
Threat tree model is a modeling method for threat
representation and risks, which is widely used in software
assurance [1]. The conditions for a threat are organized
as a branch in the tree, which consists of several brothers
with logical relations either �AND� or �OR� and a father
who is the result of the conditions. This branch repre-
sentation is iterative so that can represent complicated
threat conditions like a tree [2].

The tree model presents simplicity in terms of seman-
tics as threat information is always provided as a list of
inductions, each of which is composed of certain condi-
tions and one conclusion. Thus, tree model can smoothly
represent the induction list, and afterward tree structure
can be operated by available tree algorithms.

With the growing volume of induction list, however,
tree structure will be complicated to due the increas-
ing of the number of nodes [3, 4]. Simply speaking, the
number of nodes is proportional to the number of in-
ductions. Hence, how to decrease the number of nodes
yet maintaining the semantics of threat tree is of great
importance.

The problem seems to be straightforward, intuitive-
ly, because the number of nodes can only be decreased
by merging. However, if the merge is not proper, the
overhead of merging will be great. The challenge of the
problem is that merging must not damage the seman-
tics of the threat and merging should maintain the tree
structure, so that legacy algorithms for tree processing
can be remained.

The contribution of the paper is as follows:

1) We formally model the semantics of the threat tree
with merged nodes.

2) We propose several algorithms for threat tree con-
struction from the threat database.

3) We formally prove the equivalence in terms of se-
mantics between induction set and threat tree.

The rest of the paper is organized as follows: Related
work is reviewed in Section II.. Section III. describes the
proposed model. We propose key algorithms for threat
tree in Section IV.. The experimental results are shown
in V.. Then analysis is given in VI.. Finally, Section VII.
concludes the paper.

Attack tree or their variation trees are good tools for
security assessment and threat defense. Many scholars
also focus on the studies for attack tree synthesis and re-
�nement [5]. Attack trees have been applied in many
�elds, such as e-mail systems [6] and Cyber Physical
Systems (CPS) security [7]. Other applications can be
seen in [8�10]. Generally, the studies for attack trees di-
vide into these three categories: security assessment and
threat defense, tree synthesis, and large-scale nodes of
attack tree management.

The main functions of attack trees can be security
assessment and threat defense. For example, Approx-
Tree+ [11] analysis tool is proposed for attacker pro�ling

MergeTree: a Tree Model with Merged Nodes for Threat Induction

1PING CHEN, 1JINGJING HU, 1ZHITAO WU, 2,3RUOTING XIONG, 2,4WEI REN

1China Electronic Product Reliability and Environmental Testing Research Institute,
Guangzhou, CHINA

2School of Computer Science, China University of Geosciences, Wuhan, CHINA
3School of Computer Science, University of East Anglia, Norwich, UK

4Hubei Key Laboratory of Intelligent Geo-Information Processing,
China University of Geosciences, Wuhan, 430078, CHINA

Abstract:- Threat tree model can clearly or- ganize threat induction information and thus is widely
used for risk analysis in software assur- ance. Threat tree will grow to complicated struc- tures, e.g.,
the number of nodes and branches, when the threat information grows to a huge vol- ume. To extend
the scalability of the threat tree model, we propose a tree model with merged n- odes so as to largely
decrease the number of nodes and branches. The formal model and dedicated algorithms are proposed
in details. The exper- imental results show the practicality of Merge- Tree. We also formally analyze
the soundness and completeness of the proposed model.

Keywords:- Threat Tree, Semantics, Risk Analysis, Software Assurance.
Received: July 28, 2021. Revised: October 19, 2022. Accepted: November 24, 2022. Published: December 30, 2022.

1. Introduction

2. Related Work

2.1 Attack Trees for Security

Assessment and Threat Defense

Ping Chen et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 75 Volume 7, 2022

and enhanced it by incorporating the attacker's capabil-
ities into it. Wouter et al. [12] introduced a methodology
to evaluate the security of CSP system, which generates
attack trees based on the system architecture automati-
cally. The generated attack trees can provide both tech-
nical and non-technical feedback. Nishihara et al. [13]
focused on re�nement scenarios for attack trees which
enables the assessment of the validity of attack decom-
position systematically. That is, the attributes that sub-
attacks re�ne an attack are described by the relationship
among their e�ects. The proposed ideas are applied to
the case study of a vehicular network system that is well-
behaved.

