
A Two-Parameter Exponential-Akash Distribution: 

Theory and Application 

 
 

NOFIU I. BADMUS1, 

Department of 

Mathematics, 

University of Lagos, 

Akoka,  Yaba, 

NIGERIA 

OLUSESAN O. 

OLUFOLABO2   

Department of Statistics,  

Yaba College of 

Technology, Yaba 

NIGERIA. 

 

AKEEM A. 

AKINGBADE3 

Department of Statistics, 

Yaba College of 

Technology, Yaba 

NIGERIA.

 

 

Abstract: In this research, we developed a new distribution obtained from Akash distribution 

using the exponentiation method. The new distribution is named Two-Parameter Exponential 

Akash (TPEA) Distribution, which is a hybrid distribution where a shape parameter is 

introduced to the Akash distribution. Some statistical properties of the proposed hybrid 

distribution include reliability function, hazard rate function, reversed hazard function, 

moments and its related measures, moment generating function and order statistics are derived. 

Method of maximum likelihood estimation was used to estimate the distribution parameters. 

Also, shapes of the density, distribution, survival and hazard functions of the developed 

distribution were illustrated and presented. We examined the consistency and performance of 

the parameters estimates of the proposed distribution, using a real life data set and compared 

the results with some extant distributions. The results of the comparison include: goodness of 

fit statistics and criteria, standard error and p-value. This reveals that the new distribution has 

better fit and representation of the data set than other distributions. We hope that this new 

distribution will serve as an alternative model in some areas like Medicine, Agriculture, 

Finance, Insurance and lifetime analysis.    

  

Keywords: Exponentiation method, Goodness of fit, Order statistics, Shape Parameter, 

        Standard Error 

 

 

1 Introduction 
 

Statistics theory and application are the 

bedrock of analysis of lifetime data in real-

life phenomena, whereby the nature of 

lifetime data in different fields of study 

such as Engineering, Medical science, 

Finance, Quality control, Insurance etc; 

requires probability distribution that will 

determine the shape and follow the 

distribution of the lifetime data to give 

better fit to the dataset. In view of this, 

various authors and researchers in literature 

have developed several distributions for 

modelling and analyzing lifetime datasets. 

Uwaeme et al. [9] used exponentiation 

method to improve on Pranav distribution 

and proposed extended Pranav distribution. 

Also, they used a lifetime dataset of 

strength of glass of the aircraft window and 

the results obtained revealed that their 

distribution has better fit and overwhelmed 

than other distributions compared in their 

work.  

 

Furthermore, examples of other proposed 

distributions with one parameter for 

modelling lifetime datasets are: Gupta and 

Kundu [2] generalized exponential 

distribution, Shanker [6] Akash 

distribution, Shanker [7] Shanker 

distribution, Shukla [8] Pranav distribution, 

Abebe and Shukla [1] Discrete Pranav 

distribution among others. Meanwhile, 

there is need to have a robust, flexible and 

better fit distribution to lifetime datasets 
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than some of the distributions mentioned 

above due to their status as parent 

distributions.  

 

In this work, we propose a two-parameter 

exponential-Akash (TPEA) distribution 

using exponentiation method in 

conjunction with Akash distribution as a 

parent distribution. We established its 

flexibility and ability to provide a better 

representation and fit for real life datasets.  

  

 

2 Material and Methods 
 

2.1 TPEA distribution 

The exponentiation method was initiated by 

Mudholkar and Srivastava [4] where they 

introduced exponentiated Weibull family 

known as extension of the Weibull family. 

Let a random variable Y be an 

exponentiated distribution with probability 

density function (pdf) and cumulative 

distribution function (cdf) given 

respectively by              

𝑔(𝑦) = 𝑤(𝑦). 𝑐[𝑊(𝑦)]𝑐−1   𝑦 > 0, 𝑐 > 0                                        

(1) 

and 

𝐺(𝑦) = [𝑊(𝑦)]𝑐                                    (2) 

where, 𝑤(𝑦) and 𝑊(𝑦) are the pdf and cdf 

of any univariate continuous distribution. 

