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Abstract: - Negatively curved regions of space in a Friedmann-Robertson-Walker (FRW) 

universe are a realistic possibility. These regions would occur in voids in the large-scale 

structure of the universe where there is no dark matter with only dark energy present. 

Hyperbolic space is strange from a physical point of view and various models of 

hyperbolic space have been introduced, each offering a clarifying view.  In the present 

work we develop a new bipolar model of hyperbolic geometry and show that it provides 

new insights toward an understanding of hyperbolic as well as elliptic FRW space. In 

particular, using the bipolar model, we show that the circular geodesics of an FRW space 

can be referenced to two real centers – a Euclidean center and a hyperbolic center. 

Considering the physics of elliptic FRW space is so well confirmed in the CDM model 

describing the expansion of the universe with respect to a Euclidean center, it is possible 

that the hyperbolic center also plays a physical role in regions of hyperbolic space. 
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1 Introduction 
Bipolar coordinates are an unusual system, 

typically not even considered in most 

applications. However, in physical 

applications, this system is sometimes 

advantageous, for example as a natural 

coordinate choice for a variety of 

electromagnetic solutions of Laplace’s 

equation [1], and, as we shall show below, 

for negatively curved FRW space in 

Cosmology.  Negatively curved FRW space 

will arise in Cosmology in regions of voids 

in the large-scale structure of the universe 

where dark energy but no dark matter 

resides [2]. At a sufficient distance away, 

one sees a uniform outward expansion of 

galaxies, the Hubble flow, described by 

comoving or so-called “frozen” coordinates 

so that only the expansion of 3-space is 

affected. Locally, however, one must 

“unfreeze” the coordinates.  One will then 

need to address particle dynamics in such 

regions. Particle geodesics behave oddly in 

hyperbolic space and various “models” of 

hyperbolic space have been introduced, each 

offering some enlightened view.  Below we 

first describe relevant features of three  

existing models; the Poincare` half-plane, 

Poincare` disk, and the more recent Hubbard 

band model. All of these 2-dimensional 

models utilize Cartesian coordinates in the 

hyperbolic plane. We then develop a new 

model of hyperbolic geometry, closely 

related to the band model, but using bipolar 

coordinates rather than Cartesian and show 

that it provides new insights toward an 

understanding of  hyperbolic FRW space. 

 

2 Conformal Models of 

Hyperbolic Geometry 
There are three often cited conformal 

models of hyperbolic geometry [3]: the 

Poincare` half-plane, the Poincare` disk, and 

the Minkowski model. The three models are 
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isomorphic and each displays different 

insights of hyperbolic space under varying 

boundary constraints. For example, consider 

the Poincare` half-plane. This hyperbolic 2-

space has the metric,           

         

2 2
2 2

2

dx dy
ds

y


 
  

 
 ,                 (1) 

and represents a plane of constant negative 

curvature, 
21/   , “the hyperbolic plane”, 

described by Cartesian coordinates (x,y), 

excluding the x-axis. Geodesics are semi-

circles centered on the x-axis and 

perpendicular to it, and lines perpendicular 

to it (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Geodesics of the Poincare` Half-Plane 

Model of the hyperbolic plane 

 

 

Recent work by Hubbard [4], describes a 4th 

conformal model of hyperbolic geometry, 

the band model. 

 

The metric for this model is:       
2 2

2

2(cos )

d d
ds
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where ( , ) are Cartesian coordinates.  

The geodesic equations are: 
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These equations yield two geodesics: 

 

constant   (vertical lines in Fig.2 – not 

plotted)

  22

0 log sin 1 cosK K      

                  (4) 

    

K and 0  are constants. The Cartesian 

representation, ( , ), of the geodesics, Eq. 

(5), is plotted in Fig. 2. These are the 

geodesics described in Hubbard’s work. 

These are not the usual semi-circles. It is 

called the band model because the space of 

its complex representation is the band, 

/ 2 / 2     . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Geodesics of the Hubbard Band-

Model of the hyperbolic plane from eqn. (5) 
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3   The Bipolar Model of 

Hyperbolic Geometry 
We shall now prove the following 

proposition: 

 

Proposition 1: The band model is the 

Euclidean bipolar representation of the 

Cartesian half-plane model. 