Sophie et al. put forward ATSyRa [14], which pro-
vides a user-friendly environment for attack tree synthe-
sis. In the ATSyRa system, users can de�ne a structured
attack tree by high-level description, and re�ne the syn-
thesis interactively with the system. The relations of
the nodes can be three types, namely AND, OR, and
SAND. Nonetheless, the re�nement analysis is still done
by humans, not automatically and intelligently compared
with [16]. In 2020, a Library-Based Attack Tree Syn-
thesis scheme is proposed [17], where the inputs of the
system are a library and a trace. Whereas, the proposed
algorithm is only polynomial in the size of the trace. Ol-
ga et al. [15] proposed a re�nement-aware method for
attack tree generation by labeling technique. It solves
the problem of constructing a correct attack tree while
maintaining a prede�ned re�nement relationship. Never-
theless, it has not addressed the challenge of the growing
volume of nodes.

With the increasing number of attacks and the com-
plex operations between the nodes, the management of
attack trees with complex structures has become a chal-
lenge. Paul et al. [18] suggested that traditional risk as-
sessment schemes are now reaching their limit and they
proposed graphical extensions to deal with scalability is-
sues, like chain diagrams. The method has been ap-
plied in the Galileo risk management program and the
results show that the system can deal with both software-
intensive situations and a large number of small problem-
s. Fila et al. [19] focused on �nding the best series of At-
tack Defense Trees (ADTrees) from the directed acyclic
graphs. Experiment results show that the countermea-
sures can block numerical ways of attacking and a wide
class of optimization problems can be solved despite the
growing volume of nodes. Vigo et al. [20] put forward a
static analysis method implemented by Java to avoid the
exponential explosion of analysis for attack trees, where
they are automatically deduced from an algebraic spec-
i�cation in a syntax-directed manner. The study of a
national-scale authentication system has proved the �ex-
ibility and e�ectiveness of the scheme.

As we can see, there is no research on the induction
method to manage the attack trees with large-scale n-
odes. Therefore, it is of great importance to reduce the
complexity of the tree model when the threat information

grows to a huge volume while maintaining the semantics.

To explore the atom induction, it can be classi�ed
into four types as follows:

F1 : A1 ∧A2 ⇒ B. We denote it as A1, A2 ⇒ B.
F2 : A1∨A2 ⇒ B. We rephrase it as two inductions:

A1 ⇒ B; A2 ⇒ B.
F3 : (A1 ∧ A2) ∨ A3 ⇒ B. It can be denoted as two

inductions: A1, A2 ⇒ B; A3 ⇒ B.
F4 : (A1 ∨ A2) ∧ A3 ⇒ B. It can be denoted as two

inductions: A1, A3 ⇒ B; A2, A3 ⇒ B.

De�nition III..1. Simplex Form. Induction
A1, ..., An ⇒ B is called simplex form where all
conditions (namely, Ai, i = 1, ..., n) have one relation
�AND� for a conclusion (namely, B).

Proposition III..2. All inductions can be regulated into
simplex form.

Proof. Given any inductions, a method can change it
into simplex form as follows:

(1) Split all ∨ at the outlier layer by F2 and F3, and
then obtain an induction set.

(2) For any induction in the set, it must be in the
form either F1 or F4. Both can be changed into simplex
form.

(3) If any induction is not simplex form, go to (1).

Later, we will propose a tuple model for representing
a simplex form, and further a tree model for representing
all simplex form.

De�nition III..3. SimplexInduction ::=<
{condition ∈ Label}, conclusion ∈ Label >, where
condition are one label or multiple labels; conclusion
is one label; Label is a set of strings in context, e.g.,
A1, ..., An, B.

For example, simplex induction for A1 ⇒ B is <
{A1}, B >, induction for A1, A2 ⇒ B is < {A1, A2}, B >
.

As an assumption, we suppose ∀ <
condition, conclusion >∈ SimplexInduction,
condition × conclusion is a one-to-one mapping
and onto.

De�nition III..4. NODE ::=< {label ∈ Label}, to ∈
Label >, where label denotes one condition or multiple
conditions; to denotes a conclusion.

For example, the node for A1 ⇒ B is < {A1}, B >,
induction for A1, A2 ⇒ B is < {A1, A2}, B > . For visu-
alization, label can be looked as a node, and to can be
looked as an edge that starts from the node and with a
label to at the end.

