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Abstract: The Conjugate Gradient (CG) method is a powerful iterative approach for solving large-scale min-
imization problems, characterized by its simplicity, low computation cost and good convergence. In this pa-
per, a new hybrid conjugate gradient HLB method (HLB: Hadji-Laskri-Benzine) is proposed and analysed for
unconstrained optimization. We compute the parameter βHLBk as a convex combination of the Polak-Ribière-

Polyak
(
βPRPk

)
[1] and the Mohd Rivaie-Mustafa Mamatand Abdelrhaman Abashar

(
βRMIL+
k

)
i.e βHLBk =

(1− θk)βPRPk + θkβ
RMIL+
k . By comparing numerically CGHLB with PRP and RMIL+ and by using the Dolan

and More CPU performance, we deduce that CGHLB is more efficient.

Key–Words: Unconstrained optimization, hybrid conjugate gradient method, line search, descent property, global
convergence.

1 Introduction

Consider the nonlinear unconstrained optimization
problem

min
x∈Rn

f (x) (1)

Where f : Rn → R is a continuously differen-
tiable function, bounded from below. The gradient of
f is denoted by g (x) . To solve this problem, we start
from an initial point x0 ∈ Rn. Nonlinear conjugate
gradient methods generate sequences {xk} of the fol-
lowing form:

xk+1 = xk + αkdk, k = 0, 1, 2, ....,
(1.2)

where xk is the current iterate point and αk > 0
is the step size which is obtained by line search.

The iterative formula of the conjugate gradient
method is given by (1.2), where αk is a steplength

which is computed by carrying out a line search, and
dk is the search direction defined by

dk+1 =

{
−gk si k = 1
−gk+1 + βkdk si k ≥ 2

(1.3)

where βk is a scalar and g (x) denotes ∇f (x). If
f is a strictly convex quadratic function, namely,

f(x) =
1

2
xTHx+ bTx, (1.3bis)

where H is a positive definite matrix and if αk is
the exact one-dimensional minimizer along the direc-
tion dk, i.e.,

αk = arg min
α>0
{f(x+ αdk} (1.3tris)

then (1.2), (1.3), (1.3bis), (1.3tris) is called
the linear conjugate gradient method. Otherwise,
(1.2), (1.3) is called the nonlinear conjugate gradient
method.
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The line search in the non linear conjugate gra-
dient methods is often based on the standard Wolfe
conditions:

f (xk + αkdk)− f (xk) ≤ ραkgtkdk (1.4)

gtk+1dk ≥ δgtkdk (1.5)

where 0 < ρ ≤ δ < 1.
Conjugate gradient methods differ in their way

of defining the scalar parameter βk. In the litera-
ture, there have been proposed several choices for
βk which give rise to distinct conjugate gradient
methods. The most well known conjugate gradient
methods are the Hestenes–Stiefel (HS) method [14],
the Fletcher–Reeves (FR) method [10], the Polak-
Ribière-Polyak (PR) method [16 ], the Conjugate De-
scent method(CD) [10], the Liu-Storey (LS) method
[15], the Dai-Yuan (DY) method [08], [09] and Hager
and Zhang (HZ) method [13]. The update parameters
of these methods are respectively specified as follows:

βHSk =
gTk+1yk

dTk yk
, βFRk =

‖gk+1‖2

‖gk‖2
, βPRPk =

gTk+1yk

‖gk‖2
, βCDk = −‖gk+1‖2

dTk gk
,

βLSk = −gTk+1yk

dTk gk
, βDYk =

‖gk+1‖2

dTk yk
, βHZk =(

yk − 2dk
‖yk‖2

dTk yk

)T gk+1

dTk yk
Some of these methods, such as Fletcher and

Reeves (FR) [10], Dai and Yuan (DY) [8] and Con-
jugate Descent (CD) [10] have strong convergence
properties, but they may have modest practical per-
formance due to jamming. On the other hand, the
methods of Polak and Ribière and Polyak (PRP) [16],
Hestenes and Stiefel (HS) [14] or Liu and Story (LS)
[15] may not generally be convergent, but they often
have better computational performance.

In the process of obtaining more robust and ef-
ficient conjugate gradient methods, some researchers
suggested the hybrid conjugate gradient algorithm
which combined the good features of the methods in-
volve in the hybridization.

The first hybrid conjugate gradient method was
given by Touati-Ahmed and Storey (1990) [20] to
avoid jamming phenomenon.

The researchers were motived by the works of
Andrei [3], [5]; Dai and Yuan [9] ; Zhang and Zhou
[21]. Their parameter βNk is computed as a convex
combination of βFRk and β∗k other algorithms, i.e

βNk = (1− θk)βFRk + θkβ
∗
k

The Wolfe line search was employed to determine
the step length αk > 0 and the new method proved

to be more robust numerical wise as compared to FR
and other methods. The global convergence was es-
tablised under some suitable conditions.

