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Abstract: - In this work we used a combination of dynamically allocated step-size and an interpolating function 

to develop a new class of finite difference scheme for the exact solution of Harmonic Oscillator Differential 

Equation.  The schemes are locally stable, convergent and consistent. The new model has been compared with 

an earlier exact discrete model for the same equation. The new scheme is very suitable for the numerical 

simulation of the tested equation as proposed. 
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1 Introduction 
Generally the problem of motion in a resistive 

medium is a difficult one.  Most differential 

equation for the Harmonic  oscillator are based on 

the Newton's second law of motion and a lot of real 

life models are derived from this common model by 

considering other issues that affect the behaviour of 

the Oscillator like, frictions, external forces etc. 

acting upon the system. In this process we end up 

with much more realistic but much more complex 

harmonic equations which allow a detailed study of 

the behaviour and properties of the physical 

phenomena being modelled. A lot of dynamical 

systems with oscillatory properties can be 

approximately modelled by some form of Harmonic 

Oscillator equation or a variant of differential 

equation with harmonic terms. 

Many a times such differential equation does not 

totally fit into one of the common ones whose 

analytic solution are readily available researchers 

therefore resort to methods of finding approximate 

solution. For example in classical mechanics, the 

problem of a simple harmonic oscillator, modified 

by the presence of a non-harmonic term, is 

customarily solved by perturbative methods. 

Researchers many times have had to consider the 

homogeneous model as a first step to finding close 

enough solution   to  such complex differential 

equations such solutions are then conclude  using a 

combination of some other methods .  An exact 

equation to the homogeneous part becomes very 

important in this case.  

 

 

2 Literature Review 
Among some past work on solution to such 

harmonic Oscillator is the work of  [8] who obtained  

an exact solution of perturbed harmonic oscillator 

using hyper-geometric approach . 

[9] considered the damped harmonic oscillator with 

a time-dependent damping constant and a time-

dependent angular frequency, which is actually the 

generalized Caldirola-Kanai Hamiltonian. They 

investigate the exact solution of the oscillator 

system for  some choices of the time-dependent 

damping constant and the time-dependent angular 

frequency. 

Another notable work that considered exact solution 

is that of  [10] In that paper, a modified harmonic 

balance method is used to investigate the strongly 

nonlinear oscillators. The approximate frequency 

and periodic solution for both small and large 

amplitude of oscillations show a good agreement 

with the numerical solution. 

[11] also  presented  an analytic technique to 

determine approximate periods of a strongly 

nonlinear Duffing-harmonic oscillator. Working on 

the background that a set of difficult nonlinear 

algebraic equations always appear when harmonic 

balance method is imposed and that the power series 

solutions of these equations are invalid, he proposed 

idea avoids this limitation and the necessity of 

numerically solving such nonlinear algebraic 

equations with very complex nonlinearities. In this 

technique, different parameters for the same 

nonlinear problems are found, for which the power 

series solution yields desired results. Besides a 

suitable truncation formula is found in which the 
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solution measures better results than existing 

solutions. 

[12] also consider the simple harmonic Oscillator . 

In that paper a study was conducted on the  

oscillatory behaviour of a  spring-mass system, 

considering the  influence  of  varying  the  average  

spring  diameter Φ  on  the  elastic  constant k,  the  

angular  frequency ω,  the damping factor γ, and the 

dynamics of the oscillations. The results were  

applied on physical phenomena like  clock, guitar, 

violin, bungee jumping, rubber bands and diving 

boards.  [6] constructed a family of exact numerical 

schemes for the Homogeneous harmonic Oscillator 

equation using Nonstandard techniques alone. This 

work is of particular interest because the method 

does not allow for numerical instability. 

2.1 A review of the Nonstandard rules ([6],[7],[1]) 

The nonstandard rules 2&3 [6] and their extensions 

in [7] and  [1] are of special interest in order to 

create an hybrid of schemes from two methods . The 

rules and their implication are as shown below  

Rule 2 ([6])  

Denominator function for the discrete derivatives 

must be expressed in terms of more complicated 

function of the step-sizes than those conventionally 

used. This rule allows the introduction of complex 

analytic function 𝜓 of h that satisfies the condition  

𝜓(ℎ) → ℎ + 0(ℎ2)    as ℎ → 0  in the denominator.  

