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Abstract: In networks, which arise in multiple applications, the inhibitory connection between elements 
occur. These networks  appear in genetic regulation, neuronal interactions, telecommunication designs, 
electronic devices. Mathematical modelling of such networks is an efficient tool for their studying. We 
consider the specific mathematical model, which uses systems of ordinary differential equations of a 
special form. The solution vector X(t) describes the current state of a network. Future states are 
dependent on the structure of the phase space and emerging attractive sets. Attractors, their properties 
and locations depend on the parameters in a system. Some of these parameters are adjustable. The 
important problem of managing and control over the system, is considered also. 
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1 Introduction 
Networks appear everywhere, since collections of 
elements of any kind, connected by some links, 
can be met in nature and everyday life. We focus 
on evolution of networks with special properties. 
These networks consist of elements, which will 
be denoted  xi. They can interact and the rules for 
interaction are specified using the regulatory 
square matrix W. Each element can activate or 
repress the activity of another one, the case of no 
relation is not excluded. To be specific, in what 
follows we will consider three-element networks. 
The matrix W in this case is 3 × 3 matrix 
 

𝑊 =  (

w11 w12 w13
w21 w22 w23
w31 w32 w33

)           (0) 

 
 If, for instance, the element w12 is positive, this 
means that x2 activates x1. The symmetrical, with 
respect to transposition, element  w21 
characterizes the impact of  x1 to x2. Self-
activation of xi is possible also, then wii>0. 
Looking ahead, let us say that dynamics of such 

networks can be described by the system of 
ordinary differential equations of the form  

{

𝑥′1 =
1

1 + 𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 +⋯+ 𝑤1n𝑥n−𝜃1)
− 𝑥1,

…

𝑥′𝑛 =
1

1 + 𝑒−𝜇n(𝑤n1𝑥1 + 𝑤n2𝑥2 +⋯+ 𝑤nn𝑥n−𝜃n).
− 𝑥n,

(1) 

where, besides of the elements wij, multiple 
parameters μ and θ appear. Let us mention, that 
one of the first sources, where this system was 
studied, is the article [11] (see also [12]). Then, in 
another context, this system was used by the 
authors of the papers [1], [13], [17], [23]. It is a 
component of the mathematical model of genetic 
regulatory networks [6], [9], [17], [18], [23]. At 
the same time, this system was used for the 
purposes of the design of topology of 
telecommunication networks  [1]. It was used also 
in modelling of neuronal networks [11], [17]. Due 
to various combinations of elements in the 
regulatory matrix, there are multiple types of 
behaviors in a network.    
Inhibition is a process, where elements of a 
network influence each other in a specific way, 
depending on the nature of a process. In genetic 
regulatory networks each element (node) is 
thought as gene, expressing proteins as messages 
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 to other nodes. Some other factors can be 
included in a network. Phenomenon of inhibition 
(sometimes called repression) was studied by 
researchers [4], [19], [20], [23]. 
We will be focused on systems of differential 
equations of the form (1) for n=2 and for n=3. 
We assume also that there is no self-inhibition. 
Mathematically this means that the diagonal 
elements are zeros. 
The solution vector X(t)=(x1(t), … , xn(t)) is 
thought as the description of the current state of a 
model. In turn, the current state of a model can 
provide significant information of the modelled 
network. One of the main examples of networks, 
modelled by systems (1), are genetic regulatory 
networks (GRN). They exist in any cell of any 
living organism. These networks are responsible 
for development of an organism 
(morphogenesis),  reactions to internal and 
external factors, including the resistance to some 
diseases [Cornelius], [Grebogy]. The system (1) 
in a two-dimensional form first appeared in the 
paper [Wilson]. This paper was devoted to 
modelling of populations in the neuronal 
networks. In a n-dimensional form this system 
was considered in [Brokan, Sadyrbaev, MMAS, 
2018].  
 