Though, in this work, 𝑤(𝑦) and 𝑊(𝑦) are 

the pdf and cdf of the one-parameter 

Akash distribution. This was recently 

investigated by Shanker [6] and are 

defined by 

𝑤(𝑦) =
𝜃3

𝜃2+2
(1 + 𝑦2)𝑒−𝜃𝑦                   (3) 

And 

𝑊(𝑦) = 1 − [1 +
𝜃𝑦(𝜃𝑦+2)

𝜃2+2
] 𝑒−𝜃𝑦         (4) 

Now, we obtain both the pdf and cdf of the 

Two-Parameter exponential Akash 

distribution by substituting equations (3) 

and (4) into (1) and (2) as given below: 

𝑔(𝑦) =
𝜃3

𝜃2+2
(1 + 𝑦2)𝑒−𝜃𝑦. 𝑐[𝑈]𝑐−1     (5) 

and  

𝐺(𝑦) = ∫ 𝐶𝑒𝑐𝑦𝑑𝑦 = [𝑈]𝑐𝑊(𝑦)

0
              (6) 

where, 𝑈 = 𝑊(𝑦) = 1 − [1 +
𝜃𝑦(𝜃𝑦+2)

𝜃2+2
] 𝑒−𝜃𝑦 ,    

𝑦 > 0, 𝑐 > 0 and 𝜃 > 0, c is the additional 

shape parameter and 𝜃 is the existing scale 

parameter. Therefore, (5) and (6) become 

the pdf and cdf of the TPEA distribution; 

and the graphical illustrations of the pdf and 

cdf alongside with the survival and hazard 

function of the proposed distribution are 

depicted below. 

 

Also, other associating functions such as 

reliability, hazard rate and reversed hazard 

rate functions are obtain and discuss as 

follows:  

 

2.2 The Survival Function 

The reliability function of the TPEA 

distribution is defined as the probability 

that a system or an object still survives prior 

the time t; and it’s given by  

𝑆𝐹(𝑦) = 1 − 𝑃(𝑌 ≤ 𝑦) = 1 − 𝐺(𝑦)      (7)  

 

S𝐹(𝑦) = 1 − [𝑈]𝑐                                            (8) 

 

2.3 The Hazard Rate Function 

The hazard function is also known as risk 

function and is defined as conditional 

probability of failure rate that the 

probability of an object fail within a 

survived time t; and its expression is given 

by 

𝐻𝐹(𝑦) =
𝑔(𝑦)

1−𝐺(𝑦)
=

𝜃3

𝜃2+2
(1+𝑦2)𝑒−𝜃𝑦.𝑐[𝑈]𝑐−1

1−[𝑈]𝑐       (9) 

2,4 The Reversed Hazard Function 

The reversed hazard function of the TPEA 

distribution is defined as the ratio between the 

density function to its cumulative density 

function in which we expressed as     

𝑅𝐻𝐹(𝑦) =
𝑔(𝑦)

𝐺(𝑦)
=

𝜃3

𝜃2+2
(1+𝑦2)𝑒−𝜃𝑦.𝑐[𝑈]𝑐−1

1−[𝑈]𝑐      (10)
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Figure 1: The density, distribution, survival and hazard function plot of the TPEA distribution.    

 

3    Moments and Generating 

Function 

Both the moments and generating function 

of the propose distribution are derived and 

obtained mathematically in this section. 

3.1 Moments 

As we have discussed earlier, moments of 

the new distribution is derived and 

presented as follows:   

𝐸(𝑌𝑧) = ∫ 𝑦𝑧𝑔(𝑦)𝜕𝑦
𝑊(𝑦)

0
                        (11) 

Now, putting (5) into (11), we obtain (12) 

𝐸(𝑌𝑧) = ∫ 𝑦𝑧 𝐶 𝜃3

𝜃2+2
(1 + 𝑦2)𝑒−𝜃𝑦. [𝑈]𝑐−1𝜕𝑦

∞

0
                                        

(12) 

Multiplying and open the bracket of the 

expression after the integral sign in (12), 

we get (13) 

𝐸(𝑌𝑧) = ∫
𝐶 𝜃3𝑦𝑧

𝜃2+2
𝑒−𝜃𝑦. [𝑈]𝑐−1𝜕𝑦

∞

0
+                       

∫
𝑐 𝜃3𝑦𝑧+2

𝜃2+2
𝑒−𝜃𝑦. 𝑐[𝑈]𝑐−1𝜕𝑦

∞

0
                    (13) 

Thus, by using binomial expansion in (13), 

we have 

[𝑈]𝑐−1 = ∑ (
𝑐 − 1

𝑙
) (−1)𝑙[𝑉]