Rule 3 ([6]) 

The non-linear terms in the differential equation 

must in general be modelled (approximated) non-

locally on the computational grid or lattice in many 

different ways.  

Application and extension of the combination of 

these two rules will give us the following 

transformations for First and second order 

derivatives 
dy

dx
 ≡ 

(𝑦𝑘+1−yk)

𝜓
      (1) 

where 𝜓(ℎ) → ℎ + 0(ℎ2) 𝑎𝑠 ℎ → 0   
dy

dx
  ≡ 

(𝑦𝑘+1−𝛽yk)

𝜓
      where 𝜓(ℎ) → ℎ + 0(ℎ2),

𝛽(ℎ) → 1 𝑎𝑠ℎ → 0    (2) 

dy

dx
  ≡ 

(𝑦𝑘+1−𝛽yk−1)

2𝜓
 where   𝜓(ℎ) → ℎ + 0(ℎ2),

𝛽(ℎ) → 1 𝑎𝑠ℎ → 0    (3) 

d2y

dx2 =
𝑦𝑘+1−2yk+ 𝑦𝑘−1

𝜑2     where  𝜑(ℎ) → ℎ2 +

0(ℎ𝑛 )𝑎𝑠 ℎ → 0 𝑓𝑜𝑟 𝑛 ≥ 3   (4) 

And the following non-local approximations for 

𝑦𝑘+1  ≡ 𝑎𝑦𝑘+1 + 𝑏𝑦𝑘    𝑎 + 𝑏 = 1  (5) 

𝑦𝑘   ≡ 
(𝑦𝑘+1+𝛽yk)

2
  where  𝛽(ℎ) → 1 𝑎𝑠 ℎ → 0 (6) 

𝑦𝑘+1  ≡ 
(2𝑦𝑘+𝛽yk−1)

3
  where 𝛽(ℎ) → 1 𝑎𝑠 ℎ → 0 (7) 

Sample renormalization functions   employed are 

𝜓 =sin (∝ ℎ) , ∝ϵ R   → ℎ + 0(ℎ2)  𝑎𝑠 ℎ → 0 (8) 

𝜓 = 
(𝑒𝜆h−1)

𝜆
 , λϵ R ,  → ℎ + 0(ℎ2)  𝑎𝑠 ℎ → 0 (9) 

 𝛽 = 𝑐𝑜𝑠(∝ ℎ), ∝ϵ R → 1       𝑎𝑠 ℎ → 0             (10) 

φ = 4sin2(
h

2
) or  ℎ2𝜓 → ℎ2 + 0(ℎ4)      𝑎𝑠 ℎ → 0   (11) 

 

3 Formulation of   the basis function 

The Harmonic Oscillator Equation  under 

consideration is given by 
d2y

dx2 + 2ε
dy

dx
+ y = 0  (12) 

y(x) > 0 is the distance/displacement of the body 

involved in the oscillation, x is a  time variable. This 

is one of the simplest models for a harmonic motion 

considering the complex dynamics of the 

phenomena being modeled. 

When several assumptions and affects are 

considered, the harmonic equation usually will 

become complex and sometimes and it may be 

difficult to obtain a solution that can be expressed as 

an explicit function of the variables involved. But 

since the solution for this equation is a function 

whose second derivative is itself with a minus sign. 

We have two possible functions that satisfy this 

requirement (sine and cosine) two functions that are 

essentially the same since each is just a phase 

shifted version of the other. When a trigonometric 

function is phase shifted, it's derivative is also phase 

shifted. Nothing else is affected, so we pick a sine 

function as the main component of  our interpolation 

function. 

Considering the general harmonic equation (12), it 

can be observed that the solutions to the simpler  

differential equation without the velocity term look 

like a trigonometric form; and solutions to the 

simpler differential equation without the 

acceleration term look like exponential functions. 