Our goal in this paper is to discuss some 
implications, that are typical for inhibition case. 
New results were obtained also. They are: 
periodic solutions in three-dimensional (3D, for 
brevity) systems; by multiple authors, for 
instance,  
 
The structure of the paper is the following. 
Section 2 contains brief overview of the existing 
literature on the subject. The reminder and 
review of results concerning 2D systems  ar 
included in Section 3. Section 4 is devoted to the 
study of 3D inhibitory systems. Some 
suggestions about higher-dimensional inhibitory 
systems are provided in Section 5. Conclusions 
section completes the paper. The reference list 
consists of relevant articles and texts, where the 
inhibition phemnomenon was studied. This list, 
definitely, is not full. 
 

2 Literature Survey 
This topic lies in the center of biomathematics 
and is extensively studied in the literature. We 
mention the works [7],[8],[10],[24], suitable for  
the first reading on the subject. The works 
[12],[13],[14] contain information on the system 
(1) and its genesis. For applications of system (1) 
in the fields other that GRN, one may consult the 
papers [1],[12],[13],[23]. Periodic solutions were 
studied and some example of periodic solutions 
were obtained in [4], [11],[21],[22]. Applications 
in medicine were considered in [2],[6]. Some 
specific problems concerning the study of GRN 
were treated in the remaining references.  

 
3 Two-element network 
 
 
The 2D system of the form (1) is 

{
𝑥 ′
1 =

1

1 + 𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 −𝜃1)
− 𝑥1,

𝑥 ′
2 =

1

1 + 𝑒−𝜇2(𝑤21𝑥1 + 𝑤22𝑥2 −𝜃2)
− 𝑥2.

,

…

     (2) 

 
The main facts about this system are: 

1. The unit cube is an invariant set ( no 
trajectories can escape it); 

2. There is at least one critical point inside a 
unit cube; 

3. The vector field heavily depends on the 
regulatory matrix 

  
𝑊 =  (

w11 𝑤12
w21 w22

).         (3) 
 
We assume that all elements of this matrix are 
non-positive, but not all zeros. 
 

{
𝑥1 =  

1

1 + 𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 −𝜃1)
,

𝑥2 =  
1

1 + 𝑒−𝜇n(𝑤21𝑥1 + 𝑤22𝑥2 −𝜃2).

         (4) 

 
 
Geometrical description of possible cases can be 
found in [5]. Assume that w11=w22=0, and two 
other elements are negative. The typical picture of 
nullclines together with the vector  field, defined 
by system (2), is depicted in Figure 1, where 
μ1=μ2=6, θ1= -0.5, θ2= -1.0, w12=-2, w21=-1. The 
vector field is typical for this case (w11=w22=0) 
and it is not compatible with the periodic solution 
(closed trajectory). 
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Figure 1. 

 
Differential equations describe gene expression 
changes as a function of the expression of other 
genes and environmental factors. Thus, they are 
adequate to model the dynamic behavior of 
GRNs in a more quantitative manner [3]. 
Authors in work [4] give an example of realistic 
GRN. In this model, the cancerous states are 
identified with “undesired” attractors. The 
current state of GRN is described by the vector 
X(t) = (x1(t), . . . , xn(t)), where t is  time. As a 
disease progresses, this vector tends to a 
“wrong” attractor. The goal of the 
controllability problem is to redirect the 
trajectory X(t) to a “normal” attractor, which 
in real life terms means to develop a cure.[4] 
When mathematical modeling is used to predict 
the behavior of a GRN, the results need to be 
compared with experimental data. 
Developmental GRNs are built hierarchically 
from simple, recurring building blocks and 
motifs.[5] 
 
4 Problem Formulation 

The general form of writing the n-dimensional 
dynamical system, that is expected to model a 
genetic regulatory network, is 

{
 
 

 
 𝑥 ′1 =

1

1 +  𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 +⋯+ 𝑤1n𝑥n−𝜃1)
− 𝑥1,

…

𝑥 ′𝑛 =
1

1 +  𝑒−𝜇n(𝑤n1𝑥1 + 𝑤n2𝑥2 +⋯+ 𝑤nn𝑥n−𝜃n).
− 𝑥n

 

where µi >0  and  θi are parameters, and wij are 
elements of the n x n regulatory matrix W. The 
regulatory matrix contains information about 
relation between elements of a network (any 
element can be positive, negative, or zero, 
meaning activation, inhibition, or no relation). 
The nullclines of system (1) are given by the 
equations 
 

{
 
 

 
 𝑥1 =  

1

1 +  𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 +⋯+ 𝑤1n𝑥n−𝜃1)
,

…

𝑥n =  
1

1 +  𝑒−𝜇n(𝑤n1𝑥1 + 𝑤n2𝑥2 +⋯+ 𝑤nn𝑥n−𝜃n).

