
Abstract: We construct two numerical methods for solving nonlinear functional Fredholm integral equations and
compare their accuracy and computational costs. First, the nonlinear integral is approximated with composite
trapezoid rule on the mesh. Then Picard and Newton iterations are designed to linearize the nonlinear system
and approximate the solution. The in-built python function, scipy.optimize.fsolve, is used to handle the nonlinear
system arising from the Newton approach. Several numerical experiments are performed to test the performance
of the two methods. The results show that (i) both schemes are convergent and have the correct order of accuracy
which is two, (ii) the methods have comparable accuracy, (iii) the Picard scheme is far more efficient than the
Newton method, and (iv) the efficiency of the Picard scheme over the Newton method increases as the size of the
problem increases. In addition to the above results, the Picard scheme is easier to program. We conclude that if
the second order trapezoid rule is used to approximate the integral in a Fredholm equation, then the Picard scheme
should be preferred over the Newton scheme. Further study is recommended to ascertain if this conclusion still
holds when trapezoid rule of different order or a different quadrature rule is used.
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1 Introduction

When a nonlinear equation is evaluated at discrete
points, it turns from being in an infinite dimensional
space to a finite dimensional problem. This finite di-
mensional problem is nonlinear and, in general, there
does not exist any analytical method to find it’s exact
solution. In this case nonlinear approximation meth-
ods, like Newton types and fixed point iterations come
in handy. However, each method has its own mathe-
matical limitations and strengths which impart on the
robustness of the method. It is then expedient to in-
vestigate the performance of some of these methods
on specific problems with considerable generality.

Consequently, the present study is aimed at in-
vestigating the accuracy and Computational efficiency
of the Picard and Newton iterations when used to ap-
proximate the solution of nonlinear finite dimensional
problem arising from collocating the following non-
linear Functional problem at mesh points in a one-
dimensional interval:

λu(x) = p(x) + f(x, z(x)),

z(x) =

∫ b

y=a
k(x, y, u(y)) dy, x ∈ [a, b] ⊂ R,

(1)

where u is the unknown function, 0

6

= λ ∈ R is a
constant, C[a, b] 3 p : R → R, f : R × R → R, k :
R×R×R→ R and k is nonlinear in u and may not be
necessarily separable in x and y. Further assumptions
are made later.

These equations have applications in neuron
transport modelling [1] economics and optimal con-
trol [2, 3, 4, 5], physical sciences [6, 7, 8], epidemiol-
ogy [9, 10], heat transfer [11], antenna wire modelling
[12, 13], and applied mathematical methods [14, 15].
See also [16, 17, 18, 19, 20] for more applications.

These numerous applications have motivated
mathematical research in theoretical aspects of inte-
gral equation. For example, in [21, 22, 23, 24], in-
tegral equations of functional non-mixed types are
studied, while [25] used Picard-type iteration to in-
vestigate functional Volterra equations. Existence
and uniqueness results for nonlinear Volterra equa-
tions can be found in [26]. Also, [27] used Banach
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fixed-point theory to investigate linear mixed Volterra-
Fredholm equation, while nonlinear mixed integral
equations are studied via Banach fixed point theory
in [15].

If f(x, z) = z, k is linear in u and can be sepa-
rated as k = h(x)g(y)u(y), then analytical solution
can be obtained [28]. But in the general case where f
is nonlinear in the second argument, or k is nonlinear
in the third argument, or both, then closed form an-
alytical solution does not exist. Hence, approaching
problem (1) via numerical methods is important. This
is why the problem of developing numerical methods
to solve (1) has been the subject of much research.
Numerical methods for integral equations have been
devised using Linear programming [29], Taylor series
[30], variational iteration methods [31, 32, 33, 34],
CAS wavelets [35, 36], collocation methods [37, 38],
and Picard-Trepezoidal rule [15]. Other related works
can be found in [39, 40, 9, 10] and [41].

