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Abstract: In this paper we are concerned with the solution of the third-order non-linear differential equation f”’ +
Ff"+ B (f —1) = 0, satisfying the boundary conditions f(0) = a € R, f/(0) = b < 0 and f'(t) — A, as
t — 400 where A € {0,1} and 5 < 0. The problematic arises in the study of the Mixed Convection Boundary
Layer flow over a permeable vertical surface embedded in a Porous Medium. We prove the non-existence and the
sign of convex and convex-concave solutions of the above problem according to the mixed convection parameter
b < 0, the permeable parameter ¢ € R and the temperature parameter 5 < 0.
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1 Introduction

Owing to their numerous applications in geophysical
and industrial manufacturing processes, the problem
of boundary layers related to heating and cooling sur-
faces embedded in fluid-saturated porous media have
attracted considerable attention of researchers during
the last few decades. Areas of applications as geother-
mal energy extraction, oil reservoir modelling, mag-
netohydrodynamic, casting and welding in manufac-
turing processes, (see [8]], [11] and [12]) or in bound-
ary layer flows (see [4] and [10]) etc. In this paper, our
interest focuses on the analysis of the boundary value
problems Py (4 )

f"H LB =1) =0

f(0)=a,aeR

7D)\(ab)
f(0)=b<0 ’
f'(t) — Xast — +o0

where A € {0, 1} has already been examined in [3],
[7] and [14] with ¢ = 0. This problem comes from
the study of the mixed convection boundary layer flow
along a semi-infinite vertical permeable plate embed-
ded in a saturated porous medium, with a prescribed
power law of the distance from the leading edge for
the temperature. The parameter S is a temperature
power-law profile and Ig is the mixed convection pa-

rameter, namely b = 72 — 1, with R, the Rayleigh

number and P, the Péclet number. For more details on
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the physical derivation and the numerical results, the
interested reader can consult references [3] and [13]].

Mathematical results about the problem Py, )
with A = 1 can be found in [1]], [6], [7], [9] and
[14]. The case where a > 0, b > 0, 8 > 0 and
A € {0, 1} was treated by Aiboudi and al. in [1]], and
the results obtained generalize the ones of [9]]. In [6]],
Brighi and Hoernel established some results about the
existence and uniqueness of convex and concave so-
lution of Py, ) where —2 < 8 < 0 and b > 0. These
results can be recovered from [4], where the general
equation [ + f " + g(f’) = 0 is studied.

Recently, in [[7], the authors prove some theoreti-
cal results about the problem Py ) with —2 < 3 <
0, b =1+ ¢and ¢ < —1. In particular, the au-
thors prove that there exist e, € (—1.807,—1.806)
and ¢* € (—1.193,—1.192), such that:

() Py(0,p) has no convex solution forany —2 < 8 <
O and each e < ¢,.

(ii) Py(o,p) has a convex solution for each —2 < 3 <
0 and each e € [¢*, —1).

In [[14] one can found interesting new result about the
existence of convex solution of Py (g ) where 0 < 8 <
1 under some conditions. In [2] the results obtained by
Aiboudi and al generalize the ones of [14]. In [7]] and
[[14], the method used by the authors to prove the ex-
istence of a convex solution for the case a = 0 seems
difficult to generalize for a # 0.
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The problem Py (4 ) with 8 = 0 is the well known
Blasius problem. For a broad view, see [3]. See also
[LL5]].

The aim of this paper is to extend the study of
existence and nonexistence of the solutions of Py ,,p)
with § < 0 and A € {0,1}. We will focus our atten-
tion on convex and convex-concave solutions of the
equation

"+ LB —1) =0. (1)

As usually, to get a convex or convex-concave solution
of P(a,p)» We will use the shooting technique which
consists of finding the values of a parameter ¢ > 0 for
which the solution of (1)) satisfying the initial condi-
tions f(0) = a, f/(0) = band f”(0) = c, exists on
[0,400), and is such that f/(t) — X ast — +o0o. We
denote by f. the solution of the following initial value
problem and by [0,7) its right maximal interval of
existence:

" f B =1) =0

f(0)=a
F1(0)=b<0 Plase)
f"0)=c=0

2 On Blasius Equation

In this section, we recall some basic properties of the
supersolutions of the Blasius equation. Let I C R be
an interval and f : I — R be a function.

Definition 1. We say that f is a supersolution of the
Blasius equation f"' + f f"" = 0 if f is of class C® and
lff”/“‘ff” Z 007’[ I

Proposition 2. Let tg € R. There does not exist non-
positive convex supersolution of the Blasius equation
on the interval [t +00).

Proof. See [4], Proposition 2.5. ]

3 Preliminary Results

Proposition 3. Let f be a solution of the equation
on some maximal interval I = (T_,T).

1. If F is any anti-derivative of f on I, then

(£ = =B1/(f = )e".

2. Assume that Ty = +oc and that f'(t) — A € R
as t — +oo. If moreover f is of constant sign at
infinity, then f"(t) — 0 as t — +oo0.
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3. If Ty = +ocand if f'(t) — A€ Rast — +o0,
then A\ =0o0r A =1.