 

Proof:   Consider the half-plane metric in 

Cartesian coordinates ( , )x y of Eq.(1).  

Under the standard Euclidean coordinate 

transformation to a bipolar 

system ( , ) ( , )x y   ,   

 
sinh

cosh sin

h
x



 



,               (5)

 
cos

cosh sin

h
y



 



  

  

 

where,  0 2       and 

the two poles are at x h  . 

For 1h  ,  1  , the metric (1) transforms 

to:  

               
 

2 2
2

2
cos

d d
ds

 




 .              (6)

    

This is the band model metric, Eq.(2), and 

the proof is complete.  We have shown that 

the band model is simply a different 

Euclidean view of the half-plane model.  

Rather than view ( , ) as Cartesian, as in 

Fig. 2, it is natural here to take them as the 

Euclidean bipolar coordinates defined with 

respect to Cartesian coordinates from Eq.(5). 

This is an entirely new representation of the 

half-plane or band model which we shall 

call the bipolar model of hyperbolic 

geometry.  

 

     For convenience, we rotate the 

metric, Eq.(6), for a bipolar 

representation on the x-axis (Fig.3). 

                   
 

2 2
2

2
sin

d d
ds

 




   (7)

    

    The geodesics of the bipolar model are 

traditional semi-circles about the poles at 

1h    on the x-axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Geodesics of the Bipolar Model of the 

hyperbolic plane 

 

The polar equations of these circles with 

respect to ( , ) (0,0)x y   are given by:  

 

 2 2( ) cos coth cos coth 1xr h      

                  (8)

  

The Cartesian equation of these “x-circles” 

is given by: 
2 2 2 2( coth ) cschx h y h      (9)

    

We demonstrate below that this family of 

circles has, in fact, two centers:  a Euclidean 

center at cothx h   and a hyperbolic 

center at the pole 1x h  . 
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Under the transformation ( , ) ( , )    , 

retaining the definition of the bipolar 

coordinates in Eq. (5), metric (7) becomes:   

 
 

2 2
2

2
sin

d d
ds

 




              (10)

      

The geodesics of the “complimentary” 

metric space (10) yield circles centered on 

the y-axis. Their polar representation is 

given by: 

 2 2( ) sin cot sin cot 1yr h      

                (11) 

 

 

These “y-circle” geodesics pass through 

both poles and are shown in Fig. 4. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Geodesics of the complimentary 

bipolar hyperbolic metric, Eq. (10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Geodesics of Fig.3 and Fig. 4 

overlaid. 

 
These circles are orthogonal to the circles 

(9) and are given in Cartesian coordinates 

by: 

 

  

 

 
2 2 2 2( cot ) cscy h x h               (12)

    

With respect to the metric space (10), the 

geodesics of its complimentary space (7) are 

simply Euclidean circles and therefore, by a 

fundamental theorem of hyperbolic 

geometry [5], are also hyperbolic circles 

about their hyperbolic center.  Overlaying 

the geodesics of the two complimentary 

spaces in the same Cartesian system yields 

Fig. 5. 

  
    One must, of course, make a choice as to 

which metric, (7) or (10), will govern the 

space of the full set of orthogonal curves 

which coincide with the natural orthogonal 

bipolar coordinate Euclidean space. For 

present purposes, we choose metric (10). 

Then the y-circles are geodesics while the x-

circles are Euclidean circles described by 

Eq. (9) as illustrated in Fig. 6. This graph 

then becomes, in essence, a demonstration 

of the “standard construction” [6]  required 

in the well-known proof in hyperbolic 
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geometry that Euclidean circles in the 

hyperbolic plane are also hyperbolic circles .  

To this end, it can be shown with respect to 

metric (10) that the “curved” radii from the 

hyperbolic center at the pole to a given 

circle are constant and are given by: 

  

 
2

R log
  

 

 
  

 
            (13)

    

where   is the Euclidean radius of that 

circle found from Eq.(9). This is shown in 

Fig. 6. 

