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Abstract: -  In this paper, a novel approach to the asymptotic stability problem for non-autonomous nonlinear 
difference equations is presented. We propose a quasi-invariance principle to solve a positive limit set localization 
problem for such equations. Asymptotic stability proof of the zero solution of non-autonomous difference equation is 
given by constructing the Lyapunov vector function and comparison system and using the proposed quasi-invariance 
principle for non-autonomous systems of difference equations. We illustrate the implementation of the proposed 
approach using the examples of some discrete epidemic models.                                . 
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1 Introduction  

Difference equations are widely used in the study of 
sampled-data control problem for dynamical systems. It 
is well known that one of the approaches to the 
stabilization problem solution for sampled-data 
nonlinear systems consists in an analysis of an 
approximate discrete-time plant model [1, 2]. Difference 
equations describe different models in mathematical 
biology, medicine, economics and other natural sciences 
as well as technical ones.  

An important direction in the qualitative analysis of 
the difference equations is the study of the stability of 
their solutions. By now, the theory of stability of linear 
difference equations has been well developed [3]. But 
the solution to the stability problem for nonlinear 
difference equations is far from completeness.  

To study the stability problem for nonlinear 
difference equations the Lyapunov function method is 
widely used [3, 4]. One of the main extensions of 
Lyapunov stability theory for autonomous difference 
systems consists in the application of La-Salle's 
invariance principle in order to mitigate the conditions of 
the Lyapunov direct method [4]. The problem on 
asymptotic behavior of the solutions of non-autonomous 
difference equations was considered by many authors [3-
6]. In [6] an analogue of La-Salle's invariance principle 
for non-autonomous difference equations was obtained. 
Note that the Lyapunov direct method was widely 
developed on the basis of using both the comparison 
principle and Lyapunov vector function [7-9]. 

The purpose of this paper is to give new results in the 
stability theory for non-autonomous systems of nonlinear 
difference systems. Firstly, we propose a quasi-
invariance principle to solve a positive limit set 
localization problem for non-autonomous systems of 
difference equations. With respect to the previous result 
in such direction [10], the proposed approach has the 
advantage of using a wider class of Lyapunov functions, 
which allows us to obtain more general results. 
Secondly, we propose a stability analysis which provides 
the uniform global asymptotic stability property for the 
solutions of the non-autonomous systems of nonlinear 
difference systems using both a Lyapunov vector 
function method and the theory of limiting equations. 

2 Stability analysis of nonlinear non-
autonomous difference equations  

Consider the nonlinear difference system given by  

                 ( 1) = ( , ( ))x n f n x n  (1) 

where x  is the m dimensional vector of the real linear 

space mR  with some norm x , n Z ; the function 

: m mf   Z R R  is continuous in x  for each n Z  

and the following equality holds ( ,0) 0f n  . 

We will solve the stability problem of the zero 
solution = 0x  of the system (1).  
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2.1 The quasi-invariance principle for non-
autonomous systems of difference equations  

In order to prove the quasi-invariance principle for non-
autonomous systems of difference equations (1), we 
introduce the following mathematical notations. 

Denote by F  the set of the functions 
: m mf   Z R R  which are continuous in x . Introduce 

the following convergence on the set F . 
Definition 2.1:1 The sequence { }kf F  converges 

to f , if > 0 , N  Z  and for each compact set 
mD  R  there exists 0N Z  such that for all 0k N  

the following holds  

 ( , ) ( , ) < ( , ) [0, ]kf n x f n x n x N D      

This convergence is metrizable if we introduce the 
following metrics in the space F . 