We also considered that a body that is in a motion 

moves a distance that can be described by a linear 

equation over time t. We also assumed a control 
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parameter that can act as the residual ( a slack or a 

surplus) of  the unaccounted activities. 

We therefor assumed a solution consisting of  three 

components of linear exponentiation and 

trigonometric and the residual with requisite 

simulation parameters that can be determined from 

time to time depending on   consideration of  some 

physical measurement in a real life situation . We 

hereby proposed a   an interpolating function of the 

type given below 

y(x) = 𝑎0 + ∝𝑥+ 𝑎1𝑥 + 𝑎2 sin(𝛽𝑥2 + 𝑘)        (13) 

The parameters can be selected carefully to 

complement or retract the response to the oscillatory 

nature of the dynamical system under consideration. 

This model can be made more complex to include 

special parameters to cover the level of variability 

and non-coherent behaviours that may vary speed 

and amplitude of oscillation. However the 

interpolating functions also have the tendency of 

being  self-compensating depending on the value of 

the parameters. 

3.1 The Exact Nonstandard scheme 

developed  for Eq. (12) by   ([6]) 
Mickens(1994) in his paper has developed an exact 

nonstandard scheme  for the eq(12)  given by 

{ 
𝑦𝑘+1−2yk+ 𝑦𝑘−1

𝜑2 }= 

2ε { 
yk− 𝜓𝑦𝑘−1

𝜑 
}+{ 

2(1−𝜓)yk+(𝑥2+𝑥2−1)𝑦𝑘−1)

𝜑2 }        (14) 

 with 𝜓 = cosh    φ = 4sin2(
h

2
)     

In this work we will construct  a new class of 

numerical schemes with the same qualitative 

properties as the corresponding second order initial 

value equation representing some special class of 

Harmonic Oscillator Differential equations Eq (12). 

We posit that this discrete model will also produce 

solutions and curves that behave like the exact 

Nonstandard schemes constructed by [6]. This work 

is based on a combination of both Interpolation 

method and Non-standard method as explained 

above. 

This new discrete models are significant because of 

the combined methodology and its total congruency 

to the early works on the exact schemes for 

Oscillator equations. The schemes have been tested 

in a numerical experiment which produced some 

interesting 3D graphs..  

 

4. Derivation of the Standard Finite 

Difference Scheme Using Eq(13)  

Thus we can derive a discrete model based on 

equation (13) as given below: 

y(x) = 𝑎0 + ∝𝑥+ 𝑎1𝑥 + 𝑎2 sin(𝛽𝑥2 + 𝑘) 

𝑦′ = ∝𝑥 log ∝ + 𝑎1 + 𝑎22𝛽𝑥 cos(𝛽𝑥2 + 𝑘)      (15) 

𝑦′′ =  𝑎2[2𝛽𝑥(−2𝛽𝑥 sin(𝛽𝑥2 + 𝑘) +
 2𝛽 cos(𝛽𝑥2 + 𝑘)]+  ∝𝑥 (𝑙𝑜𝑔 ∝)2 

𝑦′′ =      𝑎2[−(2𝛽𝑥)2 sin(𝛽𝑥2 + 𝑘) +
             2𝛽 cos(𝛽𝑥2 + 𝑘)]+∝𝑥 (𝑙𝑜𝑔 ∝)2             (16) 

𝑦′′′ = 𝑎2[−(2𝛽𝑥)3 cos(𝛽𝑥2 + 𝑘) + 4𝛽𝑥 sin(𝛽𝑥2 +
𝑘)]+∝𝑥 (𝑙𝑜𝑔 ∝)3               (17) 

From (15), (16), (17) 

𝑎1 = 𝑦′ − ∝𝑥 log ∝ − 𝑎22𝛽𝑥 cos(𝛽𝑥2 + 𝑘)      (18) 