 

4   Relation to FRW Metrics  
The space inside the Euclidean circle of 

Fig.6, when referenced to its Euclidean 

center, can be covered by the  Poincare` disk 

model [6]. The Poincare` disk is the FRW 

space for curvature 0k  .  It’s metric with 

respect to the Euclidean center is 
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Fig.6. Constant radii y-circle geodesic 

segments of metric (10) from a pole at  x = 1 

to an x-circle intercept are emphasized. 

These segments are also hyperbolic radii of 

the circle from its hyperbolic center. One 

Euclidean radius,  , of the circle from its 

Euclidean center (dot) is shown. 

 

where   and   are the Euclidean radius 

and angle from the Euclidean center in Fig. 

6.  The physical “proper length” of the 

radius for constant   (a geodesic) is, 

from (14), 

 

            
2

s Ln
  

 

 
  

 
,             (15)

     

where 
2 4/ k   , and is identical to (13). 

Thus we have shown for a negatively curved 

RW space that the ”proper”, or hyperbolic, 

radius measured from the Euclidean center 

of the circle is identical to the hyperbolic 

length of the curved radii measured from its 

hyperbolic center. This demonstrates the 

dual-center aspect of orbits in negatively 

curved RW spaces.  

 

     One more useful isometry regarding the 

curved radii (13) can be described. We shall 

use relation (13), which is the curved radius 

emanating from the hyperbolic center, to 

transform (14) to a metric with respect to the 

hyperbolic center. Equation (13) can also be 

written: 

1tanh
2

R log
   


  

 
  

 
   (16)

    

Solving for  :  

 tanh
R

 


 
  

 
             (17) 

Inserting this into (14) yields             

2 2 2 2 2sinh
R

ds dR d 


 
   

 
.           (18) 

Defining 
R




  and simplifying 

(18) yields:  

 

     2 2 2 2 2sinhds d d              (19)

      

This is the familiar 2-dimensional 

hyperbolic form of the spatial FRW metric. 

However, we now understand the meaning 
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of  “  ”.  It is simply the curved hyperbolic 

radius of Fig. 6 emanating from the 

hyperbolic center. For positively curved RW 

spaces,  there are still two centers, a 

Euclidean center and an elliptic center which 

is now imaginary. Also, it can be shown that 

the distance between the hyperbolic center 

and the Euclidean center is given by: 

                1 sech                (20) 

The bipolar model has served to link several 

isometries of hyperbolic space depending on 

a judicious choice of origin for 

measurement: the half-plane model with 

respect to ( , ) (0,0)x y  ;  the bipolar model 

with respect to ( , ) ( ,0)x y h ;  and the disk 

model (RW space) with respect to 

( , ) ( coth , 0)x y h  .  

 

5   Conclusions 
Negatively curved spaces must eventually 

play a role in Cosmology – if for no other 

reason than void regions in the currently 

accepted large-scale structure of the 

universe must be negatively curved FRW 

space due to the absence of matter. There 

are a number of models describing various 

aspects of hyperbolic space. In this work, we 

have created a new model, which we term 

the “bipolar model”. We have shown that 

the bipolar model is intimately related to 

negatively curved FRW space and clearly 

serves to demonstrate an unusual aspect of 

such spaces – namely that the circular 

geodesics of such spaces have two real 

centers, a hyperbolic center as well as a 

Euclidean center. These are not merely the 

Euclidean center and poles of the bipolar 

coordinate system but rather refer to two 

distinct centers for circular orbits of particles 

in hyperbolic systems, as shown in Fig. 6.  

In two dimensions that property is the direct 

result of the merger of Euclidean plane 

coordinates and hyperbolic metrics 

describing the geometry of the “hyperbolic 

plane”.  The above work is easily extended 

to three dimensional space and FRW 4-

space. Considering the physics of elliptic 

FRW space is so well confirmed in the 

CDM model describing the expansion of 

the universe with respect to a Euclidean 

center (Euclidean coordinates with non-

Euclidean metric), it is possible that the 

hyperbolic center also plays a physical role 

in regions of hyperbolic space where 

coordinates are no longer frozen.  However 

that issue is beyond the scope of this paper. 
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