Let  kD  be an aggregate of the embedded compact 

sets covering the space mR  such that  

1 2
=1

, = m
k k

k

D D D D


      R   

The following metrics exists:  

=1

1 sup(|| ( , ) ( , ) ||)
( , ) =

2 1 sup(|| ( , ) ( , ) ||)

( , ) [0, ] ,   ,

k
k

k

f n x g n x
f g

f n x g n x

n x k D f g F


 

 
  

  

Assumption 2.1:2 Assume that the right-hand side of 
(1) satisfies the following two conditions: 

a) The function ( , )f n x  is uniformly bounded on the 

set D Z  for each compact set mD  R , i.e. the 
following holds  

( , ) = ( ) ( , )f n x l l D n x D   Z  (2) 

b) The function ( , )f n x  is uniformly continuous in 

x  on each compact set mD  R , i.e. mD  R  and 
> 0  there exists = ( , ) > 0D    such that for all 

n Z  and 1 2,x x D : 2 1 <x x   the following 

inequality holds  

          2 1( , ) ( , ) <f n x f n x   (3) 

Lemma 2.1:3 Let Assumption 2.1 hold. Then, the 
family of translates 

 ( , ) = ( , ),kf n x f k n x k  Z  

 is contained in some compact set 0F F .   

 

Remark 2.1:4 Note that the properties (2) and (3) are 
the precompactness conditions for the function ( , )f n x .   

Definition 2.2:5 The function * : m mf   Z R R  is 

said to be a limiting to f , if there exists a sequence 

kn   such that the sequence of translates 

 ( , ) = ( , )k kf n x f n n x  converges to the function *f  

in the metrizable space F . Accordingly, the system  

           *( 1) = ( , ( ))x n f n x n  (4) 

is said to be a limiting to (1). 

Using the result of LaSalle [8] on a topological 
dynamics for non-autonomous difference equations, the 
following theorem can be obtained which establishes the 
relationship between the solutions of (1) and (4).  

Theorem 2.1:6 Let for some sequence kn   the 

sequence of translates  ( , ) = ( , )k kf n x f n n x  converge 

to a limiting function *f  in the space F . Let also the 

sequence of vectors ( )
0{ }kx  ( ( )

0
k mx R ) converge to 

some vector 0
mx R  if k  , i.e. ( )

0 0
kx x . Then, 

the sequence of solutions 
( ) ( )

0 0 0 0( , , ) = ( , , )k k
k kx n n x x n n n x  of the systems 

( 1) = ( , ( ))kx n f n x n  ( ( , ) = ( , )k kf n x f n n x ) 

converges to the solution *
0 0= ( , , )x x n n x  of the limiting 

system (4). Moreover, this convergence is uniform in 

0 0[ , ]n n n N   for each N Z . 

Using Theorem 2.1, one can obtain some properties 
of a positive limit set of a bounded solution of (1). 

  
Definition 2.3:7 Let the solution 0 0= ( , , )x x n n x  of 

the system (1) be defined for all 0n n . The vector 
mqR  is said to be a positive limit point of that 

solution, if there exists the sequence kn   such that 

0 0( , , )kx n n x q . The set of all limit points of the 

solution 0 0= ( , , )x x n n x  is said to be a positive limit set 

0 0( , )n x .  

Since for each 0n Z  the translate 

0 0( , ) = ( , )f n x f n n x  is defined on the set 

0[ , ] mn  R , so the definition domain of the limiting 

function *f  can be extended to the set m Z R . 

Therefore, one can define the solutions of the system (4) 
for all initial points 0 0( , ) mn x  Z R . Accordingly, one 

can define the following function *
0 0( , , )x n n x , 

* : m mx   Z Z R R . 
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Definition 2.4:8 The set mH  R  is said to be quasi-
invariant, if, for each 0x H  there exist both the 

limiting system (4) and its solution *= ( )x x n , 
*

0(0) =x x  such that *( )x n H n  Z .  

 
Theorem 2.2 [8]:9 Let the solution 0 0= ( , , )x x n n x  

of the system (1) be bounded for all n Z . Then, the 

positive limit set 0 0( , )n x  is bounded and quasi-

invariant. Moreover, the solution 0 0( , , )x n n x  

asymptotically tends to 0 0( , )n x  as n  .   