In ([5]) Andrei has proposed a new hybrid con-
jugate gradient algorithm where the parameter βAk
is computed as a convex combination of the Polak-
Ribière- Polyak and the Dai- Yuan conjugate gradient
algorithms i.e

βAk = (1− θk)βPRPk + θkβ
DY
k

and θk is presented to satisfy the conjugacy con-
dition

θk = θCCOMB
k =

(
ytkgk+1

) (
ytksk

)
−
(
ytkgk+1

) (
gtkgk

)(
ytkgk+1

) (
ytksk

)
− ‖gk+1‖2 ‖gk‖2

where sk = xk+1 − xk. To satisfy Newton direc-
tion he takes

θk = θNDOMB
k =

(
ytkgk+1 − stkgk+1

)
‖gk‖2 −

(
ytkgk+1

) (
ytksk

)
‖gk+1‖2 ‖gk‖2 −

(
ytkgk+1

) (
ytksk

)
but in the combination of HS and DY from New-

ton direction, he puts

θk =
−stkgk+1

gtkgk+1
.

On the other hand, from Newton direction with
modified secant condition (Hybrid M-Andrei), Andrei
has proposed another method

βHY BRIDMk = (1− θk)βHSk + θkβ
DY
k

where

θk =

(
δηk
stksk
− 1
)
stkgk+1 −

ytkgk+1

ytksk
δηk

gtkgk+1 +
gtkgk+1

ytksk
δηk

δ is parameter. In [17], [18] Salah Gazi Shareef
and Hussein Ageel Khatab have introduced a new hy-
brid CG method

βNewk = (1− θk)βPRPk + θkβ
BA
k

where βBAk is selected in [5].
In this paper, we present another hybrid CG al-

gorithm noted CGHLB (HLB is an abbreviation to
Hadji; Laskri and Benzine), witch is a convex com-
bination of the PRP ([16]) and RMIL+ ([17]) conju-
gate gradient algorithms.We are interested to combine
these two methods in a hybrid CG algorithm because
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PRP has good computational properties and RMIL+
has strong convergence properties. In section 2, we
introduce our hybrid CG method and prove that it gen-
erates descent directions. In Section 3 we present and
prove global convergence results. Numerical results
and a conclusion are presented in section 4. By com-
paring numerically CGHLB with PRP and RMIL+
and by using the Dolan and More CPU performance,
we deduce that CGHLB is more efficient.

2 Definitions of Function Spaces and
Notation

3 A new hybrid conjugate gradient
method

The iterates x0, x1, ........of our algorithm are com-
puted by means of the recurrence (1.2) where the step
size αk > 0 is determined according to the wolfe line
search conditions (1.4) , (1.5). The directions dk are
generated by the rule:

dk =

{
−g0 if k = 0

−gk + βHLBK−1 dk−1 if k ≥ 1
(2.1)

where

βHLBk = (1− θk)βPRPk + θkβ
RMIL+
k

i.e

βHLBk = (1− θk)
gtk+1yk

‖gk‖2
+θk

gtk+1 (gk+1 − gk − dk)
‖dk‖2

(2.2)
HLB is an abbreviation to Hadji; Laskri and Benzine;
θk is a scalar parameter which will be determined in
a specific way to be described in the folloing section.
Observe that if θk = 0 then βHLBk = βPRPk and if
θk = 1, then βHLBk = βRMIL+

k . On the other hand if
0 < θk < 1, then βHLBk is a convex combination of
βPRPk and βRMIL+

k . The parameter θk is selected in
such away that at every iteration the conjugacy condi-
tion is satisfied . It can be noted that,

dk+1 = −gk+1+(1− θk)
gtk+1yk

‖gk‖2
dk+θk

gtk+1 (gk+1 − gk − dk)
‖dk‖2

dk

(2.3)
so multiply both sides of above equation

by yk and by using the conjugacy condition(
dtk+1yk = 0

)
we have:

0 = −gtk+1yk+(1− θk)
gtk+1yk

‖gk‖2
dtkyk+θk

gtk+1 (gk+1 − gk − dk)
‖dk‖2

dtkyk

(2,4)
After a simple calculation we get

θk =
gtk+1gk ‖gk‖

2 ‖dk‖2 −
(
gtk+1yk

) (
dtkyk

)
‖dk‖2(

gtk+1yk − gtk+1dk
)
‖gk‖2 −

(
gtk+1yk

) (
dtkyk

)
‖dk‖2

(2.5)
So, to ensure the convergence of this method

when the parameter θk goes out of interval ]0, 1[ ; i.e.
when θk ≤ 0 or θk ≥ 1, we prefer to take βHLBk as
following:

βHLBk =


(1− θk)βPRPk + θkβ

RMIL+
k if 0 < θk < 1

βPRPk if θk ≤ 0

βRMIL+
k if θk ≥ 1

(2.5(bis))
We are now able to present our new algorithm,

the Conjugate Gradient CGHLB Algorithm: CGHLB
Algorithm

Step1: set, k = 0, select the initial point xo ∈
Rn.select the parameters 0 < ρ ≤ δ < 1, and ε >
0

compute f (x0), and g0 = ∇ f (x0). consider
d0 = −g0

Step2: Test for continuation of iterations:
If ‖gk‖ ≤ ε then stop else set . dk = −gk Step3:

Line search:
Compute αk > 0 satisfying the Wolfe line search

condition (1, 4) and (1, 5) and update the variables,
xk+1 = xk+αkdk; compute f (xk+1), gk+1 and sk =
xk+1 − xk; yk = gk+1 − gk. Step4: θk Parameter
computation:

If
(
gtk+1yk − gtk+1dk

)
‖gk‖2 −(

gtk+1yk
) (
dtkyk

)
‖dk‖2 = 0; then set θk = 0,

otherwise, compute θk as in (2.5).
Step5:βHLBk conjugate gradient parameter

computation:
If 0 < θk < 1, then compute βHLBk as in (2.2).
If θk ≥ 1, then set βHLBk = βRMIL+

k

If θk ≤ 0then set βHLBk = βPRPk
Step6:Direction computation:
compute dk+1 = −gk+1 + βHLBk dk
Set k=k+1 and go to step 3.
The following theorem shows that our method as-

sures the descent condition, when 0 < θk < 1

Theorem 1 In the algorithm (1.2) , (1.3) and (2.5)
assume that dk is a descent direction

(
gtkdk < 0

)
, and

αk is determined by the Wolfe line search (1.4) ; (1.5).
If 0 < θk < 1 then the direction dk+1given by (2.3) is
a descent direction.
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Proof 2 Multiply both sides of (2, 3) by gk+1 we
have:

gTk+1dk+1 = −‖gk+1‖2 + (1− θk)
gtk+1yk

‖gk‖2
dtkgk+1

+θk
gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

gTk+1dk+1 = − (1− θk + θk) ‖gk+1‖2 + (1− θk)
gtk+1yk

‖gk‖2
dtkgk+1

+θk
gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

gTk+1dk+1 =

[
− (1− θk) ‖gk+1‖2 + (1− θk)

gtk+1yk

‖gk‖2
dtkgk+1

]

+

[
− (θk) ‖gk+1‖2 + θk

gtk+1 (gk+1 − gk − dk)
‖dk‖2

dtkgk+1

]

gTk+1dk+1 = (1− θk)

[
−‖gk+1‖2 +

gtk+1yk

‖gk‖2
dtkgk+1

]

+ (θk)

[
−‖gk+1‖2 +

gtk+1 (gk+1 − gk − dk)
‖dk‖2

dtkgk+1

]
since 0 < θk < 1 then

gTk+1dk+1 ≤

[
−‖gk+1‖2 +

gtk+1yk

‖gk‖2
dtkgk+1

]
+

[
−‖gk+1‖2 +

gtk+1 (gk+1 − gk − dk)
‖dk‖2

dtkgk+1

]
(2.6)

If the step length αk is chosen by an exact line
search. Then gTk+1dk = 0.

If the step length αk is chosen by an inexact line
search

(
gTk+1dk 6= 0

)
then we have:

gTk+1dk+1 < 0

because the algorithms of (PRP ) and
(RMIL+) satisfied the descent property.

The proof is completed.

4 Global convergence properties

The following assumptions are often needed to prove
the convergence of the nonlinear CG

Assumption 1
(i) The level set Ω = {x ∈ Rn/f (x) ≤ f (x0)}is

bounded, where x0 is the starting point.
(ii) In some neighborhood N of Ω, the objective

function is continuously differentiable and its gradient

is Lipschitz continuous, namely, there exists a constant
l > 0 such that:

‖g (x)− g (y)‖ ≤ l ‖x− y‖ for any x, y ∈ N

Under these assumptions on f , there exists a con-
stant µ such that ‖g (x)‖ ≤ µ, for all x ∈ Ω.

Lemma 3 [23] Suppose Assumption 1 holds, and con-
sider any conjugate gradient method (1.2) and (1.3);
where dk is a descent direction and αk is obtained by
the strong Wolfe line search. If

∞∑
k=1

1

‖dk‖2
= +∞ (3.1)

then
lim inf
k→∞

‖gk‖ = 0 (3.2)

Assume that the function f is uniformly convex func-
tion , i.e, there exists a constant Γ ≥ 0 such that,

for all x, y ∈ Ω : (∇f (x)−∇f (y))t (x− y) ≥ Γ ‖x− y‖2
(3.3)

and the steplength αk is given by the strong Wolfe
line search.

f (xk + αkdk)− f (xk) ≤ σ1αkgtkdk (3.4)

∣∣gtk+1dk
∣∣ ≤ −σ2gtkdk (3.5)

For uniformly convex function which satisfy the
above assumptions, we can prove that the norm of
dk+1 given by (2.3) is bounded above.