The works of Micula [15, 42, 43] and Nwaigwe
[44] adopted the idea of fixed point iterations in solv-
ing integral equations, while those [45, 25, 46] had
adopted Newton type methods. These are two dif-
ferent ways of approximating nonlinear systems as-
sociated with collocating integral equations at grid
points. Except the work of [44] which tried to com-
pare these two different approaches on Volterra equa-
tions, no other study has actually carried out a com-
parative study of these two approaches on one inte-
gral equation. This is the gap the current study fills, to
compare fixed point approach and Newton approach
on nonlinear functional integral equations. The meth-
ods are compared in terms of accuracy, CPU time, and
also ease of computer programming.

In this work, we approach the numerical solu-
tion of (1) by combining collocation projection and
trapezoid quadrature then applying Picard and New-
ton methods. The paper is organized as follows. In
section 2, we discretize the problem and formulate the
two nonlinear schemes. Examples are presented and
discussed in section 3 while concluding remarks are
made in section 4.

2 The Numerical Algorithms
We now formulate the two algorithms to approximate
the solution of problem (1). Let us make some fur-
ther assumptions on the problem. First, we assume
that k and f are Lipschitz continuous with respect to
their third and second arguments respectively , namely
there exists αk, αf ≥ 0 such that

|f(x, z1)− f(x, z2)| ≤ αf |z1 − z2| ∀ z1, z2,

|k(x, y, u)− k(x, y, v)| ≤ αk|u− v| ∀ u, v.

Secondly, we assume that the following inequality
holds:

αkαf (b− a) < 1. (2)

This second assumption is a contraction requirement
[46, 15]. It allows to satisfy the hypothesis of the Ba-
nach Contraction Principle stated below. Without loss
of generality, we set λ = 1 in what follows.

Let us now define the computational mesh. We
choose an integer N greater than 1. Then define the
mesh size h = b−a

N and grid points xi = a + ih, i =
0, 1, · · · , N and the mesh Ωh = {xi = a + ih : i =
0, 1, · · · , N}.

Now we collocate problem (1) at the mesh points
to get

u(xi) = p(xi) + f(xi, Iu(xi)), ∀xi ∈ Ωh, (3)

where

Iu(x) =

∫ b

a
k(x, y, u(y)) dy.

Next, we approximate Iu(x) with a trapezoid rule [45,
47], namely

Iu(x) ≈ Iu,i =
N∑
j=0

ξNj k(xi, xj , u(xj)). (4)

where ξNj = 0.5h when j = 0 or j = N and ξNj = h
otherwise, see [46, 47, 45] It is easy to show that this
approximation is second order accurate, see [44, 48]
for example.

This leads to the following approximation:

u(xi)− p(xi)− f(xi, Iu,i) = 0, ∀xi ∈ Ωh. (5)

This is a nonlinear system ofN+1 equations inN+1
unknowns. Obviously some form of nonlinear solver
is needed to tackle the system. In this study, we con-
sider two approaches, namely the Picard iteration and
the Newton method.

2.1 Picard Scheme

Theorem 2.1 (Banach Contraction Principle, see
[26]). Let B be a Banach space and U is a non-empty
closed subset of B, and T : U → U . If Tm is a
contraction for some m > 0, then T has a unique
fixed point in U and the sequence {un}n≥0 generated
by un+1 = Tun converges to the fix point of T , for
u0 ∈ U .

If we define the operator T by

(Tu)(x) = p(x) + f(x, Iu(x)),
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then it can be shown, under assumption (2), that T is
a contraction. Hence by Theorem 2.1, the sequence of
vectors {un,i}n≥1 generated by the iteration

un+1,i = Tun,i := p(xi) + f(xi, Iun,i) for each xi ∈ Ωh,
(6)

where u0, i are suitably chosen initial values, con-
verges to the exact solution of the nonlinear system
(5). We adopt the initial values:

u0,i = p(xi) + f(xi, Ig,i),∀xi ∈ Ω. (7)

The equations (6)-(7) make up the complete Picard
iteration for problem (1).