Proposition III..5. SimplexInduction is equivalent to
Node.

2.2 Attack Tree Synthesis

2.3 Large-scale Nodes of Attack

Tree Management

3. Proposed Model

3.1 Induction Model

3.2 Tree Model

Ping Chen et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 76 Volume 7, 2022

Proof. Straightforward. The de�nition is identical for
the type of the components, although the names of the
components are distinct.

De�nition III..6. EDGE ::=< from ∈ NODE, to ∈
NODE >.

Proposition III..7. If ∃nodea, nodeb ∈ NODE,
nodea.to ∈ nodeb.label, then ∃edge ∈ EDGE,
edge.from = nodea and edge.to = nodeb.

Proof. Straightforward.

De�nition III..8. ROOT ::= {node|node ∈ NODE,
@m ∈ EDGE,m.from = node}.

De�nition III..9. LEAF ::= {node|node ∈
NODE, @m ∈ EDGE,m.to = node}.

De�nition III..10. Tree ::=< {node ∈
NODE}, {edge ∈ EDGE} >.

For example, suppose an induction set consisting of
simplex forms is as follows:

1) A1 ∧A2 ∧A3 ⇒ B1;

2) A2 ∧A3 ⇒ B2;

3) A3 ∧A4 ⇒ B4;

4) B1 ∧B2 ∧B3 ⇒ Root;

5) B3 ∧B4 ∧B5 ⇒ Root.

Above induction set can be converted into a threat
tree with merged nodes in Fig. 1. Note that, at the
end of the edge there exists a label to denote the con-
clusion. Besides, if the union of edge labels is not equal
to the label of the �father� node, that �father� will not
be reached indeed. In that words, the threat path to the
root is broken at this �father�.

Root

A1 A2 A3

B1, B2 B3,B4,B5

A2 A3

B1 B2

A3 A4

B4

Fig. 1: A threat tree with merged nodes.

Proposition IV..1. There exists an algorithm that can
convert a simplex form to a threat branch.

Proof. Given any induction (e.g., I) in the set, if there
does not exist any node whose label is equal to the con-
dition of the induction (i.e., @n ∈ NODE,n.label =
I.condition), then create a node node and set the label of
node as that condition (i.e., node.label = I.condition).
Create an edge e who starts from the node (e.from =
node). The conclusion of the induction is denoted it at
the end of the edge (i.e., node.to = conclusion). If there
exists a node (e.g., m) whose label includes the label of
this edge (i.e. node.to ∈ m.label,), then set the edge
point to this node (i.e., e.to = m).

Proposition IV..2. There exists an algorithm that can
convert an induction set with simplex forms into a threat
tree with merged nodes.

Proof. It is accomplished by conducting all inductions in
the set, due to Proposition IV..1.

The algorithm that can convert an induction set with
simplex forms into a tree with merged nodes, can be
proposed as follows (see Algorithm 1):

Data: A set of SimplexInduction - set.
Result: A threat tree T .
while (set! = Null) do

Fetch a SimplexInduction ∈ set;
if (∀node ∈ T,
SimplexInduction.condition! = node.label)
then
Add node to T ;
node.label⇐ condition,
node.to⇐ conclusion;
Add edge to T ;
edge.from⇐ node;
Find n ∈ T such that
conclusion ∈ n.label;
edge.to⇐ n;

end

Delete SimplexInduction from set;
end

return 1;

Algorithm 1: Threat tree construction algorith-
m.

Proposition IV..3. There exists an algorithm that can
convert a threat branch into a simplex form.

Proof. Given a branch, e.g., node1 and node2 where
edge.from = node1 and edge.to = node2. The sim-
plex form is as follows: node1.label ⇒ node1.to ∈
node2.label.

Proposition IV..4. There exists an algorithm that can
convert a threat tree with merged nodes into an induction
set with simplex forms

Proof. It is accomplished by conducting all tree branches
into inductions, due to Proposition IV..3.

The algorithm that can convert a tree with merged
nodes into an induction set with simplex forms, can be
proposed as follows (see Algorithm 2):

4. Proposed Algorithms

Ping Chen et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 77 Volume 7, 2022

Data: A threat tree T .
Result: A set of SimplexInduction - set.
while (T ! = Null) do

Fetch a node ∈ T ;
Find edge ∈ T such that edge.from = node;
if (∀SimplexInduction ∈ set,
SimplexInduction.condition! = node.label)
then
Add node.label⇒ node.to to set.

end

Delete node and edge from T ;
end

return 1;

Algorithm 2: Induction construction algorithm.