2.2 V.M. Alekseev's formula of nonlinear variation of 
parameters for a nonlinear difference system  

Consider the nonlinear difference system  

                 ( 1) = ( , ( )) ( , ( ))v n g n v n Q n v n   (5) 

where the function : k kg   Z R R  is continuously 

differentiable in kvR  for each n Z , the function 

( , )Q n v  is continuous in kvR  for each n Z . 

Let 0 0= ( , , )w w n n w  be a solution of the unperturbed 

system 

               ( 1) = ( , ( ))w n g n w n  (6) 

Define the following matrix [4, 9]  

           0 0
0 0

0

( , , )
( , , ) =

w n n w
n n w

w





 (7) 

Note that the matrix (7) is a fundamental one of the 
linear variational system  

         
= ( , 0 0

( 1) = ( ) ( )

( ) = ( , )
, )w w n n

n H n n

g
H n n w

w w

 




 (8) 

In other words, the matrix (7) satisfies the following 
equation  

  0( 1) = ( ) ( ), ( ) =n H n n n I     (9) 

where I  is the identity matrix.  

Theorem 2.3:10 Let 0 0= ( , , )v v n n v  and 

0 0= ( , , )w w n n v  be the solutions of the systems (5) and 

(6) respectively, defined for all 0n n . Then, for these 

solutions one can easily find the following relationship  

0 0 0 0

1

0
= 0

( , , ) = ( , , )

1
( , 1, ( , [ ]) ( , [ ])) ( , [ ])

j n

v n n v w n n v

n
n j g j v j sQ j v j ds Q j v j




    
 (10) 
where 0 0[ ] = ( , , )v j v j n v .   

Proof: For each 0 0= , 1,..., 1j n n n   one can find 

the following  

( , 1, [ 1]) ( , , [ ]) =

( , 1, [ 1]) ( , 1, [ 1])

w n j v j w n j v j

w n j v j w n j w j

  
     

 (11) 

where [ 1] = ( 1, , [ ])w j w j j v j  . 

Applying the Mean Value Theorem, from (11) one 
can obtain the following relationship 

            

1

0

1

0

( , 1, [ 1]) ( , , [ ]) =

= ( , 1, [ 1]

(1 ) [ 1])( [ 1] [ 1]) =

= ( , 1, ( , [ ])

( , [ ])) ( , [ ])

w n j v j w n j v j

n j sv j

s w j v j w j ds

n j g j v j

sQ j v j ds Q j v j

  

   

     

  







 (12) 

Summarizing the equalities (12) for j  from 0n  to n

, we have  

     

0 0 0

1

0
= 0

( , , [ ]) ( , , [ ]) =

( , 1, ( , [ ])

( , [ ])) ( , [ ])

j n

w n n v n w n n v n

n
n j g j v j

sQ j v j ds Q j v j



   



   (13) 

 
Since 0 0( , , [ ]) = [ ] = ( , , )w n n v n v n v n n v  and 

0 0 0 0( , , [ ]) = ( , , )w n n v n w n n v , from (13) we obtain the 

formula (10). This completes the proof.  
 

 Remark 2.2:11 The relationship (10) represents the 
V.M. Alekseev formula of variation of constants for 
nonlinear difference equations. Note that in the other 
form the discrete version of V.M. Alekseev's formula 
was obtained in [11, 12]. We will use the formula (10) in 
combination with a comparison method in order to get 
the new solutions of the asymptotic stability problem for 
non-autonomous systems of nonlinear difference 
equations. 

2.3. Main result  

In this subsection, new theorems on the limiting 
behavior and asymptotic stability property for the 
solutions of system (1) are obtained. 