𝑎2 =
𝑦′′−∝𝑥(𝑙𝑜𝑔∝)2

[−(2𝛽𝑥)2 sin(𝛽𝑥2+𝑘)+2𝛽 cos(𝛽𝑥2+𝑘)]
             (19) 

The discrete form 

y(x) = 𝑎0 + ∝𝑥+ 𝑎1𝑥 + 𝑎2 sin(𝛽𝑥2 + 𝑘) 

y(𝑥𝑛−1) = 𝑎0 + ∝𝑥𝑛−1+ 𝑎1𝑥𝑛−1

+ 𝑎2 sin(𝛽𝑥𝑛−1
2 + 𝑘) 

y(𝑥𝑛) = 𝑎0 + ∝𝑥𝑛+ 𝑎1𝑥𝑛 + 𝑎2 sin(𝛽𝑥𝑛
2 + 𝑘) 

y(𝑥𝑛+1) = 𝑎0 + ∝𝑥𝑛+1+ 𝑎1𝑥𝑛+1

+ 𝑎2 sin(𝛽𝑥𝑛+1
2 + 𝑘) 

y(𝑥𝑛+1)–  2y(𝑥𝑛) + 𝑦(𝑥𝑛−1) 

= (𝑎𝑜 − 2𝑎𝑜 + 𝑎𝑜) + (∝𝑥𝑛−1− 2 ∝𝑥𝑛+∝𝑥𝑛+1) +
𝑎1(𝑥𝑛−1 + 𝑥𝑛+1 − 2𝑥𝑛) + 𝑎2[(sin( 𝛽𝑥𝑛−1

2 + 𝑘) +
sin ( 𝛽𝑥𝑛+1

2 + 𝑘) − 2sin(𝛽𝑥𝑛
2 + 𝑘)]             (20) 

Let  𝑃𝑛 = [(sin( 𝛽𝑥𝑛−1
2 + 𝑘) + sin ( 𝛽𝑥𝑛+1

2 + 𝑘) −
2sin(𝛽𝑥𝑛

2 + 𝑘)] 

Substitute 𝑥𝑛−1 = 𝑎 + 𝑛ℎ − ℎ,  𝑥𝑛+1 = 𝑎 + 𝑛ℎ +
ℎ,  and    −2𝑥𝑛=−2𝑎 − 2𝑛ℎ  then 

y(𝑥𝑛+1)–  2y(𝑥𝑛) + 𝑦(𝑥𝑛−1) 

= ∝𝑎+𝑛ℎ (∝ℎ+∝−ℎ− 2) + 𝑎2[𝑃𝑛]  
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At the point of coincidence with the exact solution  

y(𝑥𝑛+1) ≡ 𝑦𝑛+1 ,y(𝑥𝑛) ≡ 𝑦𝑛  and 𝑦(𝑥𝑛−1) ≡ 𝑦𝑛−1 

𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1 ≡  ∝𝑎+𝑛ℎ (∝ℎ+∝−ℎ− 2) +

𝑎2[𝑃𝑛] 

𝑃𝑛 = [(sin( 𝛽𝑥𝑛−1
2 + 𝑘) + sin ( 𝛽𝑥𝑛+1

2 + 𝑘)
− 2sin(𝛽𝑥𝑛

2 + 𝑘)] 

𝛽𝑥𝑛−1
2 + 𝑘 =  𝛽𝑥𝑛

2 + 𝛽(ℎ2 − 2ℎ𝑥𝑛) + 𝑘 

𝛽𝑥𝑛+1
2 + 𝑘 =  𝛽𝑥𝑛

2 + 𝛽(ℎ2 + 2ℎ𝑥𝑛) + 𝑘 

Let =  𝛽(𝑥𝑛
2 + ℎ2) + 𝑘 , 𝑄 = 2𝛽ℎ𝑥𝑛       

               and      𝑅 = (𝛽𝑥𝑛
2 + 𝑘)                         (21) 

  Then 

 𝑃𝑛 = [(sin( 𝑃 + 𝑄) + sin ( 𝑃 − 𝑄) − 2sin(𝑅)] 
𝑃𝑛 = 2 sin( 𝑃) cos( 𝑄) − 2sin(𝑅)]            (22) 