∞

𝑙=0

𝑒−𝜃𝑦 

where, 𝑉 = [1 +
𝜃𝑦(𝜃𝑦+2)

𝜃2+2
]

𝑙
 also, the binomial 

expansion of  [1 +
𝜃𝑦

𝜃+1
]

𝑙
 yield by  

𝑉 = ∑ (
𝑙

𝑚
) [

𝜃𝑦(𝜃𝑦 + 2)

𝜃2 + 2
]

𝑚∞

𝑚=0

= ∑ (
𝑙

𝑚
)

∞

𝑚=0

∑ (
𝑚

𝑛
) ∑ (

𝑛

𝑝
)

𝜃𝑙𝑦𝑚

(𝜃2 + 2)𝑚
2𝑛. 1𝑝.

𝑛

𝑝=0

𝑚

𝑛=0

 

𝜃𝑚−𝑛−𝑝. 𝑦𝑚−𝑛−𝑝 
 

Hence,  

[𝑈]𝑐−1 = ∑ (
𝑐 − 1

𝑙
) (−1)𝑙

∞

𝑙=0

∑ (
𝑙

𝑚
)

∞

𝑚=0

∑ (
𝑚

𝑛
) ∑ (

𝑛

𝑝
)

𝑛

𝑝=0

𝑚

𝑛=0

 

𝜃𝑙𝑦𝑚

(𝜃2 + 2)𝑚
2𝑛. 1𝑝. 𝜃𝑚−𝑛−𝑝. 𝑦𝑚−𝑛−𝑝 

By substituting the above expressions into (13) 

gives the following: 

𝐸(𝑌𝑧) = ∑ (
𝑐 − 1

𝑙
) (−1)𝑙

∞

𝑙=0

∑ (
𝑙

𝑚
)

∞

𝑚=0

∑ (
𝑚

𝑛
) ∑ (

𝑛

𝑝
) . 𝐴

𝑛

𝑝=0

𝑚

𝑛=0

. 

∫ 𝑦𝑧+2𝑚−𝑛−𝑝𝑒−𝜃𝑦(𝑙+1)𝜕𝑦

∞

0

+ ∑ (
𝑐 − 1

𝑙
) (−1)𝑙

∞

𝑙=0

 

∑ (
𝑙

𝑚
)

∞

𝑚=0

∑ (
𝑚

𝑛
) ∑ (

𝑛

𝑝
) . 𝐴.

𝑛

𝑝=0

𝑚

𝑛=0

∫ 𝑦𝑧+2𝑚−𝑛−𝑝+2𝑒−𝜃𝑦(𝑙+1)𝜕𝑦

∞

0
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where  𝐴 =
𝑐.2𝑛.1𝑝.𝜃2𝑚−𝑛−𝑝+3

(𝜃2+2)𝑚+1       

see Uwaeme et al. [9]. 

Since ∫ 𝑦𝑠𝑒−𝑐𝑦𝜕𝑦 =
Γ(𝑆+1)

𝐶𝑠+1

∞

0
 and  

Γ(𝑐) = (𝑐 − 1)! 

𝐸(𝑌𝑧) =

∑ (𝑐−1

𝑙
)(−1)𝑙∞

𝑙=0 ∑ ( 𝑙

𝑚
)∞

𝑚=0 ∑ (𝑚

𝑛
) ∑ (𝑛

𝑝
) . 𝐴𝑛

𝑝=0
𝑚
𝑛=0     

. 𝜃−(𝑧+2𝑚−𝑛−𝑝+1). 𝐵 + ∑ (
𝑐 − 1

𝑙 ) (−1)
𝑙

∞

𝑙=0

∑ (
𝑙

𝑚)

∞

𝑚=0

 

∑ (
𝑚

𝑛
) ∑ (

𝑛

𝑝
) . 𝐴

𝑛

𝑝=0

𝑚

𝑛=0

. 𝜃−(𝑧+2𝑚−𝑛−𝑝+2). 𝑄 

where, 𝐵 =
(𝑍+2𝑚−𝑛−𝑝)!

(𝑚+1)𝑧+2𝑚−𝑛−𝑝+1
 

and 𝑄 =
(𝑍+2𝑚−𝑛−𝑝+2)!

(𝑚+1)𝑧+2𝑚−𝑛−𝑝+2
 

𝑅𝑙,𝑚,𝑛,𝑝

= ∑ (
𝑐 − 1

𝑙
) (−1)𝑙

∞

𝑙=0

∑ (
𝑙

𝑚
)

∞

𝑚=0

∑ (
𝑚

𝑛
) ∑ (

𝑛

𝑝
) .