2.2 The Newton Scheme

For the Newton method, we define the vectors
~Q(~u) = {q0(~u), q1(~u), · · · , qN (~u)} with ~u =
{u0, u1, · · · , uN} is a vector of approximation solu-
tions at grid the respective grid points. The compo-
nents of ~Q are

qi(~u) = ui − p(xi)− f(xi, Iui). (8)

Hence, we consider the system:

~Q(~u) = 0. (9)

Then we require the Jacobian with components

Ji,j(~u) =
∂qi
∂uj

=


1− ∂Iui

∂uj

∂f(xi,z)
z

∣∣∣∣
z=Iui

, if i = j,

−∂Iui
∂uj

∂f(xi,z)
z

∣∣∣∣
z=Iui

, otherwise.

(10)

The equations (9),(10) and the initialization (7) make
up the Newton scheme.

In [44], the Krasnolseskij iteration and Newton
method are developed, implemented and compared
for nonlinear functional Volterra integral equations.
The two methods were written in python without us-
ing any python in-built function. The results showed
that the Krasnoselkij iteration was more computation-
ally efficient than the Newton method, though both
methods have comparable accuracy. Bearing this in
mind, we are curious to know if the python rou-
tine, scipy.optimize.fsolve, would speed up the New-
ton method. Hence, we write a full program for the Pi-
card scheme. For the Newton method, we only write a
python program that assembles the nonlinear system,
then use the python fsolve to complete the solution
process.

3 Numerical Experiments
Several numerical experiments are now presented to
access the accuracy and computational costs of the
two algorithms proposed in the previous section. The
methods are implemented in python programming
language. The solution of each example is computed
on a sequence of grids with 2 × 2p, p = 1, 2, · · · , 8
mesh points. The numerical solutions are compared
with the exact solution and the errors and experimen-
tal order of convergence (EOC) are computed. The
Picard scheme is taken to converge and terminated
whenever the 2-norm, ‖~un+1 − ~un‖2, is less than
8× 10−11, that is whenever√√√√ N∑

i=0

|un+1,i − un,i|2 ≤ 8× 10−11,

whereas the convergence of Newton method is de-
cided by the scipy.optimize.fsolve function. The error
is computed in maximum norm, eh = maxi |u(xi) −
ui|h, where ui is the converged numerical solution
computed at mesh point xi by either the Picard or
Newton method on a grid with mesh size, h. Finally,
the experimental order of convergence is computed as
(see [49, 46, 50])

EOC =

log

(
eh
eh/2

)
log(2)

. (11)

The computational costs of (average CPU time
taken by) the methods are also calculated. Each
method is used to repeatedly solve a given problem a
number of times while the CPU time is taken for each
run, then the average is recorded. We use TN and TP

to denoted the average CPU times for the Newton and
Picard schemes respectively. The efficiency of the Pi-
card scheme over the Newton scheme is calculated as

% increase by Picard =
TN − TP

TN
× 100%.

3.0.1 Example 1

We consider the Hammerstein equation [51]

u(x) =x+
1

40
(1− e1)ex4

+
1

10

∫ 1

0
ex

4+y4u3(y)dy, x ∈ [0, 1].

The exact solution of this problem is u(x) = x, [3].
Table 1 displays the results for problem 1. It can

be seen that both schemes converge the exact solution
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as the grid is refined and they do so with second order
of convergence which is the correct theoretical order
of accuracy of the quadrature rule used in the numeri-
cal formulations. This verifies two things, namely (i)
that both methods are convergent, and (ii) that we cor-
rectly implemented the proposed methods. Further,
the Table also shows that both methods have compa-
rable accuracy which means that the method with less
computational cost (measured in terms of CPU time)
would be taken as the superior method.

Consequently, Table 2 shows the results of mul-
tiples (50) runs of each method on the example prob-
lems using different grids with 10, 20, 40, 60 and 100
grid points. The results show that when the Newton
and Picard schemes were used to solve example 1 for
50 times on a grid of 10 points, the average CPU times
used are 0.0069188 and 0.0058953 respectively. This
means that the Picard scheme is about 14.8% more ef-
ficient than the Newton method for solving problem 1
on a mesh with 10 points. The Table also shows that
when this experiment is repeated on grids with 20, 40,
60 and 100 grid points, the efficiency of the Picard
scheme over the Newton’s are approximately 44.5%,
66.85, 76.5% and 85% respectively. This reveals that
the larger the problem size, the more efficient is the
Picard scheme over the Newton method.