𝑃𝑛 = 2 sin( 𝛽(𝑥𝑛
2 + ℎ2) + 𝑘   ) cos( 2𝛽ℎ𝑥𝑛) −

2sin(𝛽𝑥𝑛
2 + 𝑘)]                (23) 

𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1 =  ∝𝑎+𝑛ℎ (∝ℎ+∝−ℎ− 2) +
{𝑦′′−−∝𝑥(𝑙𝑜𝑔∝)2}[𝑃𝑛]

[−(2𝛽𝑥)2 sin(𝛽𝑥2+𝑘)+2𝛽 cos(𝛽𝑥2+𝑘)]
              (24) 

𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1 = 

 ∝𝑎+𝑛ℎ (∝ℎ+∝−ℎ− 2) +
{𝑦′′−∝𝑥(𝑙𝑜𝑔∝)2}[2 sin( 𝛽(𝑥𝑛

2 +ℎ2)+𝑘) cos( 2𝛽ℎ𝑥𝑛)−2sin(𝛽𝑥𝑛
2+𝑘)]

[−(2𝛽𝑥)2 sin(𝛽𝑥2+𝑘)+2𝛽 cos(𝛽𝑥2+𝑘)]

                 (25) 

Applying nonstandard dynamic step size 𝜑 instead 

of ℎ 

The second derivative 

≡
𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1

ℎ2
≡  

𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1

𝜑2
 

The Standard scheme developed in equation (25) 

will be named NEW h  

The hybrid scheme is obtained by substituting h for  

𝜑 =sin (ℎ) and 𝜑= 
(𝑒𝜆h−1)

𝜆
 

which will be named  NEW SIN, NEW EXP  

respectively 

 

 

 

 

 

 

 

 

5 Qualitative properties of the new scheme 

Definition ( [3]) 

Any algorithm for solving a differential equation in 

which the approximation 𝑦𝑛+1 to the solution at 

𝑥𝑛+1  can be calculated iff  𝑥𝑛, 𝑦𝑛𝑎𝑛𝑑 ℎ  are known 

is called a one step method. It is a common practice 

to write the functional dependence 𝑦𝑛+1  on the 

quantities  𝑥𝑛, 𝑦𝑛𝑎𝑛𝑑 ℎ  in the form   𝑦𝑛+1= 

𝑦𝑛+𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 

Where  𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 𝑖𝑠 𝑡ℎ𝑒 incremental function 

Theorem ( [3]) 

Let the incremental function of the scheme defined 

in the one step scheme above be continuous and 

jointly as a function of its arguments in the region 

defined by  𝑥 ∈ [𝑎, 𝑏]𝑎𝑛𝑑 𝑦 ∈ (−∞ , ∞),      0 ≤
ℎ ≤ ℎ0  Where  h0 > 0 and let there exists a 

constant L such that  𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ)    

≤ 𝐿|𝑦𝑛 − 𝑦𝑛
∗| for all  (𝑥𝑛, 𝑦𝑛, ℎ)𝑎𝑛𝑑  (𝑥𝑛, 𝑦𝑛

∗, ℎ)   
𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑗𝑢𝑠𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 , Then the relation 

(𝑥𝑛, 𝑦𝑛, 0) =  (𝑥𝑛, 𝑦𝑛
∗) is a necessary condition for 

the convergence of the new scheme 

 Definition ( [4]) 

A numerical scheme with an incremental            

𝜙(𝑥𝑛, 𝑦𝑛, ℎ)   is said to be consistent with the initial 

value problem      𝑦′ = 𝑓(𝑥, 𝑦) , 𝑦(𝑥0) = 𝑦0   if the 

incremental function is identically zero at t0 when 

ℎ = 0,  

Theorem ( [4]) 

