
On Errors in Euler’s Formula for Solving ODEs 
 

JACOB MANALE 
Department of Mathematical Sciences 

University of South Africa 
 Corner Christiaan de Wet Street and Pioneer Avenue,  

1709 Florida, Johannesburg, Gauteng Province   
REPUBLIC OF SOUTH AFRICA 

manaljm@unisa.ac.za    http://www.unisa.ac.za 
 
 
Abstract: - Euler introduced the formula 𝑦𝑦 = exp⁡(𝜔𝜔𝜔𝜔) for solving ODEs of the form 𝐴𝐴𝑦𝑦′′ + 𝐵𝐵𝑦𝑦′ + 𝐶𝐶𝐶𝐶 = 0. It 
is now a procedure that can be found at the basis of numerous mathematical theories, and has countless 
applications in several fields.  In this contribution, we demonstrate that this formula is invalid as a tool for 
solving such equations.  We determine the correct one through quadrature, and establish it to be 𝑦𝑦 =
𝑎𝑎{exp(𝜔𝜔[𝑥𝑥 + 𝜙𝜙]) − exp(−𝜔𝜔[𝑥𝑥 + 𝜙𝜙])}/(2 𝜔𝜔), or simply 𝑦𝑦 = 𝑎𝑎 sin(𝑖𝑖𝑖𝑖[𝑥𝑥 + 𝜙𝜙])/(𝑖𝑖 𝜔𝜔). 
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1 Introduction 

Leonhard Euler (1707-1783), was undoubtedly a 
titan of his time. He made contributions to a wide 
variety of fields, including Mathematics, Physics, 
Astronomy, Geography, Logic and Engineering. 

Mistakes are beginning to emerge in this 
great scholar’s works.  The latest flaw was 
pointed out by Tarek Elgindi in his study of 
Euler’s fluid equations, in two papers [1] and 
[2], published online.   

We address his solutions for the equation 

 𝐴𝐴𝑦𝑦′′ + 𝐵𝐵𝑦𝑦′ + 𝐶𝐶𝐶𝐶 = 0, (1) 

where 𝐴𝐴,𝐵𝐵 and 𝐶𝐶 are constants, and 𝑦𝑦 = 𝑦𝑦(𝑥𝑥).  It 
can be written in the simple form 

 𝑦𝑦′′ + 𝜆𝜆 𝑦𝑦 = 0. (2) 

Euler proposed the formula 

 𝑦𝑦 = 𝑒𝑒𝜔𝜔𝜔𝜔 , (3) 

for solving it, and got 

 𝑦𝑦 = 𝐶𝐶1𝑒𝑒𝜔𝜔𝜔𝜔 + 𝐶𝐶2𝑒𝑒−𝜔𝜔𝜔𝜔 , (4) 

for 𝜆𝜆 = −𝜔𝜔2 with 𝐶𝐶1 and 𝐶𝐶2  being constants.   

For the case for 𝜆𝜆 = 𝜔𝜔2 he got 

 𝑦𝑦 =  𝐶𝐶3 cos(𝜔𝜔𝜔𝜔) + 𝐶𝐶4 sin(𝜔𝜔𝜔𝜔), (5) 

with the constants 𝐶𝐶1 and 𝐶𝐶2.  These solutions can 
be found in many books on differential equations, 
including the latest and earliest: [3], [4], [5], [6] and 
[7], and in application texts [8], [9] and [10]. 

The case 𝜆𝜆 = 0 is considered trivial, because the 
solution thereof can easily be arrived at, and is 

 𝑦𝑦 =  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6, (6) 

but cannot be arrived at using Euler’s formula.  The 
parameters 𝐶𝐶5 and 𝐶𝐶6 too are constants.  

We will demonstrate in Section 2 that the other 
two case solutions, (4) and (5), have errors.  The 
solution in (6) does not have any, because it was 
obtained through quadrature. 