Table 1: Accuracy Results for Problem 1, N = num-
ber of sub-intervals.

N Error-Newton EOC-Newton Error-Picard EOC-Picard
4 0.08215397405559721 - 0.0821539682451089 -
8 0.01263272597740328 2.7011643772453855 0.012632724267867212 2.701164470442306
16 0.0026861432241733763 2.2335578515808603 0.0026861422466735174 2.23355818135017
32 0.0006258181125600171 2.101720911707286 0.0006258174492788093 2.1017219157631555
64 0.00015135534026722297 2.0478038353261097 0.00015135473500205165 2.047808075569715

128 3.7235133191426684e-05 2.02320315539687 3.7234541182540326e-05 2.0232203239754862
256 9.235298133125625e-06 2.011434078098783 9.235131938734042e-06 2.01143710256069
512 2.299758743884439e-06 2.0056760116890477 2.299592787746718e-06 2.005754161455908

3.0.2 Example 2

Next, we consider the Hammerstein equation [51, 3]

u(x) = x+
1

20

(
cos(x+ e1)− cos(1 + x)

)
+

1

20

∫ 1

0

(
eu(y)sin(x+ ey)

)
dy, x ∈ [0, 1].

The exact solution is also u(x) = x, [3]. The
results of approximating the solution of this problem
using the two methods are shown in Table 3 which
shows the accuracy results and Table 4 which shows
the efficiency of the methods. Table 3 shows that
both methods converge to the exact solution and at the
correct theoretical order of convergence which is 2.
Again, both methods have comparable accuracy like
in problem 1.

Table 2: CPU times for Example 1
Method No. of Runs Average CPU Time Error
Results for 10 Mesh Points
Newton 50 0.006918811798095703 0.007548990805491762
Picard 50 0.0058935308456420895 0.007548988498649489
Percentage increase: 14.81874319425492

Results for 20 Mesh Points
Newton 50 0.03925801753997803 0.001670124652474625
Picard 50 0.021760010719299318 0.001670123843565685
Percentage increase: 44.57180448009068

Results for 40 Mesh Points
Newton 50 0.25215151309967043 0.0003951871519729533
Picard 50 0.08373754024505616 0.00039518651748804423
Percentage increase: 66.79078415367019

Results for 60 Mesh Points
Newton 50 0.7878385829925537 0.0001725825435245909
Picard 50 0.18556668281555175 0.00017258193576474845
Percentage increase: 76.4461037043034

Results for 100 Mesh Points
Newton 50 3.4391810274124146 6.127946007650209e-05
Picard 50 0.5113987255096436 6.127886529649906e-05
Percentage increase: 85.13021787938823

However, Table 4 shows that on using the New-
ton and Picard schemes to solve problem 2 fifty times
on grids of 10, 20, 40, 60 and 100 grid points, the Pi-
card scheme is more efficient than the Newton method
by 54.4%, 71.4%, 83.1%, 88.2% and 92.6% respec-
tively. This also re-establishes the efficiency of the
Picard scheme over the Newton scheme.

Table 3: Accuracy Results for Problem 2, N = num-
ber of sub-intervals.