We set up an experiment to calculate the time con-
sumption of these two fucntions: induction sets convert
to threat tree, and threat tree convert to induction set.
The number of induction sets are 50, 100, and 150. The
results are shown in Fig. 2.

Fig. 2: The time consumption of the algorithms.

As we can see, when the number of induction sets are
50, the time of converting them to threat tree is 0.96m-
s, while threat tree to induction set is 0.65ms. When
the number of induction set reaches to 100, the time of
these two functions are 0.997ms and 1.993ms, seperately.
When the number of induction set is 150, which means
the tree is large enough, the time of these two function-
s are only 1.06ms and 4.92ms, respectively. Therefore,
the time consumptions of the algorithms are within 'ms'
level, which means MergeTree is practical to merge the
nodes to build a threat tree from induction sets.

Besides, we calculate the edge decrease ratio for the
MergeTree. We �nd that when the average number of
nodes merged in one Node is 2 to 3, the edge decrease
ratio is about 50% to 60%. When the number of nodes
that merge in one Node increases, the edge decrease ratio
ratio is going up, which means the MergeTree can load a
large induction set with low edge degree. To notice, the
MergeTree can build the tree of induction sets without
much limit on node and edge degree, paving a practical

and �exible way for building attack trees.

Proposition VI..1. The threat tree with merged nodes
is equivalent to a set of simplex induction in terms of
semantics.

Proof. It is due to Proposition IV..2 and Proposition
IV..4. We need to prove that the induction set can be
transformed into threat tree. In the threat tree, there are
multiple nodes (node.label, node.to) connected by edges
(edge.from, edge.to). Given a simplex induction set, the
context is a list of <conditions, conclusion>. Each condi-
tion and conclusion can be considered as nodes and they
are connected by edges. That is, the value of node.label
and edge.from is condition, and the value of node.to and
edge.to is conclusion. Besides, we need to prove that the
threat tree can be converted to simplex induction set.
Obviously, in a threat tree, each edge is linked with t-
wo nodes, which represent the edge.from and edge.to. In
simplex induction set, the conditions are edge.from and
the conclusions are edge.to.

Remark VI..2.

A simplex induction is equivalent to a node and an edge
indeed. The visualization in the tree provides a better
understanding for induction.

A tree model will facilitate the manipulation of threat in-
formation processing, e.g., searching a threat route, de-
tecting the existence of a threat, listing possible threat
methods, and so on, by o�-the-shelf tree algorithms.
That is the reason of tree representation of threat in-
duction information.

The simplex form simpli�es the structure of induction,
so as to simplify the structure of threat tree, with man-
ageable overhead in the number of induction numbers.

In this paper, we study how to decrease the num-
ber of nodes (also branches) for threat model when the
number of threat information keeps on increasing. The
threat model with merged nodes is proposed and respec-
tive critical algorithms are provided. The presentation is
formal, e.g., the equivalence between simplex induction
and tree branch, as well as between threat tree and in-
duction set, so as to derive the respective key conversion
algorithms. The experiment results and analysis justi�es
the soundness and completeness of the proposed model.
Besides, the tree structure has almost remained so that
original tree algorithms for threat analysis can still work.

The research was �nancially supported by the Sci-
ence and Technology Program of Guangzhou, China (No.
202102021216), the Foundation of Hubei Key Laboratory
of Intelligent Geo-Information Processing (No. KLIGIP-
2021B06), and the Foundation of National Natural Sci-
ence Foundation of China (No. 61972366).

5. Performance Evaluation

6. Analysis

7. Conclusion

Acknowledgment

Ping Chen et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 78 Volume 7, 2022

[1] B. Schneier, �Attack Trees: Modeling Security
Threats", Dr.Dobbs Journal, vol.24, no.12, pp. 21-
29, 1999.

[2] A.T. Ali, D.P. Gruska, �Attack Trees with Time Con-
straints", in Proc. of the 28th International Workshop
on Concurrency, Speci�cation and Programming (C-
S&P2021), 2021, pp. 27-28.

