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Abstract: Study of optimal control of a system on Lie groups has been a very tempting research area for mathe-
maticians and physicist. The matrix Lie groups provide a mathematically rich definition to study variety of control
problems. In this paper, controllability of the smallest exceptional Lie group G2 is studied, along with optimal
control. Finally, Kahan Integrator is applied on the dynamics of the exceptional Lie group G2.
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1 Introduction
Lie groups structures a focal subject of present day
mathematics and theoretical physics. They speak to
the best-created hypothesis of continuous symmetry
of mathematical objects and structures, and this makes
them requisite tools in various parts of mathematics
and physics. They give a characteristic system to anal-
yse the continuous symmetries of structures. Particle
physics, M-theory, string theory, quantum chromody-
namics, quantum computation and etc. involves Lie
groups. A lot of study on classical Lie group ap-
proach to different application areas such as space-
craft attitude control [1], car parking problem, under-
water vehicle problem [2] and path planning of robot
manipulators has been done. Control theory and Lie
groups go back a long way. It was Brockett [3], who
introduced the concept of Lie groups to motion con-
trol problems. His theory were on different dynamical
aspects of the system, like controllability, observabil-
ity and realization theory. Later Jurdjevic and Suss-
mann [4] studied the controllability properties for Lie
groups. Control theory has its foundations in the clas-
sical calculus of variations, yet made its mark with the
coming of endeavors to control and manage machin-
ery and to create controlling systems for ships and a
lot later for planes, rockets and satellites. Remsing
[5] and Puta et al [6] focused on the matrix Lie group
and embellished its application to various mechanical
problems. Optimal control involving Lie groups was
studied by Spindler [7]. Continuing on the study of
optimal control on matrix Lie group, Pop [8] studied
optimal control on Heisenberg Lie group, H(3), and
Craioveanu et al [9] focused on the special Euclidean

group SE(3,R) respectively.
The exceptional Lie groups are interesting, sym-

metries emerging as groups of invariants of many
physical models proposed for fundamental interac-
tions. The smallest exceptional Lie group G2 was dis-
covered by Friedrich Engel. In a note to the Royal
Saxonian Academy of Sciences, he wrote: ”More-
over, we hereby obtain a direct definition of our 14-
dimensional simple group (G2) which is as elegant
as one can wish for” [10]. The smallest exceptional
group G2, the automorphism group of octonion alge-
bra, turned out to be the best candidate as a holonomy
group of the 7-dimensional manifold for the compacti-
fication of M -theory [11]. M -theory compactified on
seven-dimensional manifolds of G2 holonomy gives
rise to four-dimensional theories with N = 1 su-
persymmetry. G2 holonomy is the condition for un-
broken supersymmetry in four dimensions, Michael
Atiyah [12] analyzed M-theory dynamics on a seven-
manifold of G2 holonomy [12]. Recently, G2 has got
lots of attention from physicist. Since G2 has triv-
ial center, Yang-Mills theory with gauge group G2 is
interesting. Here in this paper we have studied the
controllability of and optimal control of the smallest
exceptional Lie group G2.

2 Exceptional Lie Group G2 [13]
The smallest of the five exceptional simple Lie groups
G2 is 14-dimensional. G2 can be described as the au-
tomorphism group of the octonions. As a proper sub-
group of the double cover spin(7) of special orthog-
onal group SO(7), G2 is the subgroup that preserves
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Table 1: Commutation table of exceptional Lie algebra
[.,.] A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

