ݏ ሻߩ ൌ ሺ23/ߨሻሺ1 െ  ²ሻ³.                                (54)ߩ
Thus in the case of filtration, for calculation of 
pressure distribution ݌ሺݎ, ௝ାଵሻ at the ሺ݅ݐ ൅ 1ሻth time 
step, equation (38) should be used. The total time 
߂ ௜ܶାଵ of this step is calculated from the balance 
equation 
ܸሺݐ௜ାଵሻሻ െ ܸሺݐ௜ሻ ൅ ,ሺ0ܮ ߂௜ሻݐ ௜ܶ ൌ ܳሺݐ௜ሻ߂ ௜ܶ,		   (55) 
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߂ ௜ܶ ൌ
ଵ

ொሺ௧೔ሻ

ሺ௏ሺ௧೔శభሻି௏ሺ௧೔ሻሻ

ሾଵି௅ሺ଴,௧೔ሻ/ொሺ௧೔ሻሿ
.                 (56) 

where ܮሺ0, ߂௜ሻݐ ௜ܶ is the portion of fluid filtrated into 
the medium in the time interval ߂ ௜ܶ. 
Dependences of the crack radius on time for various 
values of the parameter ݇௖ in equation (51) are 
presented in Fig.11. The medium has shear modulus 
ߤ ൌ ߥ Poisson ratio ,ܽܲܩ6.25 ൌ ூ௖ܭ ,0.2 ൌ
,݉√ܽܲܯ1 ߟ ൌ 0.01ܲܽ ⋅  and the fluid injection ,ܿ݁ݏ
rate is ܳ ൌ  .ܿ݁ݏ/0.2݉³

 
Fig.11 

 
 
6 Conclusion 
An efficient numerical method for solution of the 
hydraulic fracture problem for a penny shape crack in 
homogeneous isotropic elastic media with filtration 
is proposed. The numerical algorithm is based on a 
specific class of approximating functions that on the 
one hand, allow excluding numerical integration and 
differentiation that can be sources of numerical 
errors. On the other hand, these functions help to 
solve efficiently the ill-posed problem of 
reconstruction of pressure distribution on the crack 
surface in each time step of the crack growth. 
The proposed model of discrete crack growth can be 
considered as a physical interpretation of the formal 
procedure of discretization of the lubrication 
equation (4). This model results a specific numerical 
algorithm different from existing in the literature. For 
the medium without filtration, the method predictions 
are close to the results of other authors [8]. In the 
present work, extension of the model to the case of 
media with filtration is performed.  
Note that external stresses (lithographic pressure) 
that usually act in actual rocks were neglected here 
for simplicity. Accounting these stresses in the 
framework of the proposed numerical algorithm is 
straightforward.  
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