[3] Asif, Waqar, Indranil Ghosh Ray, and Muttukrish-
nan Rajarajan. �An attack tree based risk evalua-
tion approach for the internet of things," in Proc. of
the 8th International Conference on the Internet of
Things, 2018, pp. 1-8.

[4] Schiele, Nathan Daniel, and Olga Gadyatskaya. "A
Novel Approach for Attack Tree to Attack Graph
Transformation," International Conference on Risks
and Security of Internet and Systems. Springer, 2022,
pp. 1-8.

[5] H. Mantel, C. W. Probst, �On the Meaning and
Purpose of Attack Trees", in Proc. of 2019 IEEE
32nd Computer Security Foundations Symposium
(CSF2019), 2019, pp. 184-18415.

[6] Scala, Natalie M., et al. �Evaluating mail-based secu-
rity for electoral processes using attack trees." Risk
Analysis (2022).

[7] Ji, Xiang, et al. �Attack-defense trees based cyber
security analysis for CPSs." in Proc. of 2016 17th
IEEE/ACIS International Conference on Software
Engineering, Arti�cial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 2016, pp.
693-698.

[8] Kammueller, Florian. �Attack trees in Isabelle ex-
tended with probabilities for quantum cryptogra-
phy," Computers and Security, vol. 87, pp: 101572,
2019.

[9] PETRICa, Gabriel. �Cybersecurity of WordPress
Platforms. An Analysis Using Attack-Defense Trees
Method." International Conference on Cybersecurity
and Cybercrime, vol. 9, pp. 69-76, 2022.

[10] A.T. Ali, D.P. Gruska, �Attack Protection Tree", in
Proc. of the 28th International Workshop on Concur-
rency, Speci�cation and Programming (CS&P2019),
2019, pp. 1-6.

[11] Lenin, A., Willemson, J., Sari, D.P., �Attacker Pro-
�ling in Quantitative Security Assessment Based on
Attack Trees", Bernsmed, K., Fischer-HÃ×bner,
S. (eds) Secure IT Systems. NordSec 2014. Lecture
Notes in Computer Science(), vol 8788, pp. 199-212,
2014.

[12] Depamelaere, Wouter, et al. �CPS security assess-
ment using automatically generated attack trees," in
Proc. of the 5th international symposium for ICS &
SCADA cyber security research 2018. British Com-
puter Society (BCS), 2018, pp. 1-10.

[13] Nishihara, Hideaki, et al. �On Validating Attack
Trees with Attack E�ects: An Approach from
Barwise-Seligman's Channel Theory," arXiv preprint
arXiv:2204.06223 (2022).

[14] Pinchinat, Sophie, Mathieu Acher, and Didier Voj-

tisek. �ATSyRa: an integrated environment for syn-
thesizing attack trees," International Workshop on
Graphical Models for Security, 2015, pp. 97-101.

[15] Gadyatskaya, Olga, et al. �Re�nement-aware gener-
ation of attack trees." in Proc. of International Work-
shop on Security and Trust Management, 2017, pp.
164-179.

[16] Ali, Aliyu Tanko, and Damas Gruska. �Dynamic At-
tack Trees Methodology," in Proc. of 2022 Interdis-
ciplinary Research in Technology and Management
(IRTM), 2022, pp. 1-9.

[17] Pinchinat, Sophie, Francois Schwarzentruber, and
Sebastien Le Cong. �Library-Based Attack Tree
Synthesis," in Proc. of International Workshop on
Graphical Models for Security, 2020, pp. 24-44.

[18] Paul, Stephane, and Raphael Vignon-Davillier. �U-
nifying traditional risk assessment approaches with
attack trees," Journal of Information Security and
Applications, vol. 19, no. 3, pp. 165-181, 2014.

[19] Fila, Barbara, and Wojciech Wide. �Exploiting at-
tack defense trees to �nd an optimal set of coun-
termeasures," in Proc. of 2020 IEEE 33rd Computer
Security Foundations Symposium (CSF), 2020, pp.
395-410.

[20] Vigo, Roberto, Flemming Nielson, and Hanne Riis
Nielson. �Automated generation of attack trees." in
Proc. of 2014 IEEE 27th computer security founda-
tions symposium, 2014, pp. 337-350.

References

Ping Chen et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 79 Volume 7, 2022

	Introduction
	Related Work
	Proposed Model
	Induction Model
	Tree Model

	Proposed Algorithms
	Performance evaluation
	Analysis
	Conclusion