A1 0 -A3 0 0 A6 0 -2A1 A7 0 A9 0 0 -A12 3A1

A2 A3 0 2A4 3A5 0 0 A2 0 A14 -3A8 -2A10 -A11 0 -2A2

A3 0 -2A4 0 -3A6 0 0 -A3 A2 -3A1

3A7+
A14 2A9 0 -A11 A3

A4 0 -3A5 3A6 0 0 0 0 0 -2A3 2A2

3A7+
2A14 A9 -A10 -A4

A5 -A6 0 0 0 0 0 A5 0 -A4 0 A2

A7+
A14 -A8 -3A5

A6 0 0 0 0 0 0 -A6 -A5 0 A4 -A3 -A8

2A7+
A14 0

A7 2A1 -A2 A3 0 -A5 A6 0 -2A8 A9 -A10 0 A12 -A13 0
A8 -A7 0 -A2 0 0 A5 2A8 0 A10 0 0 -A13 0 -3A8

A9 0 -A14 3A1 2A3 A4 0 -A9 -A10 0 -2A11 3A12 0 0 2A9

A10 -A9 3A8

-3A7-
A14 -2A2 0 -A4 A10 0 2A11 0 3A13 0 0 -A10

A11 0 2A10 -2A9

-3A7-
2A14 -A2 A3 0 0 -3A12 -3A13 0 0 0 A11

A12 0 A11 0 -A9

-A7-
A14 A8 -A12 A13 0 0 0 0 0 3A12

A13 A12 0 A11 A10 A8

-2A7-
A14 A13 0 0 0 0 0 0 0

A14 -3A1 2A2 -A3 A4 3A5 0 0 3A8 -2A9 A10 -A11 -3A12 0 0

some non zero spinor.
The roots of G2 are

4 = {α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β, hα, −α,−β,
−α− β,−α− 2β,−α− 3β,−2α− 3β and hβ}

And hence the chevalley basis for G2 is

{eα, eβ, eα+β, eα+2β, eα+3β, e2α+3β, hα, e−α, e−β,

e−α−β, e−α−2β, e−α−3β, e−2α−3β , hβ}

Here we take A1 = eα, A2 = eβ, A3 = eα+β, A4 =
eα+2β, A5 = eα+3β, A6 = e2α+3β, A7 =
hα, A8 = e−α, A9 = e−β, A10 = e−α−β, A11 =
e−α−2β, A12 = e−α−3β, A13 = e−2α−3β and
A14 = hβ as the generators and the commutation
table is shown in Table 1.

3 Control System on Exceptional Lie
group G2

A left invariant driftless control system on exceptional
Lie group (G2) group can be defined as [14]

ṗ = Z0(q)+

m∑
i=1

u′i(t)Zi(p), p(t) ∈ G2, u
′
i(t) ∈ R,m ≤ 14.

(1)

Here p represents the state, Zi is any vector field
on G2 and u′i denotes input for the control system.
Zi(p) can be replaced by TeLp%i, ∀p ∈ G2, Lp is the
left translation and for some fixed %i ∈ g2, as the vec-
tor field Zi is left invariant. So Equation (1) can be
rewritten as

ṗ = TeLp

(
%0 +

m∑
i=1

u′i(t)%i

)
. (2)

Here, TeLp is the linearization of Lp at identity ele-
ment denoted as e, which is invariant to left transla-
tion. In order to improve the applicability of Equation
(2) the ‘drift term’ TeLp%0 is omitted, and hence the
control system obtained is known as ‘drift-free control
system’. Equation (2) reduces to

ṗ = TeLp

(
m∑
i=1

u′i(t)%i

)
. (3)

A small damping term ε is multiplied to each of the
input term for further improvization of performance.
As a result, εu′i denotes a periodic control input with
a very small amplitude. Hence, Equation (3) can be
stated as

ṗ = δTeLp

(
m∑
i=1

u′i(t)%i

)
. (4)
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The left invariant driftless control system de-
scribed by Equation (1) on the Lie group G2 with
chevalley basis becomes

Ẋ = XU(t), U(t) =

(
14∑
i=1

ui(t)Ai

)
. (5)

where X(t) is a curve in the Lie group G2 and U(t) is
a curve in the Lie algebra g2. A1, A2, . . . , Am are the
chevalley basis of g2. So a generalized drift-free, left
invariant control system on G2 can be written as

Ẋ = X

(
14∑
i=1

Aiui

)
. (6)

The control system in (6) can be modelled in
terms of fewer independent controls, one of such sys-
tem under consideration is

Ẋ = X (A1u1 +A2u2 +A8u8 +A9u9) . (7)

4 Controllability

Controllability of a system marks the existence of a
steering control input u(t) which steers the system
from an initial state X(ti) = xi to a desired final state
X(tf ) = xf . In order to analyze the system derived
from a Lie group we use the result of a known stan-
dard theorem.