2𝑛. 1𝑝. 𝑐. 𝜃−𝑧+3

(𝜃2 + 2)𝑚+1

𝑛

𝑝=0

𝑚

𝑛=0

 

and 
𝑆𝑙,𝑚,𝑛,𝑝

= ∑ (
𝑐 − 1

𝑙
) (−1)𝑙

∞

𝑙=0

∑ (
𝑙

𝑚
)

∞

𝑚=0

∑ (
𝑚

𝑛
) ∑ (

𝑛

𝑝
) .

2𝑛. 1𝑝. 𝑐. 𝜃−𝑧

(𝜃2 + 2)𝑚+1

𝑛

𝑝=0

𝑚

𝑛=0

 

 

The z-th moments of the TPEA distribution is 

given by 

𝐸(𝑌𝑧) = 𝑅𝑙,𝑚,𝑛,𝑝
(𝑍+2𝑚−𝑛−𝑝)!

(𝑚+1)𝑧+2𝑚−𝑛−𝑝+1
+    

𝑆𝑙,𝑚,𝑛,𝑝
(𝑍+2𝑚−𝑛−𝑝+2)!

(𝑚+1)𝑧+2𝑚−𝑛−𝑝+2
                  (14) 

 

The Mean 

We obtained the mean of the distribution 

from z-th moments when 𝑧 = 1 from (14) 

as expressed below: 

𝑍1 = 𝐸(𝑌1) = 𝜇1 = 𝑅𝑙,𝑚,𝑛,𝑝

(2𝑚 − 𝑛 − 𝑝 + 1)!

(𝑚 + 1)2𝑚−𝑛−𝑝+2
+ 

𝑆𝑙,𝑚,𝑛,𝑝
(2𝑚−𝑛−𝑝+3)!

(𝑚+1)2𝑚−𝑛−𝑝+3                       (15) 

Similarly, the variance of Y for TPEA 

distribution is also obtained from z-th 

central moment of order 2  

𝑉𝑎𝑟(𝑦) = 𝑍2 − (𝑍1)2 = 𝜇2 − (𝜇1)2 
 

𝑉𝑎𝑦(𝑦) = [𝑅𝑙,𝑚,𝑛,𝑝

(2𝑚 − 𝑛 − 𝑝 + 2)!

(𝑚 + 1)2𝑚−𝑛−𝑝+3
+ 

𝑆𝑙,𝑚,𝑛,𝑝
(2𝑚−𝑛−𝑝+4)!

(𝑚+1)2𝑚−𝑛−𝑝+4] − [𝑍1]2 (16) 

𝑍2 = 𝐸(𝑌2) = 𝜇2

= 𝑅𝑙,𝑚,𝑛,𝑝

(2𝑚 − 𝑛 − 𝑝 + 2)!

(𝑚 + 1)2𝑚−𝑛−𝑝+3

+ 𝑆𝑙,𝑚,𝑛,𝑝

(2𝑚 − 𝑛 − 𝑝 + 4)!

(𝑚 + 1)2𝑚−𝑛−𝑝+4
 

In addition, when 𝑧 = 3 

𝑍3 = 𝐸(𝑌3)

= 𝑅𝑙,𝑚,𝑛,𝑝

(2𝑚 − 𝑛 − 𝑝 + 3)!

(𝑚 + 1)2𝑚−𝑛−𝑝+4

+ 𝑆𝑙,𝑚,𝑛,𝑝

(2𝑚 − 𝑛 − 𝑝 + 5)!

(𝑚 + 1)2𝑚−𝑛−𝑝+5
 

Therefore, explicit form is used to obtain 

other related measures such as Coefficient 

of variation CoV(Y) and the Skewness 

Coefficient SK(Y) as given by  

𝐶𝑜𝑉(𝑦) =
(√𝑍2−(𝑍1)2)

𝑍1
               (17) 

and 

        𝑆𝐾(𝑦) =
𝑍3−(𝑍1)3

(𝑍2−(𝑍1)2)
3

2⁄
                    (18) 

Also, see Ramadan [5] and leren et al. [3] 

 

3.2 Moment Generating Function (MGF) 

 