4. If Ty < +oo, then f" and f' are unbounded near
T,.

5. If there exists a point to € I satisfying f"(to) = 0
and f'(to) = p, where . = 0 or 1 then for all
t € I,we have f(t) = u(t —to) + f(to).

Proof. The first item follows immediately from equa-
tion . For the proof of items 2-5, see [4]], Proposi-
tion 3.1 with g(z) = fz(z — 1). O

4 The Boundary Value Problem in
the Convex and Convex-Concave
Case with 5 < 0

In the following we take a,b € R and A € {0, 1} with
b < 0and 8 < 0. We are interested here in convex
and convex-concave solutions of the boundary value
problem Py, ). As mentioned in the introduction, we
will use the shooting method to find these solutions.
Define the following sets:

Ci={c>0:f/<0and f/ >00n[0,7.)},

Co={c>0:3.€[0,T.),Fe. > 0s.t f. < 0on (0,¢.),
fi>0o0n (te,t. +e.)and f/ > 0on (0,t. + )},
Cs={c>0:3s.€10,T.),3e. > 0s.t f > 0o0n (0,s.),

7 <0on (s, s:+¢ec)and f. < 0on (0,s.+ )}

Lemma 4. f. is a convex solution of the boundary
value problem Py(q ) if and only if ¢ € C1.

Proof. See Appendix A of [4] with g(z) = px(z —
1). O

Lemma 5. The set Cs is empty.

Proof. See Lemma A.5 of [4] with g(x) = Sxz(x —1)
and 5 < 0. O

From the previous Lemma, we have Cy U Cy =
[0,400) and C; N Cy = ().
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5 Thea <0 case

Lemma 6. The set C is empty.

Proof. For contradiction, assume that C; # () and
let ¢ € C;. From Lemma [4] f. is a convex solu-
tion of the boundary value problem Py, ;). Hence
fe and f! are negative on [0, 400). This implies that

M+ fofl = =BfL(fl—1) > 0on (0,+00). Hence,
fc 1s a nonpositive convex supersolution of the Bla-
sius equation on (0, 4+00). This contradicts Proposi-
tion 2l O

Remark 7. From the previous lemma and Lemma [3]
CQ = [O, +OO).

Remark 8. From Proposition 3.1, items 1, 3 and 5, if
¢ € Cy, then there are only three possibilities for the
solution of the initial value problem P4 .-

1. f.is convex on its right maximal interval of exis-
tence [0,T¢) and f.(t) — +oo ast — T (with
T. < +00);

2. there exists a point ty € [0,T.) such that
[ (to) = 0and 0 < fi(to) < 1;

3. [fcis a convex solution of Py(q ).

Lemma9. Let 3 < 0,a <0andb < —1. Ifc >0
and if there exists to € [0,T,) such that f!(ty) = 0
and 0 < fl(to) < 1, then f.(to) > 0.

Proof. Let ¢ > 0 and assume that there exists tg €
[0,T.) such that f”(t9) = 0and 0 < f.(ty) = 6 < 1.
Suppose that f.(t9) < 0. Let us consider the function
L. = 3f"*+ 2B — 33 f2. Then, from (1)), we have
L. = —6f.f"? > 0o0n[0,t) and hence:

Le(0) = 3¢24280° —38b% < L.(to) = 236° —3562.

It follows that #? — b > 0 which implies that > 1.
This is a contradiction. O

For the rest of this section, if it is defined, we will
1— b2
B—2b

Lemma 10. Letb < —1 andc > 0. Let t,. > 0 be the
first point such that f.(t.) = 0. If, either 2b < 3 < 0,
or 8 < 2band a > ay, then f.(t,) > 1.

Proof. From Remark [7] Remark [§]and Lemma 9] we
know that the point ¢, exists. Let K. = 2f.f” — f"? +

f2(2f.—B). From (1), we obtain K/, = 2(2— ) f.f?
on (0, t,). Therefore, K. is decreasing on (0, t,) and
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hence K.(0) > K, (t.). It follows that if 2b < 5 < 0
then

2(t,) > —2ac+ b? + a*(B — 2b) > V7,

which implies that f/(¢.) > 1. The same result is
obtained where b < —1, 8 < 2band a > a,. ]

Theorem 11. Let 8 < 0 and a,b € Rwithb < 0 and
a<0.

1) The boundary value problem Py, ) has no convex
solution.

2) Ifb < —1and if either 2b < 8 < 0, or § < 2b and
a > ax, then the boundary value problem Py qp)
has no convex and no convex-concave solution.

3) If b < —1 and if, either 2b < B < 0, or 5 < 2b
and a > ay, then, for any ¢ > 0, the solution f,
of the initial value problem P(qy ) is convex on
its right maximal interval of existence [0,T,) and
fl(t) = +ooast — T, (with T, < 4+00).

Proof. The first result follows from Lemma [] and
Lemma [6] The second result follows from Propo-
sition [Blitem1, Lemma [0 and Lemma The
third result follows from Remark [7, Remark [8] and
Lemmal (10l O

6 The a > 0 case

Leta,b € Rwith 8 < 2b < 0 and a > 0. We consider
the solution f of the initial value problem P, ) on
the right maximal interval of existence [0, 7).