N Error-Newton EOC-Newton Error-Picard EOC-Picard
4 0.004224576766553079 - 0.004224576781223677 -
8 0.000777530887556499 2.4418349213860946 0.0007775309116082596 2.441834881768488

16 0.00016929568236101478 2.1993548078316434 0.00016929570760759738 2.1993546373142827
32 3.964218274898901e-05 2.094436873426475 3.964220891017334e-05 2.094436136489716
64 9.598161710755448e-06 2.0462063762979414 9.598187859172214e-06 2.0462033980291707
128 2.361936844996748e-06 2.0227877303915958 2.3619631505100713e-06 2.0227755931565734
256 5.858622871279806e-07 2.0113369000221515 5.858886649168227e-07 2.0112880133525324
512 1.458930138920067e-07 2.0056507831479955 1.4589430841205342e-07 2.0057029363147616

3.0.3 Example 3

This example is constructed via the method of man-
ufacture solution (MMS), see [52, 53, 54, 55, 56] for
more applications of MMS. The problem is

u(x) =
x2(x2(In2)2 − In4 + 4)

x2(In2)2 + 4
+ f(x, z)

where f(x, z) = x2z
1+z2

, z(x) =
∫ 1
0

2xyu
1+u2dy The

exact solution is u(x) = x2.
Tables 5 and 6 display the accuracy and efficiency

results of the methods on this problem. It is can be
seen that the convergence comparable accuracy of the
methods are ascertained, see Table 5.

Table 6 shows that on using the methods o solve
problem 3 fifty times on grids of 10, 20, 40, 60 and
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Table 4: CPU times for Example 2
Method No. of Runs Average CPU Time Error
Results for 10 Mesh Points
Newton 50 0.009309396743774415 0.0004701870720190682
Picard 50 0.0042416763305664065 0.0004701870973055078
Percentage increase: 54.436614451919304

Results for 20 Mesh Points
Newton 50 0.05688747882843018 0.00010553111642674917
Picard 50 0.016275830268859863 0.00010553114237565886
Percentage increase: 71.38943295773933

Results for 40 Mesh Points
Newton 50 0.36586283683776855 2.5045781609334128e-05
Picard 50 0.06172049522399902 2.504580762352493e-05
Percentage increase: 83.13015452526894

Results for 60 Mesh Points
Newton 50 1.1574162149429321 1.0943794029660836e-05
Picard 50 0.136169753074646 1.0943820425768358e-05
Percentage increase: 88.23502286242292

Results for 100 Mesh Points
Newton 50 4.975657024383545 3.886881525083652e-06
Picard 50 0.3691722440719605 3.886907744776735e-06
Percentage increase: 92.58043224718249

100 grid points, the Picard scheme demonstrates su-
perior efficiency by by 47.7%, 65.9%, 79.6%, 85.8%
and 90.8% respectively. This also re-affirms the effi-
ciency of the Picard scheme over the Newton scheme.

Table 5: Accuracy Results for Problem 3, N = num-
ber of sub-intervals.

N Error-Newton EOC-Newton Error-Picard EOC-Picard
4 0.007035915687580774 - 0.007035915470433141 -
8 0.0013013783137267865 2.434697777027481 0.0013013782499045057 2.4346978032547058
16 0.00028357548921409403 2.1982356738117668 0.000283575408928316 2.1982360115143154
32 6.640097989030203e-05 2.0944564020007768 6.640089565124185e-05 2.094457823809909
64 1.607782339063668e-05 2.0461324235669562 1.6077738207886938e-05 2.0461382369401773

128 3.956429290630226e-06 2.022801229555495 3.95634387628796e-06 2.022824732229111
256 9.814624188919652e-07 2.0111940418568612 9.812806749387448e-07 2.011430073763261
512 2.444672335677467e-07 2.0052919157820166 2.4429676548365364e-07 2.0060310861088446

Table 6: CPU times for Example 3
Method No. of Runs Average CPU Time Error
Results for 10 Mesh Points
Newton 50 0.002906074523925781 0.0007874964197842615
Picard 50 0.0015208387374877929 0.0007874963480500874
Percentage increase: 47.66690513382602

Results for 20 Mesh Points
Newton 50 0.012638144493103028 0.00017675318829701858
Picard 50 0.0043107843399047855 0.0001767531060890004
Percentage increase: 65.89068638788473

Results for 40 Mesh Points
Newton 50 0.07177528858184815 4.195403804851949e-05
Picard 50 0.014618129730224609 4.195395335271357e-05
Percentage increase: 79.6334782916895