The MGF of the two parameter exponential 

Akash distribution is proposed here and 

defined as a random variable Y having the 

TPEA distribution. Thus, the MGF of Y, 

𝑀𝑦(𝑡) can be obtained by 

 

𝑀𝑦(𝑡) = 𝐸(𝑒𝑡𝑦) = ∫ 𝑒𝑡𝑦𝑔(𝑦)𝜕𝑦
∞

0
       (19) 

 
Though, by using the binomial series 

expansion in (19) and following the steps 

we took under subsection 3.1 above, we 

obtain 

𝑀𝑦(𝑡) = ∑ (
𝑡

𝜃
)

ℎ
∞

ℎ=0

[𝑅𝑙,𝑚,𝑛,𝑝

(ℎ + 2𝑚 − 𝑛 − 𝑝)!

ℎ! (𝑚 + 1)𝑘+2𝑚−𝑛−𝑝+1
 

+𝑆𝑙,𝑚,𝑛,𝑝
(ℎ+2𝑚−𝑛−𝑝+2)!

ℎ!(𝑚+1)𝑘+2𝑚−𝑛−𝑝+3
]          (20) 

(20) becomes the MGF of the TPEA 

distribution. 

3.3 Order Statistics 

Suppose 𝑌1, … , 𝑌𝑛 is a random sample from 

a distribution with density function 𝑔(𝑦). 
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Then, let 𝑌1:𝑝 <, … , < 𝑌𝑝:𝑛 denotes the 

associating order statistics obtained from 

the sample. The density function 𝑔𝑝:𝑛 of the 

pth order statistics is defined as  

𝑔𝑝:𝑛(𝑌) =
𝑛!

(𝑝 − 1)! (𝑛 − 𝑝)!
∑(−1)𝑡 (

𝑛 − 𝑝

𝑡
) .

𝑛−𝑝

𝑡=0

 

𝑔(𝑦)𝐺(𝑦) 𝑡+𝑝−1                     (21) 

where, 𝑔(𝑦) and 𝐺(𝑦) are defined in (5) and 

(6) as the density and distribution function of 

the TPEA distribution respectively. 

Furthermore, substituting (5) and (6) into (21) 

the density function of the pth order statistics 

𝑌𝑝:𝑛 is given by 

𝑔𝑝:𝑛(𝑌) =
𝑛!

(𝑝 − 1)! (𝑛 − 𝑝)!
∑(−1)𝑡 (

𝑛 − 𝑝

𝑡
)

𝑛−𝑝

𝑡=0

 

 

[
𝐶.  𝜃3

𝜃2+2
(1 + 𝑦2)𝑒−𝜃𝑦[𝑈]𝑐−1] [[𝑈]𝑐] 𝑡+𝑝−1  (22) 

Meanwhile, both the pdf of the minimum and 

maximum (𝑌1 𝑎𝑛𝑑 𝑌𝑛) when 𝑝 = 1 and 𝑝 = 𝑛 

order statistics of the TPEA distribution are 

presented as follows: 

𝑔1:𝑛(𝑌) = 𝑛 ∑ (−1)𝑡 (
𝑛 − 1

𝑡
)

𝑛−𝑝
𝑡=0            

[
𝐶.  𝜃3

𝜃2+2
(1 + 𝑦2)𝑒−𝜃𝑦[𝑈]𝑐−1] [[𝑈]𝑐] 𝑡          (23) 

and  

𝑔𝑛:𝑛(𝑌) = 𝑛 [
𝑐.𝜃3

𝜃2+2
(1 + 𝑦2)𝑒−𝜃𝑦[𝑈]𝑐−1]                          

[[𝑈]𝑐] 𝑛−1              (24) 

 

 

 

4 Estimation of Parameter 

Through Maximum Likelihood 

Estimates 

Let 𝑌1, … , 𝑌𝑛 be a random sample of size 𝑛 

from the TPEA distribution with the log-

likelihood function of parameters written as 

𝐿𝑜𝐿𝑇𝑃𝐸𝐴(𝑐, 𝜃) = ∑ log 𝑔(𝑦𝑖)
𝑛
𝑖=1           (25) 

= ∑ 𝑙𝑜𝑔

𝑛

𝑖=1

{
𝐶.  𝜃3

𝜃2 + 2
(1 + 𝑦𝑖

2) [1 − [1 +
𝜃𝑦𝑖(𝜃𝑦2

𝑖 + 2)

𝜃2 + 2
] 𝑒−𝜃𝑦𝑖]