  
Assumption 2.2: 12  Assume that one can find a 

Lyapunov vector function candidate = ( , )V V n x , 
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: m kV   Z R R , such that it is continuous in x  for 

each n Z  and the following equation holds  

( 1, ( 1)) =

( , ( , ( ))) ( , ( ), ( , ( )))

V n x n

g n V n x n Q n x n V n x n

 
 

 (14) 

where the functions : k kg   Z R R  and 

: m k kQ    Z R R R  satisfy the following conditions:  

1) The function = ( , )g g n w  is quasi-monotonically 

nondecreasing and continuously differentiable in kwR
2) The functions = ( , )g g n w  and = ( , , )Q Q n x w  satisfy 

the precompactness criteria such as (2) and (3). 
3) The inequality ( , , ) 0Q n x w „  holds for all 

( , , ) m kn x w   Z R R .  

Using Assumption 2.2 one can easily obtain that 
( , )V n x  is a comparison vector function and (6) is a 

comparison system [7].  

Lemma 2.2: 13 Let Assumption 2.2 hold. Let also 

0 0( ) = ( , , )w n w n n V  ( 0 0 0( , ) =V n x V ) be a solution of (6) 

defined in the interval 0[ , ]n N . Then, for all 0[ , ]n n N  

we have  

      0 0 0 0( , ( , , )) ( , , )V n x n n x w n n V„  (15) 

where 0 0( ) = ( , , )x n x n n x  is a solution of the system (1).   

Note that the comparison system (6) satisfies the 
precompactness criteria. Therefore, one can find the 
family of limiting comparison systems  

         * *( 1) = ( , ( )), gw n g n w n g F   (16) 

Using the properties of the function = ( , )g g n x , we 

get that all the solutions 0 0= ( , , )w w n n w  of the system 

(6) are differentiable in 0
kw R . Moreover, since the 

function 0 0( , , )w n n w  is nondecreasing in 0w , one can 

easily obtain that the matrix 

0 0
0 0

0

( , , )
( , , ) =

w n n w
n n w

w





 

is semi-definite positive and normalized, i.e. 

0 0 0( , , ) 0n n w   and 0 0 0( , , ) =n n w I . Besides, 

0 0 0( , , )n n w  is the fundamental matrix for the linear 

variational system (8).  

Assumption 2.3: 14  Suppose that for each compact 
set kD  R  there exist positive reals ( )M D  and ( )m D  

such that for all 0 0( , , )n n w D   Z Z  the matrix 

0 0( , , )n n w  satisfies the following conditions  

0 0

0 0

( , , ) ( )

det ( , , ) ( )

n n w M D

n n w m D




P P„

…
 

 Theorem 2.4: 15  Let Assumptions 2.2 and 2.3 hold. 
Let also the solutions 0 0( , , )x n n x  and 

0 0( ) = ( , , )w n w n n V  ( 0 0 0= ( , )V V n x ) of the systems (1) 

and (6) respectively, be bounded for all 0n n . Then, for 

each positive limit point 0 0( , )q n x  there exists the 

aggregate of the limiting functions * * * *( , , , )f V g Q  such 

that for the solution *= ( , )x x n q  of the system (4), 

satisfying the initial condition * (0, ) =x q q , the 

following holds  
*

0 0

* * * * *

( , ) ( , )

( , ) { ( , ) = ( )} { ( , , ( )) = 0}

x n q n x

x n q V n x w n Q n x w n

n





 
I

Z

  

 where * ( )w n  is the solution of the limiting comparison 

system (16) such that * *(0) = (0, )w V q .   

 Remark 2.3: 16 Theorem 2.4 presents the new 
result of a positive limit set localization problem for non-
autonomous difference equations by using vector 
Lyapunov functions and comparison principle. This 
result is an analogue of the well-known La-Salle's 
invariance principle for autonomous systems [4]. The 
main difference between our result and the known one 
[6] is that we apply a wider class of vector Lyapunov 
functions which can depend on time, as well as a 
comparison method which is a development of the direct 
Lyapunov method.  