Rashevesky-Chow Theorem [15]

”If M is a connected manifold and the control distri-
bution ∆ = span {f1, f2, ..., fn} is bracket generat-
ing, then the drift-free system

Ẋ =
n∑
i=1

xifi(x), x ∈M (8)

is controllable.”

Proposition 1. The system described by equation (7)
is controllable.

Proof. Since the span of the set of Lie brackets gen-
erated by {A1, A2, A8, A9} coincides with the excep-
tional Lie algebra g2, therefore by Rashevesky-Chow
Theorem the system in (7) is controllable.

5 Optimal Control

Controllability analysis guarantees that a control input
exist which steers the system from an initial state to a
desired state, but it fails to discuss anything about the
uniqueness of the available input choices. There can
be several steering inputs driving the control system
from initial to final state. For improvised performance
the input choice should be made in an optimized man-
ner. There are several ways to optimize input choices.
In this section, we take minimum effort problem and
design control inputs in such a way that the input cost
function is minimized. Here the input cost function is
defined by

K(u1, u2, u8, u9) =
1

2

∫ tf

0

(
c1u1

2 + c2u2
2 + c8u8

2 + c9u9
2
)
dt,

c1, c2, c3, c4 > 0.

In order to minimize K, we have constructed a
controlled Hamiltonian which is defined by

Hc = x1u1 + x2u2 + x8u8 + x9u9

− 1

2
(c1u

2
1 + c2u

2
2 + c8u

2
8 + c9u

2
9).

According to Krishnaprasad’s theorem [16], the
Hamiltonian Hc of our system, has to be partially
differentiated with respect to each control input and
equated to zero in order to obtain optimal inputs which
will minimize the total input cost. Hence

∂Hc

∂u1
=
∂Hc

∂u2
=
∂Hc

∂u8
=
∂Hc

∂u9
= 0. (9)

Thus the optimized control inputs are

u1 =
x1
c1
, u2 =

x2
c2
, u8 =

x8
c8
, u9 =

x9
c9
.

The optimal Hamiltonian has been derived to be

Hc(x1, x2, x3,x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14) =

1

2

(
x21
c1

+
x22
c2

+
x28
c8

+
x29
c9

)
.

The system is forced to follow a certain dynamics
while optimizing the input choices. This dynamics
which can be obtained by using the results of Krish-
naprasad’s theorem, which states that the resulting re-
stricted dynamics is

[ẋ1, ẋ2, ẋ3, ẋ4,ẋ5, ẋ6, ẋ7, ẋ8, ẋ9, ẋ10, ẋ11, ẋ12, ẋ13, ẋ14]
t

= Ω– · ∇Hc
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Here, Ω– is the minus Lie Poisson matrix and is de-
fined by

In an explicit form the dynamics can be written as



ẋ1 = − 1
c2
x2x3 + 1

c8
x7x8

ẋ2 = 1
c1
x1x3 + 1

c9
x9x14

ẋ3 = − 2
c2
x2x4 + 1

c8
x2x8 − 3

c9
x1x9

ẋ4 = − 3
c2
x2x5 − 2

c9
x3x9

ẋ5 = − 1
c1
x1x6 − 1

c9
x4x9

ẋ6 = − 1
c8
x5x8

ẋ7 = 2
c1
x21 − 1

c2
x22 − 2

c8
x28 + 1

c9
x29

ẋ8 = − 1
c1
x1x7 + 1

c9
x9x10

ẋ9 = − 1
c2
x2x14 − 1

c8
x8x10

ẋ10 = − 1
c1
x1x9 + 3

c2
x2x8 + 2

c9
x9x11

ẋ11 = 2
c2
x2x10 − 3

c9
x9x12

ẋ12 = 1
c2
x2x11 + 1

c8
x8x13

ẋ13 = 1
c1
x1x12

ẋ14 = − 3
c1
x21 + 2

c2
x22 + 3

c8
x28 − 2

c9
x29.