Let  𝑦𝑛= 𝑦(𝑥𝑛) and  𝑝𝑛= 𝑝(𝑥𝑛) denote two different 

numerical solution of the differential equation with 

the initial condition specified a 

𝑦0= 𝑦(𝑥0) = 𝜉 and  𝑝0= 𝑝(𝑥0) = ξ∗ respectively 

such that |𝜉−ξ∗|<ε   ε>0 

If the two numerical estimates are generated by the 

integration scheme, we have  

𝑦𝑛+1= 𝑦𝑛+ℎ𝜙(𝑥𝑛, 𝑦𝑛, ℎ) 

𝑝𝑛+1= 𝑝𝑛+ℎ𝜙(𝑥𝑛, 𝑝𝑛, ℎ) 

The condition that |𝑦𝑛+1 − 𝑝𝑛+1|≤ K  |𝜉−ξ∗|  is the 

necessary and sufficient condition for the stability 

and convergence of the schemes. 

 

5.1 Proof of Convergence 
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Let  
Pn = 2 sin( β(xn

2 + h2) + k   )  cos( 2βhxn)
− 2sin(βxn

2 + k)] 
𝑦′ = 𝑓𝑛 ,  𝑦′′ = 𝑓𝑛

′  and  𝑦′′′ = 𝑓𝑛
′′ 

Dn = [−(2βxn)2 sin(βxn
2 + k) + 2β cos(βxn

2 + k)] 

Tn =  −∝𝑥 (𝑙𝑜𝑔 ∝)2 

Kn =∝𝑎+𝑛ℎ (∝ℎ+∝−ℎ− 2) 

𝑦𝑛+1 = 2𝑦𝑛  + 𝑦𝑛−1 +  Kn + {
{𝑓𝑛

′−Tn}[Pn]

[Dn]
}        (26) 

For small h  the nonlocal approximation of      

 2𝑦𝑛 − 𝑦𝑛−1 ≅  𝑦𝑛  

Simplify to obtain 

𝑦𝑛+1 =  𝑦𝑛  +  Kn + {
{𝑓𝑛

′−Tn}[Pn]

[Dn]
}  

    

𝑦𝑛+1 =     𝑦𝑛  + {Kn  −
Tn[Pn]

[Dn]
} + {

[Pn]

[Dn]
} 𝑓𝑛

′         (27) 

The incremental function can be written as 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) = {Kn  −
Tn[Pn]

[Dn]
} + {

[Pn]

[Dn]
} 𝑓𝑛

′           (28) 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ)= 𝐴  + 𝐵𝑓𝑛
′    

           

The value of A is fixed for every finite (𝑛 << ∞) 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) =  

 𝐵[𝑓′(𝑥𝑛, 𝑦𝑛, ℎ) − 𝑓′(𝑥𝑛, 𝑦𝑛
∗, ℎ)] 

 =  𝐵[𝑓′(𝑥𝑛, 𝑦𝑛) − 𝑓′(𝑥𝑛, 𝑦𝑛
∗)] 

=  𝐵[
𝜕𝑓′(𝑥𝑛,ӯ)

𝜕𝑦𝑛
(𝑦𝑛 − 𝑦𝑛

∗)] 

L = SUP(𝑥𝑛,𝑦𝑛)∈𝐷   
𝜕𝑓′(𝑥𝑛,ӯ)

𝜕𝑦𝑛
 

then   

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) = 𝐵[𝐿(𝑦𝑛 − 𝑦𝑛

∗)] 

Let M = | B.L2| 

𝜙(𝑥𝑛, 𝑦𝑛, ℎ) − 𝜙(𝑥𝑛, 𝑦𝑛
∗, ℎ) ≤ 𝑀|𝑦𝑛 − 𝑦𝑛

∗|     (29)

 which is the condition for convergence  

5.2 Consistency of the Schemes 

𝑦𝑛+1 =     𝑦𝑛  + {Kn  −
Tn[Pn]

[Dn]
} + {

[Pn]