Theorem 2.5: 17  Let the Lyapunov vector function 
candidate = ( , )V V n x  exist such that it satisfies the 

precompactness criteria and the following holds 
 1) The function 1 2= max( , ,..., )kV V V V  is positive 

definite, i.e. there exists a function a K  such that 

( , ) ( )V n x a x ; 

2) The equality (14) holds; 
3) The zero solution = 0w  of comparison system (6) 

is stable; 
4) For each limiting aggregate * * * *( , , , )f V W Q  and 

each bounded solution *= ( ) 0w w n   of the limiting 

comparison system (16) there are no solutions of (4) 
which stay forever in the set  

* * * *{ ( , ) = ( )} { ( , , ( )) = 0}V n x w n Q n x w n    

Then, the zero solution = 0x  of the system (1) is 
asymptotically stable.   

 Theorem 2.6: 18  Let the Lyapunov vector function 
candidate = ( , )V V n x  exist such that it satisfies the 

precompactness criteria and the following holds 
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1) The function 1 2( , ) = max( , ,..., )kV n x V V V  is 

positive definite and radially unbounded, i.e. 
there exists a function a K  such that 

( , ) ( )V n x a x ; 

2) The functions 1( , )V n x , 2 ( , )V n x , ... , ( , )kV n x  

converge to zero uniformly in n  as 0x P P ; 

3) The equality (14) holds, where = ( , )Q Q n x ; 

4) The zero solution = 0w  of comparison system 
(6) is uniformly globally stable; 

5) For any limiting pair * *( , )f Q  there are no 

solutions of (4) which stay forever in the set  

*{ ( , ) = 0}Q n x  

 except for the zero solution = 0x .  
Then, the zero solution = 0x  of the system (1) is 

uniformly globally asymptotically stable. 

 Remark 2.4: 19 The conditions of Theorems 2.5 
and 2.6 make it possible to extend the classes of the 
comparison systems and the Lyapunov vector functions 
used to study the asymptotic stability property of non-
autonomous difference systems. Therefore, Theorems 
2.5 and 2.6 represent the development of the classical 
comparison method for asymptotic stability analysis of 
non-autonomous difference equations. On the other 
hand, Theorems 2.5 and 2.6 are the development of the 
authors's previous results [10] obtained for non-
autonomous systems of differential equations to non-
autonomous systems of difference equations. 

3 Stability analysis of the second-order 
epidemic model 

3.1 Stability analysis of the second-order epidemic 
model 

Consider a discrete epidemic model for the spread of the 
disease (gonorrhea or chlamydia), which consists of two 
heterosexual populations 1P  and 2P  where infected 

members of one population can infect the healthy 
members of the other population [8, 13, 14]. Assume that 
the recovery of the infected individuals is possible 
without the immunity. Assume also that the population 
sizes are constant. A non-autonomous discrete model of 
the disease course is given by  

           

12
1 2 1

1 1

21
2 1 2

2 2

( 1) = ( )(1 ( ))

(1 ) ( )

( 1) = ( )(1 ( ))

(1 ) ( )

tM
x n x n x n

W
t x n

tW
x n x n x n

M
t x n








   

  
    

  

  (17) 

where n Z , 1x  and 2x  are the fractions of the 

infected members of the populations 1P  and 2P  

respectively; 10 1x  , 20 1x  ; W  and N  are the 

sizes of the populations 1P  and 2P  respectively; jk  (

, = 1,2j k , j k ) and i  ( = 1,2i ) are the coefficients 

which characterize the process of the infection spread 
(contact and recovery rates), for which the following 
inequalities hold 0 /jk t W M    and 0 1i t   . 

Assume that the contact and recovery rates can vary 
with the season during the year, i.e. = ( )jk jk n   and 

= ( )i i n   where , = 1,2j k , j k  and = 1,2i . 

Note that the set 1 2= {0 1, 0 1}x x      is 

invariant with respect to the solutions 0 0( , , )x n n x   of 

the equation (17) for all initial points 0 0( ) =x n x , where 

0 0( , )n x  Z  and 0n n  . 