In Section 3 we determine the quadrature 
solution for (2).  That is, we use rules of integral 
calculus, and not a guessed formula. 

Section 4 is on a numerical experiment, wherein 
we test the validity of our solution. 
 
 
2 The Error 
For the three results in (4), (5) and (6) to be 
solutions of (2), then they have to agree at the case 
𝜆𝜆 = 0.  This requires that (4) and (5) each has to 
be paired and compared with (6), and evaluated 
at 𝜆𝜆 = 0.   
 
 
2.1 Comparing (4) with (6) 
Consider 
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 𝐶𝐶1𝑒𝑒𝜔𝜔𝜔𝜔 + 𝐶𝐶2𝑒𝑒−𝜔𝜔𝜔𝜔 =  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6, (7) 

 for 𝜆𝜆 = 0.    
Substituting the condition 𝜆𝜆 = 0, that is, 𝜔𝜔 = 0,  

yields 

 𝐶𝐶1 + 𝐶𝐶2 =  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6, (8) 

 
which is a contradiction.  
 
 
2.2 Comparing (5) with (6) 
Consider 

 𝐶𝐶3 cos(𝜔𝜔𝜔𝜔) + 𝐶𝐶4 sin(𝜔𝜔𝜔𝜔) =  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6, (9) 

 for 𝜆𝜆 = 0.   Substituting the condition gives 

 𝐶𝐶3 =  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6. (10) 

This too is a contradiction. 
 
 
3 The Quadrature Solution 
To solve (2) through quadrature, we begin by 
expressing it in the form 

 𝑦𝑦′𝑦𝑦′′ = −𝜆𝜆 𝑦𝑦𝑦𝑦′. (11) 

 We now introduce Leibzniz’s notation, in order 
to gain more control on the equation.  That is, 

 d
d 𝑥𝑥

 �y ′ �
2

2
= −𝜆𝜆 d

d 𝑥𝑥
 y2

2
. (12) 

Next we introduce the integral signs: 

    ∫ d
d 𝑥𝑥

�y ′ �
2

2
𝑑𝑑 𝑥𝑥 = −𝜆𝜆∫ d

d 𝑥𝑥
y2

2
𝑑𝑑 𝑥𝑥, (13) 

so that 

  �y ′ �
2

2
= −𝜆𝜆 y2

2
+ 𝐸𝐸, (14) 

where 𝐸𝐸 is a constant of integration; a result of the 
first reduction of order.  For the second order 
reduction, we first separate the variables, in the 
process introducing integral signs.  That is, 

 ∫ 𝑑𝑑  𝑦𝑦
�−𝜆𝜆  𝑦𝑦2+2 E

 = ∫𝑑𝑑 𝑥𝑥. (15) 

Integration of this result leads to 
 
 

 1
√λ

arcsin( y
�2 E/λ

) =  𝑥𝑥 + 𝜙𝜙, (16) 

where 𝜙𝜙 is a second constant of integration.  This 
means the quadrature solution for (2) is 

 𝑦𝑦 = 2 E
√λ

sin(√λ [𝑥𝑥 + 𝜙𝜙]). (17) 

 
 
4  Numerical Experiments 
To test the validity of our quadrature solution, we 
deduce its special case forms.  That is, the cases 
𝜆𝜆 = −𝜔𝜔2, 𝜆𝜆 = 𝜔𝜔2  and 𝜆𝜆 = 0.  These special 
cases solutions are then paired and compared 
for consistency.  
 