 

 
 
 
The geometrical nullclines method is productive 
in the study of systems of ODE. Knowledge of 
nullclines allows to approximately feel the vector 
field, corresponding to a system of ODE. Besides, 
the critical points (equilibria) are the cross-points 
of nullclines. To follow the evolution of the vector 
X(t) one have to understand the architecture of a 
network. The main elements of this architecture 
are attractors of the sysem. Since the size of a 
network in the works [3], [4] is about 60 elements, 
one should be prepared to deal with relatively 
large systems. Both numerical and qualitative 
study of such systems is a challenging problem. In 
the sequel we will look at systems which are 
inhibitory. Our aim is to compare inhibition in 
two-dimensional and three-dimensional cases. 
show how systems of arbitrary size can be 
constructed. We provide also the extended 
example of such system of order six. 

5 Three-element GRN 
Consider the three dimensional system 
 

{
 
 

 
 𝑥

′
1 =

1

1 + 𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 + 𝑤13𝑥3−𝜃1)
− 𝑥1,

𝑥 ′2 =
1

1 + 𝑒−𝜇2(𝑤21𝑥1 + 𝑤22𝑥2 + 𝑤23𝑥3−𝜃2)
− 𝑥2,

𝑥 ′3 =
1

1 + 𝑒−𝜇3(𝑤31𝑥1 + 𝑤32𝑥2 + 𝑤33𝑥3−𝜃3)
− 𝑥3.

    (5) 

 
Since we focus on inhibition, we assume that all 
elements of the regulatory matrix are non-
positive, but not all zeros. The first nullcline is in 
the set  
 {(𝑥1, 𝑥2, 𝑥3): 0 <  𝑥1 <  1, (𝑥2, 𝑥3) ∈ 𝑅

2},  
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the second nullcline is in the set  
 {(𝑥1, 𝑥2, 𝑥3): 0 <  𝑥2 <  1, (𝑥1, 𝑥3) ∈ 𝑅

2},  

and the third one is in the set  
 {(𝑥1, 𝑥2, 𝑥3): 0 <  𝑥3 <  1, (𝑥1, 𝑥2) ∈ 𝑅

2}.  

All critical points are located in the open cube  
{(𝑥1, 𝑥2, 𝑥3): 0 <  𝑥1 <  1, 0 <  𝑥2 <  1, 0 <

 𝑥3 <  1} =  : 𝐺. 
Due to the structure of the system and properties 
of sigmoidal functions, the vector field, defined 
by the system of ODE, is directed inward on the 
border of G. Therefore, it is invariant with 
respect to the system.  
The three nullclines definitely intersect at some 
points of G, and the minimal number of cross-
points is one.  
We are seeking an answer to the question. What 
is possible type of a single critical point in case 
of inhibition? To answer this question, consider 
the linearized system around a critical point 
(x1,x2,x3). Let A be the coefficient matrix for this 
system. We need to know three roots of the 
characteristic equation  

det[𝐴 − 𝐸] = 0 
This equation, with respect to the variable  

=+ 1 
is 

3-C  + B =0,             (6) 
Where 
C=(𝑤12𝑤21 (-1+𝑥1)𝑥1 (-1+𝑥2) 𝑥2 𝜇1 𝜇2+𝑤13 𝑤31 
 (-1+x1) 𝑥1 (-1+𝑥3) 𝑥3 𝜇1 𝜇3+𝑤23 𝑤32 (-1+𝑥2) 𝑥2 
 (-1+𝑥3) 𝑥3 𝜇2 𝜇3)>0; 
B=(w12w23w31 +w13w21w32)(−1 +
x1)x1(−1 + x2)x2(−1 + x3)x3μ1μ2μ3 
 
Notice that B > 0, if the first 
factor (w12w23w31 +w13w21w32)  is not zero. 
C is also positive, if  𝑤12 𝑤21,   𝑤13 𝑤31,   𝑤23 
𝑤32 are not all zeros. Recall that parameters μ are 
positive and coordinates of a critical point are 
numbers between zero and unity. 
 