(10)

Ω– =



0 −x3 0 0 x6 0 −2x1 x7 0 x9 0 0 −x12 3x1
x3 0 2x4 3x5 0 0 x2 0 x14 −3x8 −2x10 −x11 0 −2x2
0 −2x4 0 −3x6 0 0 −x3 x2 −3x1 3x7+x14 2x9 0 −x11 x3
0 −3x5 3x6 0 0 0 0 0 −2x3 2x2 3x7+2x14 x9 −x10 −x4
−x6 0 0 0 0 0 x5 0 −x4 0 x2 x7+x14 −x8 −3x5

0 0 0 0 0 0 −x6 −x5 0 x4 −x3 −x8 2x7+x14 0
2x1 −x2 x3 0 −x5 x6 0 −2x8 x9 −x10 0 x12 −x13 0
−x7 0 −x2 0 0 x5 2x8 0 x10 0 0 −x13 0 −3x8

0 −x14 3x1 2x3 x4 0 −x9 −x10 0 −2x11 3x12 0 0 2x9
−x9 3x8 −3x7−x14 −2x2 0 −x4 x10 0 2x11 0 3x13 0 0 −x10

0 2x10 −2x9 −3x7−2x14 −x2 x3 0 0 −3x12 −3x13 0 0 0 x11
0 x11 0 −x9 −2x7−x14 x8 −x12 x13 0 0 0 0 0 3x12
x12 0 x11 x10 x8 −2x7−x14 x13 0 0 0 0 0 0 0
−3x1 2x2 −x3 x4 3x5 0 0 3x8 −2x9 x10 −x11 −3x12 0 0



.
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6 Numerical Integration of Dynam-
ics

It is very difficult to find the analytical solution of the
dynamical system described by equation (10), as it
involves simultaneous nonlinear ordinary differential
equations. So, numerical technique have been used
to solve the system of nonlinear ordinary differential
equations. An unconventional integrator have been
implemented and the subsequent results have been an-
alyzed.

Poisson preservation

An integrator ψ : Rm → Rm is said to be Poisson
preserving if it satisfies the following condition[17]:

ψz(z)P (z)ψtz(z) = P (ψ(y)) (11)

Let z(t) = Xn = [xn1 xn2 · · · · · · xnm].

For one step, with h as the step length it can be
stated that

z(t+ h) = Xn+1

hence,

P ′ = ψz(z) =
∂(z(t+ h))

∂(z(t))
=
∂Xn+1

∂Xn
(12)

Thus Equation (11) reduces to

P ′ · P (Xn) · (P ′)T = P (Xn+1). (13)

where P is the Poisson tensor (matrix) and P ′ is the
Fréchet derivative.

Hamiltonian or Energy preservation

HamiltonianH is said to be preserved ifH is constant
along the solution of dynamics, z(t), or

d

dt
H(z(t)) = 0. (14)

In the discrete form it can be written as

H(z(t+ h))−H(z(t))

h
= 0

⇒ H(z(t+ h))−H(z(t)) = 0

⇒ H(Xn+1) = H(Xn). (15)

6.1 Kahan’s Integrator

An unconventional discretization was proposed by
Kahan [18]. It inherits various integrability proper-
ties from Runge-Kutta methods, i.e., it preserves all
affine symmetric integrals, foliations and affine re-
serving symmetries. In this section Kahan’s integrator
has been applied to the symplectic Poisson system and
properties related to integrability as mentioned above
has been studied.
Kahan’s integrator can be written in the following
form:
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xn+1
1 − xn1 = − h