 
4.1 The case 𝝀𝝀 = −𝝎𝝎𝟐𝟐  
Substituting 𝜆𝜆 = − 𝜔𝜔2 in (17) gives 

 𝑦𝑦 = 2 E
𝑖𝑖𝑖𝑖

sin(𝑖𝑖𝑖𝑖 [𝑥𝑥 + 𝜙𝜙]). (18) 

 Since 

 sin(𝑖𝑖 𝜃𝜃) =  𝑒𝑒−𝜃𝜃− 𝑒𝑒𝜃𝜃

2𝑖𝑖
, (19) 

 we have 

 sin(𝑖𝑖𝑖𝑖[𝑥𝑥 + 𝜙𝜙]) =  𝑒𝑒−𝜔𝜔  [𝑥𝑥+𝜙𝜙 ]− 𝑒𝑒𝜔𝜔  [𝑥𝑥+𝜙𝜙 ]

2𝑖𝑖
, (20) 

 so that 

 𝑦𝑦 = E  𝑒𝑒𝜔𝜔  [𝑥𝑥+𝜙𝜙 ]− 𝑒𝑒−𝜔𝜔  [𝑥𝑥+𝜙𝜙 ]

𝜔𝜔
. (21) 

  
 
4.1.1 Compairing (21) with (6)  
Consider 

 E  𝑒𝑒𝜔𝜔  [𝑥𝑥+𝜙𝜙 ]− 𝑒𝑒−𝜔𝜔  [𝑥𝑥+𝜙𝜙 ]

𝜔𝜔
=  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6, (9) 

 for 𝜆𝜆 = 0.   But the latter implies 𝜔𝜔 = 0.  
Evaluating the expression on the left of (22) 
at 𝜔𝜔 = 0 requires limits.  That is, 

 lim𝜔𝜔→0 E  𝑒𝑒𝜔𝜔  [𝑥𝑥+𝜙𝜙 ]− 𝑒𝑒−𝜔𝜔  [𝑥𝑥+𝜙𝜙 ]

𝜔𝜔
=  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6, (23) 

 
which yields 
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2𝐸𝐸(𝑥𝑥 + 𝜙𝜙) =  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6. (24) 

This is not a contradiction.  It is a consolidation of 
constants, meaning  𝐶𝐶5 = 2𝐸𝐸 and  𝐶𝐶6 = 2𝐸𝐸𝜙𝜙. 
 
 
4.2 The case 𝝀𝝀 = 𝝎𝝎𝟐𝟐  
Substituting 𝜆𝜆 =  𝜔𝜔2 in (17) gives 

 𝑦𝑦 = 2𝐸𝐸 sin (𝜔𝜔  [𝑥𝑥+𝜙𝜙 ])
𝜔𝜔

. (25) 

 This can be expanded, so that 

 𝑦𝑦 =
�2𝐸𝐸 sin (𝜔𝜔𝜙𝜙)

𝜔𝜔
� cos(𝜔𝜔𝜔𝜔) +

[2𝐸𝐸 cos(𝜔𝜔𝜔𝜔)] sin(𝜔𝜔𝜔𝜔),  (26) 

 which is similar to Euler’s result in (5).  Similar, 
but not the same. 
 
 
4.2.1 Compairing (25) with (6)  
Consider 

 2𝐸𝐸 sin (𝜔𝜔  [𝑥𝑥+𝜙𝜙 ])
𝜔𝜔

=  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6, (27) 

 for 𝜆𝜆 = 0.  Again, evaluating the expression on 
the left of (27) at 𝜔𝜔 = 0 requires limits.  That is, 

lim𝜔𝜔→0 2𝐸𝐸 sin (𝜔𝜔  [𝑥𝑥+𝜙𝜙 ])
𝜔𝜔

=  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6, (28) 

so that 

2𝐸𝐸(𝑥𝑥 + 𝜙𝜙) =  𝐶𝐶5𝑥𝑥 + 𝐶𝐶6. (29) 

This is a duplication of the results observed in 
Sub-subsection 4.1.1.  
 
 
4 Conclusion 
We have demonstrated that Euler’s solutions for 
ODEs of the type I (1) have errors, and provided an 
alternative solution, presented in (17).  
 
 
 
 
 
 
 
 
 

These errors are very hard to detect in most 
instances of applications.  An area wherein it is easy 
to detect is Optics.  See [11] and [12].  
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