Let us formulate some assertions about possible 
roots of the characteristic equation (2). Our intent 

is to prove or disprove the assertions below and to 
construct corresponding examples. 
 
Proposition 1. Equation (6) can have complex 
conjugate roots. 
 
Proof. We have to construct the example. Set all μ  
to  4 and choose parameters θi equal to the half of 
the sum wi1+wi2+wi3. This will place the critical 
point at (0.5,0.5,0.5). The expressions for B and C 
in (2) become simpler. Namely, 
C= 𝑤12 𝑤21+ 𝑤13 𝑤31+ 𝑤23 𝑤32>0, 
B= − (𝑤12𝑤23𝑤31 + 𝑤13𝑤21𝑤32)>0.  
The entries of the matrix  

𝑊 =  (
0 −1 −1
0 0 −1
−1 0 0

)           (7) 

satisfy these inequalities.  

The nullclines of system (5) intersect only 
once. A single critical point at (0.5,0.5, 0.5) has 

the characteristic numbers 1<0,  2,3 – 
complex numbers. Computations show that 

1= −2.32472,  2,3=  −0.337641±0.56228 i 

The proof is complete. 

  
Proposition 2. Equation (6) can have complex 
conjugate roots with positive real parts. 
 
Let the regulatory matrix be  

𝑊 =  (
0 −1 −1
0 0 −1
w31 0 0

) ,          (8) 

where w31 is the parameter. 
Our intent is to vary this parameter, following 

changes in the phase space of the system (5). 
Let μ1=μ2= μ3=10, w31= -1, θ1= -1.0, θ2= -0.5,    

θ3= -0.5. There exists a single critical point with 
the characteristic numbers 1 < 0,  2,3 = ± i,   
>0, i is an imaginary unit. This completes the 
proof. 

 
This critical point is not attractive. An 

attractor emerges as the stable periodic solution. 
The closed trajectory is depicted in Figure 2. 
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Figure 2. Periodic solution.  

 
 
The periodic solution disappears if all parameters 
µ are set to four again. 
We continue to increase the absolute value of 
w31. Let μ1=μ2= μ3=10, w31= -10, θ1= -1.0, θ2= -
0.5,    θ3= -5. The parameter θ3 is changed to put 
a single critical point to the central location. 
 

 
Figure 3. Periodic solution. 

 
It is remarkable fact that the critical point is a 
three dimensional saddle. 
 
Therefore the following assertion is true. 
Proposition 3. Equation (6) can have three real 
roots. 
Proof. Let the regulatory matrix be of the form (4) 
with w31= -10 and other parameters as indicated 
before Figure 3.  
 
Proposition 4. Equation (6) can have three real 
roots, of which at least one is positive. 
Proof. Let 

𝑊 =  (
0 −1 −1
−2 0 −1
−1 0 0

)           (9) 

 
Then B=1, C=3. 

 
6 Conclusion 
The problem of studying genomes and principles of 
their functioning is one of the most challenging in 
nowadays biology. These studies require obtaining a 
huge amount of experimental data, storing and 
processing them. Elsewhere banks of genomic data are 
founded and large institutes deal with analyzing them. 
Mathematical modeling introduces a kind of order in a 
big amount of data. Periodic processes in genetic 
networks are of vital importance. Can periodic regimes 
be obtained in artificial networks where all 
connections are inhibitory? If the process is governed 
by an inhibitory regulatory matrix such that a single 
critical point exists of repelling nature, then an 
attractive set exists in the form of a stable periodic 
solution. The critical point can be an unstable three-
dimensional focus, as well as a three-dimensional 
saddle.
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