[Dn]
} 𝑓𝑛

′ 

𝑦𝑛+1= 𝑦𝑛+ {𝐴}  + {𝐵}𝑓𝑛
′ 

When ℎ = 0 Kn = 0 , Pn = 0 , and 𝐴 = 0   𝐵 =
0 

⇒ 𝑦𝑛+1= 𝑦𝑛 and the incremental function is 

identically zero when ℎ = 0              (30) 

⇒ 𝜙(𝑥𝑛, 𝑦𝑛, 0) ≡ 0    
      

 5.3 Stability of the Schemes 
Consider the equation 

𝑦𝑛+1= 𝑦𝑛+{𝐴} + {𝐵}𝑓𝑛
′(𝑥𝑛, 𝑦𝑛) 

Let 𝑆𝑛+1= 𝑆𝑛+{𝐴}  + {𝐵}𝑓𝑛
′(𝑥𝑛, 𝑆𝑛) 

𝑦𝑛+1 − 𝑆𝑛+1=    𝑦𝑛 − 𝑆𝑛+ {𝐴 −
𝐴} + {𝐵}[𝑓𝑛

′(𝑥𝑛, 𝑦𝑛) − 𝑓𝑛
′(𝑥𝑛, 𝑆𝑛)]             (31) 

= 𝑦𝑛 − 𝑆𝑛+   𝐵[
𝜕𝑓′(𝑥𝑛,   𝑆𝑛)

𝜕𝑝𝑛
(𝑦𝑛 − 𝑆𝑛)]  

L = SUP(𝑥𝑛,𝑦𝑛)∈𝐷   
𝜕𝑓′(𝑥𝑛,   𝑆𝑛)

𝜕𝑝𝑛
 

𝑦𝑛+1 − 𝑆𝑛+1= 𝑦𝑛 − 𝑆𝑛  + 𝐵. 𝐿(𝑦𝑛 −  𝑆𝑛)  

|𝑦𝑛+1 − 𝑆𝑛+1|= |𝑦𝑛 − 𝑆𝑛|+ [ 𝐵. 𝐿 ]|(𝑦𝑛 − 𝑝𝑛)| 

Let N = |1+ [ 𝐵. 𝐿 ]| 

|𝑦𝑛+1 − 𝑆𝑛+1|≤N |𝑦𝑛 − 𝑆𝑛| 

Let 𝑦0= 𝑦(𝑥0) = 𝜉 and  𝑆= 𝑆(𝑥0) = ξ∗ then 

|𝑦𝑛+1 − 𝑆𝑛+1|≤ K  |𝜉−ξ∗|              (32) 

 

6.  Application of the Model to the 

Harmonic Oscillator Equation   

 From equation (12), we have  

y′′ = −2ε(y′) − y              (33) 

y′′′ = −2ε(y′′) − y′              (34) 

From the Nonstandard theory   y′ =
𝑦𝑛+1−𝑦𝑛 

𝜓
   

   𝑓𝑛
′ =  −2ε (

𝑦𝑛+1−𝑦𝑛 

𝜓
) − 𝑦𝑛  

   𝑓𝑛
′ =  −2ε (

𝑦𝑛+1 

𝜓
) + 2ε (

𝑦𝑛 

𝜓
) − 𝑦𝑛  

The standard scheme equation (25) is 

𝑦𝑛+1= 𝑦𝑛+{𝐴} + {𝐵}𝑓𝑛
′(𝑥𝑛, 𝑦𝑛) 
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𝑦𝑛+1 =    𝑦𝑛  + {Kn –
Tn[Pn]

[Dn]
} − {

Pn

Dn
} {(

2ε 

𝜓
)} 𝑦𝑛+1    

 + {(
2ε 

𝜓
) − 1} {

Pn

Dn
} 𝑦𝑛               (35) 

 {
𝜓Dn+2εPn

𝜓Dn
 } 𝑦𝑛+1 = {Kn −

TnPn

Dn
} + {1 +

2εPn

𝜓Dn
−

Pn

Dn
} 𝑦𝑛        

𝑦𝑛+1 =   {
𝜓Dn

𝜓Dn+2εPn
 } {Kn –

TnPn

Dn
}+ 

+ {
𝜓Dn

𝜓Dn+2εPn
 } {1 +

2εPn

𝜓Dn
−

Pn

Dn
} 𝑦𝑛           (36) 