2c2
(xn+1

2 xn3 + xn+1
3 xn2 )+

h
2c8

(xn+1
7 xn8 + xn+1

8 xn7 )

xn+1
2 − xn2 = h

2c1
(xn+1

1 xn3 + xn+1
3 xn1 )+

h
2c9

(xn+1
9 xn14 + xn+1

14 xn9 )

xn+1
3 − xn3 = − h

2c2
(xn+1

2 xn4 + xn+1
4 xn2 )+

h
2c9

(xn+1
9 xn14 + xn+1

14 xn9 )

xn+1
4 − xn4 = − 3h

2c2
(xn+1

2 xn5 + xn+1
5 xn2 )−

h
c9

(xn+1
3 xn9 + xn+1

9 xn3 )

xn+1
5 − xn5 = − h

2c1
(xn+1

1 xn6 + xn+1
6 xn1 )−

h
2c9

(xn+1
4 xn9 + xn+1

9 xn4 )

xn+1
6 − xn6 = − h

2c8
(xn+1

5 xn8 + xn+1
8 xn5 )

xn+1
7 − xn7 = h

c1
(xn+1

1 xn1 )− h
2c2

(xn+1
2 xn2 )−

h
c8

(xn+1
8 xn8 ) + h

2c9
(xn+1

9 xn9 )

xn+1
8 − xn8 = − h

2c1
(xn+1

1 xn7 + xn+1
7 xn1 )+

h
2c9

(xn+1
9 xn10 + xn+1

10 xn9 )

xn+1
9 − xn9 = − h

2c2
(xn+1

2 xn14 + xn+1
14 xn2 )−

h
2c8

(xn+1
8 xn10 + xn+1

10 xn8 )

xn+1
10 − xn10 = − h

2c1
(xn+1

1 xn9 + xn+1
9 xn1 )+

3h
2c2

(xn+1
2 xn8 + xn+1

8 xn2 )+
h
c9

(xn+1
9 xn11 + xn+1

11 xn9 )

xn+1
11 − xn11 = h

c2
(xn+1

2 xn10 + xn+1
10 xn2 )−

3h
2c9

(xn+1
9 xn12 + xn+1

12 xn9 )

xn+1
12 − xn12 = h

2c2
(xn+1

2 xn11 + xn+1
11 xn2 )+

h
2c8

(xn+1
8 xn13 + xn+1

13 xn8 )

xn+1
13 − xn13 = h

2c1
(xn+1

1 xn12 + xn+1
12 xn1 )

xn+1
14 − xn14 = − 3h

2c1
(xn+1

1 xn1 ) + h
c2

(xn+1
2 xn2 )+

3h
2c8

(xn+1
8 xn8 )− h

c9
(xn+1

9 xn9 )

(16)

Proposition 2. Kahan’s integrator has the following
properties:

1. It does not preserve the Poisson structure.

2. It does not preserve the Hamiltonian Hc of the
system.

Proof. In Equation (16), simultaneous equations are
solved and elements of Xn+1 are written in terms of
elements of Xn, then it has been explicitly computed
and found that

P ′ · P (Xn) · (P ′)T 6= P (Xn+1).

Hence it is not Poisson preserving. Also,

Hc(X
n+1) 6= Hc(X

n).

Hence it doesn’t preserve the Hamiltonian.

7 Conclusion
In this paper a generalized left-invariant drift-free con-
trol system has been established on the exceptional
Lie group G2. Controllability and optimal control
has been studied for this system by minimizing the
Langrangian. Finally numerical integration has been
analyzed via unconventional Kahan integrator. This
work emphasizes on optimal control of the left invari-
ant control system on G2, which may give a superior
understanding to mathematicians and physicist to ac-
tualize our proposed plan in specific optimal control
problems.
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