Using the above lemma, we obtain the following
theorem.

Theorem 4 Suppose that Assumption 1 holds. Con-
sider the algorithm (1.2) ; (2.3)and (2.5) ,where 0 ≤
θk ≤ 1 and αk is obtained by the strong Wolfe line
search.(3.4) and (3.5) .

If dk tends to zero and there exists non negative
constants η1 and η2 such that;

‖gk‖2 ≥ η1 ‖sk‖2 and ‖gk+1‖2 ≤ η2 ‖sk‖ (3.6)

and f is uniformly convex function, then

lim
k→∞

gk = 0 (3.7)

Proof 5 From (3, 3) it follows that

ytksk ≥ Γ ‖sk‖2
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since 0 ≤ θk ≤ 1 , from uniform convexity and
(3.6) we have

∣∣βHLBk

∣∣ ≤ ∣∣∣∣∣gtk+1yk

‖gk‖2

∣∣∣∣∣+

∣∣∣∣∣gtk+1 (gk+1 − gk − dk)
‖dk‖2

∣∣∣∣∣
≤
∣∣gtk+1yk

∣∣
‖gk‖2

+

∣∣gtk+1yk
∣∣

‖dk‖2
+

∣∣gtk+1dk
∣∣

‖dk‖2

≤ ‖gk+1‖ ‖yk‖
‖gk‖2

+
‖gk+1‖ ‖yk‖
‖dk‖2

+
‖gk+1‖ ‖dk‖
‖dk‖2

from Lipschitz condition

‖yk‖ ≤ l ‖sk‖

∣∣βHLBk

∣∣ ≤ ‖gk+1‖ ‖yk‖
η1 ‖sk‖2

+
‖gk+1‖ ‖yk‖
‖dk‖2

+
‖gk+1‖
‖dk‖

≤ µl ‖sk‖
η1 ‖sk‖2

+
µl ‖sk‖α2

k

‖sk‖2
+
µαk
‖sk‖

=
µl

η1 ‖sk‖
+
µlα2

k

‖sk‖
+
µαk
‖sk‖

Hence

‖dk+1‖ ≤ ‖gk+1‖+
∣∣βHLBk

∣∣ ‖dk‖
≤ µ+

µl ‖sk‖
η1αk ‖sk‖

+
µl ‖sk‖α2

k

αk ‖sk‖
+
µαk ‖sk‖
αk ‖sk‖

= 2µ+ µlαk +
µl

η1αk

which implies that (3.1) is true.Therefore, by
lemma 1 we have (3.2), which for uniformly convex
functions is equivalent to (3.7) .

5 Numerical results and discussions

In this section we report some numerical results ob-
tained with a MATLAB implementation of conjugate
gradient algorithms and their new variants. All codes
are written in Matlab on a Workstation Intel Pen-
tium 4 with 1.8 GHz. We selected a number of 75
large-scale unconstrained optimization test functions
in generalized or extended form [6] (some from CUTE
library [8]). For each test function we have considered
ten numerical experiments with the number of vari-
ables n = 1000, 2000, ..., 10000. In the following we
present the numerical performance of CG codes cor-
responding to different formula for βk computation.
All algorithms implement the Wolfe line search con-
ditions with ρ = 0.0001 and σ = 0.9, and the same
stopping criterion ‖gk‖∞ ≤ 10−6, where ‖.‖∞ is the
maximum absolute component of a vector.

The comparisons of algorithms are given in the
following context. Let fALG1

i and fALG2
i be the

optimal value found by ALG1 and ALG2, for
problem i = 1, ..., 750, respectively. We say
that, in the particular problem i, the performance of
ALG1 was better than the performance of ALG2 if:∣∣fALG1
i − fALG2

i

∣∣ < 10−6, and the number of itera-
tions, or the number of function-gradient evaluations,
or the CPU time of ALG1 was less than the number
of iterations, or the number of function-gradient eval-
uations, or the CPU time corresponding to ALG2, re-
spectively.

For each algorithm, we plot the fraction of prob-
lems for which the algorithm is within a factor s of
the best cpu time. Relative to performance profiles,
the top curve corresponds to the method that solved
the most problems in a time that was within a factor τ
of the best time. By comparing numerically CGHLB
with PRP and RMIL+ (see Fig. 1 and fig2) and by us-
ing the Dolan and More CPU performance, we deduce
that CGHLB is more efficient.
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Figure 1: Performance profile based on the CPU time
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Figure 2: Performance profile based on the iteration
number
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