𝑐−1

𝑒−𝜃𝑦𝑖} 

= 𝑙𝑜𝑔 {(
𝐶.  𝜃3

𝜃2 + 2
)

𝑛

∑(1 + 𝑦𝑖
2)𝑒−𝜃 ∑ 𝑦𝑖 ∑ [1 − [1 +

𝜃𝑦𝑖(𝜃𝑦2
𝑖

+ 2)

𝜃2 + 2
] 𝑒−𝜃𝑦𝑖]

𝑐−1𝑛

𝑖=1

𝑛

𝑖=1

} 

𝐿𝑜𝐿 = 𝑛[ln(𝑐) + 2 ln(𝜃) − ln (𝜃2 + 2)] + 

∑ 𝑙𝑛(𝑦𝑖
2) − 𝜃 ∑ 𝑦

𝑖
+ (𝑐 − 1)

𝑛

𝑖=1

𝑛

𝑖=1

 

∑ ln (𝑈𝑖(𝜃))𝑛
𝑖=1             (26) 

where, 𝑈𝑖(𝜃) = [1 − [1 +
𝜃𝑦𝑖(𝜃𝑦2

𝑖+2)

𝜃2+2
] 𝑒−𝜃𝑦𝑖] 

We maximize the log-likelihood by solving 

the nonlinear equations using partial 

differential system to differentiate (20) with 

respect to 𝜃 as we have it in the next line: 

𝜕𝐿𝑜𝐿

𝜕𝜃
= [𝑛[ln(𝑐) + 2 ln(𝜃) − ln (𝜃2 + 2)] 

+ln (1) − 𝜃 ∑ 𝑦
𝑖

+ (𝑐 − 1)

𝑛

𝑖=1

∑ ln (𝑈𝑖(𝜃))

𝑛

𝑖=1

 

That is 

𝜕(𝑛[ln(𝑐) + 2 ln(𝜃) − ln (𝜃2 + 2)]) 

= 𝜕[𝑛[2 ln(𝜃) − lns ]] 

where, 𝑠 = (𝜃2 + 2) 

=
2𝑛

𝜃
−

2𝑛𝜃

𝜃2 + 2
=

4𝑛

𝜃2 + 2
 

More so,  

𝜕{∑ ln (𝑈𝑖(𝜃))𝑛
𝑖=1 } = ∑

∂(𝑈𝑖(𝜃))

(𝑈𝑖(𝜃))

𝑛
𝑖=1   

∂(𝑈𝑖(𝜃)) = 𝜕 [1 − [1 +
𝜃𝑦𝑖(𝜃𝑦2

𝑖 + 2)

𝜃2 + 2
] 𝑒−𝜃𝑦𝑖]

= 𝜕(1 − 𝑗. 𝑒−𝜃𝑦𝑖) 

Since  
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𝑗 = 1 +
𝜃𝑦𝑖(𝜃𝑦2

𝑖+2)

𝜃2+2
 . Therefore, by 

applying quotient rule,  𝜕𝑗 = 0 +
𝜕𝑟

𝜕𝑠
     

where, 𝑟 = 𝜃𝑦𝑖(𝜃𝑦2
𝑖

+ 2)  

and 𝑠 = (𝜃2 + 2), then 

∂(𝑈𝑖(𝜃)) = 

𝜃2𝑦𝑖
2(𝜃2𝑦𝑖 − 2𝜃) − 𝜃𝑦𝑖(4𝜃2 + 6𝜃) − 4

(𝜃2 + 2)2
 

Taking the partial differentiation of 𝐿𝑜𝐿 

with respect to 𝑐 and 𝜃 results to 

𝜕𝐿𝑜𝐿

𝜕𝑐
=

𝑛

𝑐
+ ∑ ln (𝑈𝑖(𝜃))𝑛

𝑖=1                    (27) 

and 

𝜕𝐿𝑜𝐿

𝜕𝜃
=

4𝑛𝜃+(𝜃2+2)

𝜃(𝜃2+2)
− ∑ 𝑦𝑖 +𝑛

𝑖=1

(𝑐−1) ∑ (
𝜃2𝑦𝑖

2(𝜃2𝑦𝑖−2𝜃)−𝜃𝑦𝑖(4𝜃2+6𝜃)−4

(𝜃2+2)
2 )𝑛

𝑖=1

[1−[1+
𝜃𝑦𝑖(𝜃𝑦2

𝑖+2)