Pn = 2 sin( β(xn
2 + h2) + k   )  cos( 2βhxn)
− 2sin(βxn

2 + k)] 

Dn = [−(2βxn)2 sin(βxn
2 + k) + 2β cos(βxn

2 + k)] 

Tn = ∝𝑥 (𝑙𝑜𝑔 ∝)2 

Kn =∝𝑎+𝑛ℎ (∝ℎ+∝−ℎ− 2) 

The standard scheme will  have 𝜑 = ℎ2    and  the 

two hybrid schemes will be obtained by changing h  

to φ =  sin2(𝑟ℎ) and  𝜑= ℎ
(𝑒𝜆h−1)

𝜆 ,  𝜓 =sin (𝑟ℎ) or   

𝜓 = 
(𝑒𝜆h−1)

𝜆
       𝑟, 𝜆 ∈ ℝ 

.  

7. Result of Numerical Experiment 

The algorithm of these new family of schemes have 

been coded into a software program. The schemes 

have been tested using step size h=0.01 and for 

about 100 iterations. The result of the numerical 

simulation is here presented in 3D graphs. NSTD 

EXACT is the exact solution as produced by [6] in 

1994 . NSTD EXP is the solution with step-size 

substituted by exponential function NSTD SIN is 

the solution with step-size substituted by sine 

function. Likewise we have NEW SCH EXP which 

is the new scheme with exponential function as step-

size and NEW SCH SIN  is the new scheme with 

sine function as step-size 

 

 

 

 

6.1 Graph of the new schemes for h=0.01 , 𝜀 =
0.0001  and initial value    𝑦(0) =  1 

simulation parameters  𝑟 = 0.005, 𝜆 = 0.005 ,∝=
0.5, 𝛽 = −0.75, 

 

Fig 1:   Graph of solution from all the new schemes 

and the exact solution 

 

Fig 2:  Graph of Error of deviation of  schemes from 

the Mickens exact solution 

 

Fig 3:  Graph of Error of deviation of schemes from 

the Mickens exact solution 
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6.2  Graph of the new schemes for h=0.001 ,            

𝜀 = 0.001  and initial value    𝑦(0) =  1 

simulation parameters  𝑟 = 1, 𝜆 = −0.01 ,∝=
0.5, 𝛽 = 0.75, 

 

Fig 4: 3D Graph of solution from all the new 

schemes and the Exact solution 

 

Fig 5:  Graph of Error of deviation of New schemes 

from the Mickens exact solution 

 

Fig 6:  Graph of Error of deviation of  schemes from 

the Mickens exact solution 

 

 

 

 

 

8. Discussion and conclusion 

We have experimented with the exact scheme obtain 

by Mickens in 1994 in comparison with the new 

schemes under the same parameter. We did for 

various step sizes . we observed monotonicity of 

solutions and total  monotonicity of all solutions, 

monotone dependence on initial values. We observe 

total congruency as h becomes smaller for any finite 

number of iterations. The schemes converge faster 

depending on how small the value of  ∝, large 

values of 𝛽 makes the schemes to behave like very 

small value of  𝛽  

The new Discrete Hybrid Nonstandard models 

NEWSH EXP  and NEWSCH SIN produced the 

exact solution for the Harmonic Oscillator Equation 

as presented. The schemes have been proved to be 

stable, consistent and convergent analytically. The 

numerical experiment has shown that the absolute 

error of deviation for the Hybrid schemes are all 

zeros   as h approaches zero (see Fig. 3 and 6) and 

this is consistent for all ℎ < 1 

These results shows that  even though Mickens non-

standard modelling rules remain a very powerful 

tool for discrete modelling of the true behaviour of 

dynamical systems, a carefully chosen interpolation 

function can produced an exact scheme with same 

property and also that interpolation schemes can be  

better if combined with some Nonstandard 

modelling techniques. 
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