Nk

Lemma 12. Leta > a*, ¢ > 0and 5 < 2b < 0.
If fc is a solution of the initial value problem P, ),
then f. is positive on the right maximal interval of
existence [0, Ty).

Letus seta™ = —

Proof. Assume that there exists ¢, € (0,7¢) such that
fe >0on(0,t) and f.(ts) = 0. Let K, = 2f.f// —
2+ f2(2f. — ). From , we obtain K, = 2(2 —
B)fef? > 0 on (0,t,). Therefore, K. is increasing

n (0, ) and hence K.(0) < K,(t,). It follows that

0> —f2(t,) > a*(2b - B) — b*.
This is a contradiction. O

Remark 13. From the previous Lemma and Lemma
5.16 of [4], if there exists tg € [0,T.) such that

"(to) = 0, then f.(to) > 0 and f. is a convex-
concave solution of Py (4 p)-
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Lemma 14. The set Cy is not empty.

Proof. Assume C is empty, then from Lemma [5]
Cy = [0,+00) and f. is a convex solution of Pyqp)
forall ¢ € [0, +00). Let A. = f! + f.(f. —1). From
(1), we obtain A, = (1 — B)f.(f. —1). Since f.isa
convex solution of Py, ;). then f; < 0. Therefore, A,
is increasing on [0, +00) and hence A.(0) < A.(t) as
t — +o0o. It follows that ¢ < —a(b—1). Thisis a
contradiction. O

Remark 15. From the Remark Proposition 3.1,
items 1, 3 and 5, if ¢ € Cs, then there are only three
possibilities for the solution of the initial value prob-
lem Pgp.c):

1. f.is convex on its right maximal interval of exis-
tence [0,T,) and fl.(t) — +oo as t — T, (with
T. < 400);

2. [c is convex-concave solution of Py(qp)-
3. fe is a convex solution of Py (4 p)-

Lemma 16. If § < 2b < 0 and a > a* then there
exists cg € Cy such that if ¢ > cq then f. is a con-
vex solution of P(qp,c) on its right maximal interval of
existence [0,T;) and f.(t) — +oo ast — T, (with
T, < 400).

Proof. From Remark [I5] and Lemma we know
that, if ¢ € (s, then f,. is a convex solution of Pl(a,b)>
a convex-concave solution of Py(qp) or f. is convex
on its right maximal interval of existence [0, 7}) and
fL(t) = oo ast — Te (with T, < 4-00).

Let ¢ € (s, be such that f. is a convex solu-
tion of Py (4 p) or a convex-concave solution of Py, p).
Therefore, we have b < f. < 1 on [0, 400) and, from
Lemma[12] we have f. > 0. It follows that
(P4 L= 1) = (=AU~ 1) = —2(1-B)
on [0, +00). Integrating between 0 and ¢ >
using the fact that f. > 0, we obtain

0, and

26> 5 (1= B)t+alb— 1) + e~ L()(UH) ~ 1)
> _3(1 Bt +alb—1)+e.

Integrating once again we get

vt >0,
(2)

ISSN: 2367-895X
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Letus set Po(t) = —§ (1= B)t2+(a(b—1)+c)t+b—1.
We have P,.(t) < 0 for all t > 0. It means that P, has
no positive roots. Thus c cannot be too large, because,
on the contrary, its discriminant A = (a(b—1)+c) g
2(1 = B)(b—1) and a(b — 1) + ¢ would be positive,
and hence the polynomial P, would have two positive
roots, a contradiction.

Therefore, there exists ¢y > 0 such that for any
¢ > ¢, fo is convex on its right maximal interval of
existence [0,7¢) and f.(t) — +oo0 as t — T, (with
T. < +00). This completes the proof. O

Theorem 17. Let 5 < 2b < 0, a > a* > 0 and f. be
a solution of the initial value problem P4, ..

1) Forall c > 0, f. is positive.

2) there exists ¢y > 0 such that for any ¢ > cg, fe
is convex on its right maximal interval of existence
[0,T¢) and f.(t) — 400 ast — T, (with T, <
+00).

Proof. The first result follows from Lemma [12] The
second result follows from the first result, Remark [13]
Remark [[5] Lemma[I4]and Lemma[I6] O

7 Conclusion

In this work we have presented a set of new and im-
portant results for 8 < 0 and b < 0, we summarize as
follows:

1. Ifa <0.

(a) The boundary value problem Py, 5 has no
convex solution on [0, +00).

(b) If b < —1 andifeither26 < B < 0or B <
1-b?

B —2b

the boundary value problem Py, ) has no
convex and no convex-concave solution.

Ifb < —1landeither2b < 5 < 0orf( < 2b
and a > ay, and if f. is a solution of the
initial problem P, o) with ¢ > 0 then f.
is a convex solution of the boundary value
problem Py o (q,b)-

2band a > a4 with a, = — then

(©)

2. fora >0

b

——, al
V2b—p
solution of the initial value problem P, p, .
is a positive.

(a) ifa > a* > 0 where a* = — 1

(b) The boundary value problem P o, ) has
infinitely many positive convex solutions.
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