𝜃2+2
]𝑒−𝜃𝑦𝑖]

      (28) 

 

4.1 Application to Real Data 

The data used contains 182 distances from 

the seismological measuring station to the 

epicenter of the earthquake (in km) as the 

variable of interest reported by the 

Descriptive statistics in Table 1 has the 

boxplot, histogram plot, density plot and 

empirical cumulative density function plot 

of the data as shown below: 

 

 

 

 

 

 

 

 

 

Table 1: Descriptive statistics of the Earthquake Data 

Mean Median Mode Variance Skewness Kurtosis Minimum Maximum 

45.6000 23.4000 25.0000 3865.1200 2.8900 9.4300 0.5000 370.0000 

 

 

Figure 2: The boxplot, histogram, density and ecdf plot of the data set. 

Table 2: Consists the MLE, Standard Error (in parenthesis) and Goodness of fit Statistics. 

Model Parameter 

Estimates 

Standard 

Error 

W* A* KS P-Value 

TPEAD 𝜽 = 0.0309 

𝒄 = 0.2789 

(0.0029) 

(0.0262) 

0.3864 2.2642 0.4248 < 2.2e-16 

EXPD 𝜃 = 0.0347 

𝑎 = 0.1965 

(0.0032) 

(0.0181) 

0.3566 2.0939 0.4857 < 2.2e-16 

EPD 𝛼 = 0.0219 (0.0016) 0.5290 3.0798 0.1268 0.0058 
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SHD 𝜃 = 0.0439 (0.0023) 0.6524 3.7865 0.1673 7.506e-05 

DPD 𝜃 = 0.0439 (0.0023) 0.6524 3.7865 0.1673 7.506e-05 

AKD 𝜃 = 0.0657 (0.0028) 0.7265 4.2114 0.3117 8.882e-16 

PD 𝜃 = 0.0879 (0.0033) 0.7789 4.5126 0.4140 < 2.2e-16 

 

Table 3: Contains Model Criteria Statistics. 

Model -2LogL AIC CAIC HQIC BIC 

TPEAD 758.9490 1521.8980 1521.9650 1524.4960 1528.3060 

EPD 877.2364 1756.4730 1756.4950 1757.7720 1759.6770 

EXPD 884.0670 1772.1360 1772.2030 1774.7330 1778.5440 

SHD 925.7356 1853.4710 1853.4930 1854.7700 1856.6750 
DPD 925.7356 1853.4710 1853.4930 1854.7700 1856.6750 
AKD 1000.3200 2002.6410 2002.6630 2002.6630 2005.8450 

PD 1096.7100 2195.4190 2195.442 2196.7180 2198.6230 

 

Table 1 shows the descriptive statistics of 

the data used which the graphical 

representation depicts in figure 2. It reveals 

that the skewness of the data i.e the data is 

right skewed according to its density plot. 

Then, Table 2, contains the values of the 

MLEs, associating standard error and the 

goodness of fit, while, Table 3 consists of 

model selection criteria of the TPEA model 

and other competing models. Hence, figure 

3 is the estimated pdf and cdf plots of all the 

distributions compared in this study.  

 

Figure 3: Estimated PDF and CDF of the TPEA and extant distributions with the data set. 

 

5 Discussion 
A two-parameter exponential-Akash 

distribution has been successively proposed. It 

has its base from exponential method and 

Akash distribution. Some of its statistical 

properties which include survival, hazard, 

reversed hazard, moments, moment generating 

function, the mean, variance, coefficient of 

variation, skewness and order statistics were 

properly discussed. Also, we are able to 

estimate the model parameters using the 

method of maximum likelihood estimation. A 

real-life data set is used and presented for an 

illustration to show the goodness of fit and 

model criteria statistics of the two-parameter 

exponential-Akash over Exponential, Extended 

Pranav, Shanker, Discrete-Pranav, Akash and 

Pranav distributions.  

 

5.1 Conclusion  

 
The results in Tables 2 and 3 indicate that the 

Two-parameter exponential-Akash (TPEA) has 

the lowest value of MLEs, standard error, 

goodness of fit and model criteria statistics. The 

lower the values of the measures of goodness of 
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fit and model selection criteria, the better the 

distribution/model. Hence, the values of TPEA 

in Table 2 and 3 show its better performance 

over other distributions compared in this study. 

Therefore TPEA can be used in modeling 

lifetime data sets.  
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