Results for 60 Mesh Points
Newton 50 0.2107717752456665 1.8331747347666294e-05
Picard 50 0.030028929710388185 1.833166220732707e-05
Percentage increase: 85.75286957877175

Results for 100 Mesh Points
Newton 50 0.8688078927993774 6.510883697963266e-06
Picard 50 0.07958637714385987 6.510798332914902e-06
Percentage increase: 90.83958861291818

3.0.4 Example 4

Finally, we consider the nonlinear functional equa-
tion:

u(x) = −0.11

[
x16

(
−72
√

3tan−1

(√
3

6

)
+ 35

)4

+ 486

] 1
2

+ cos−1(x2) + f(x, z),

where, f(x, z) =
√

6 + z4, z(x) =
∫ 1
0

x4y2cos(u)
12+y2

dy.
The exact solution is u(x) = cos−1(x2).

Table 7 shows that both methods compute accu-
rate results and have comparable accuracy, while Ta-
ble 8 shows that the Picard scheme is more efficient
than the Newton scheme.

Table 7: Accuracy Results for Problem 4, N = num-
ber of sub-intervals.

N Error-Newton EOC-Newton Error-Picard EOC-Picard
4 1.1146974633510867e-08 - 1.1146974454590008e-08 -
8 1.676186014726016e-09 2.733398039695799 1.676185856780421e-09 2.7333981524829443

16 3.5208659535372973e-10 2.251180053937738 3.5208636006700544e-10 2.251180882094979
32 8.180157623342013e-11 2.1057297541209055 8.180123245438153e-11 2.105734853097954
64 1.9772975804176246e-11 2.0485986317872236 1.9772627979364188e-11 2.0486179472635424
128 4.866242116614986e-12 2.0226500034185118 4.865441383117286e-12 2.02286203789714
256 1.2091836980419395e-12 2.0087746682859793 1.2088108292118704e-12 2.008982199201384
512 3.036896641723089e-13 1.9933637205853214 3.028688411177427e-13 1.9968234224798223

Table 8: CPU times for Example 4
Method No. of Runs Average CPU Time Error
Results for 10 Mesh Points
Newton 50 0.006128149032592773 9.956891196578677e-10
Picard 50 0.0011171436309814454 9.956893087803564e-10
Percentage increase: 81.77029270926869

Results for 20 Mesh Points
Newton 50 0.030853209495544435 2.186125519041151e-10
Picard 50 0.0037441015243530273 2.1861223942210017e-10
Percentage increase: 87.86479077681135

Results for 40 Mesh Points
Newton 50 0.20467841148376464 5.1640339883071304e-11
Picard 50 0.013835945129394532 5.163958149978498e-11
Percentage increase: 93.24015413785249

Results for 60 Mesh Points
Newton 50 0.6568456077575684 2.254631241006722e-11
Picard 50 0.030254077911376954 2.254596509487783e-11
Percentage increase: 95.39403513488314

Results for 100 Mesh Points
Newton 50 2.8504409313201906 8.006390329098463e-12
Picard 50 0.08123322486877442 8.006040275176929e-12
Percentage increase: 97.15015231586817

4 Conclusion
Two nonlinear equation solvers have been formulated,
implemented and verified for approximating the solu-
tion of nonlinear Functional Fredholm integral equa-
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tions. The two methods are Picard and Newton meth-
ods and were compared for accuracy and CPU time.
The results show that (i) both formulations converge
to the exact solution with the same order of conver-
gence as the quadrature rule used in the formulations,
(ii) that the Picard scheme is more efficient than the
Newton scheme, and (iii) the percentage increase in
the efficiency of the Picard scheme over the Newton
scheme increases as the grid is refined. We conclude
that if the second order trapezoid rule is used to ap-
proximate the integral in a Fredholm equation, then
the Picard scheme should be preferred over Newton
scheme. We also caution that this conclusion may not
be valid when the quadrature rule is not second order
trapezoid; the method and the order are emphasized.
Further study is therefore recommended in that direc-
tion, to ascertain if this conclusion still holds when
trapezoid rule of different order or a different quadra-
ture rule is used.
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