The system (17) satisfies the precompactness criteria 
(2) and (3). Therefore, the following limiting system can 
be obtained 

                  

*
12

1 2 1

*
1 1

*
21

2 1 2

*
2 2

( )
( 1) = ( )(1 ( ))

(1 ( ) ) ( )

( )
( 1) = ( )(1 ( ))

(1 ( ) ) ( )

n tM
x n x n x n

W

n t x n

n tW
x n x n x n

M

n t x n









 
  


  


   

  

  (18) 

where *( ) = ( )limkij ij kn n n    and 
*( ) = ( )limki i kn n n   , , = 1,2i j , i j  are limiting 

functions. 
Choose the Lyapunov vector function candidate such 

as  

        1 2 1 1 2 2= ( , ) , = , =TV V V V x V x  (19) 

One can easily obtain the comparison system  

        

12
1 2

1 1

21
2 1

2 2

( )
( 1) = ( )

(1 ( ) ) ( )

( )
( 1) = ( )

(1 ( ) ) ( )

n tM
w n w n

W
n t w n

n tW
w n w n

M
n t w n








  

  
   

  

 (20) 

The vector 1 2= ( , )TQ Q Q  is given by  

12
1 1 2

21
2 1 2

( )
=

( )
=

n tM
Q x x

W
n tW

Q x x
M








 

 
The limiting functions *

1Q  and *
2Q  are defined as 

follows  
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*
* 12
1 1 2

*
* 21
2 1 2

( )
=

( )
=

n tM
Q x x

W

n tW
Q x x

M








 

 
The zero solution 1 2= = 0w w  of the comparison 

system (20) is uniformly stable if for each 0k Z  and 

each 0k k  the following holds  

                  
= 0

( ) =
j k

k
A j M const  (21) 

where the matrix 2 2( )A j R  is defined as follows  

12
1

21
2

( )
1 ( )

( ) =
( )

1 ( )

j tM
j

WA j
j tW

j
M



 

  
 

  
 

 

 
Since the comparison system (20) is linear so the 

uniform stability of its zero solution 1 2= = 0w w  is 

global. 
The set * *

1 2{ = = 0}Q Q  doesn't contain the solutions 

of (18) except for 1 2= = 0x x . Using Theorem 2.6 one 

can obtain the uniform global asymptotic stability 
property for the zero solution 1 2= = 0x x  of (17) if the 

inequality (21) holds. Then, there is no epidemic and the 
disease dies out. 

In particular, the inequality (21) is true if there exists 
= > 0const  such that for all j Z  the following 

holds  

                   21 1

2 12

( ) ( )

( ) ( )

j j

j j

 
 

   (22) 

 
Note that in autonomous case the inequality (22) 

coincides with the condition proposed by [14], which 
consists in the requirement that the basic reproductive 
rate is not more than one, i.e.  

12 21

1 2

= 1R
 
 

  

3.2 Stability analysis of the third-order epidemic 
model 

Consider a third-order discrete epidemic model that 
describes the course of the disease in some system with 
three subpopulations. Assume that the infected members 
of the first and second populations can infect each other. 
Assume also that the infected members of a third 
population can infect the members of all three 
populations. Let ix  be an infected part of the population 

iP , = 1,2,3i . Then (1 )ix  is a healthy part that 

perceives an infection. 
The nonlinear discrete model of the course of the 

disease is given by  

1 12 2 13 3 1

11 1

2 21 1 23 3 2

22 2

3 34 3 31 1

32 2 3 33 3

( 1) = ( ( ) ( ) ( ) ( ))(1 ( ))

( ) ( )

( 1) = ( ( ) ( ) ( ) ( ))(1 ( ))

( ) ( )

( 1) = ( ( ) ( ) ( ) ( )

( ) ( ))(1 ( )) ( ) ( )

x n a n x n a n x n x n

a n x n

x n a n x n a n x n x n

a n x n

x n a n x n a n x n

a n x n x n a n x n

   

    

   

  

 (23) 

where 1ija    , = 1,2,3i , = 1,2,3,4j , 

( ) = { : 0 1, = 1,2,3}i ix n x x i   , 0n n  , 

0( )x n    

12 13

21 23

31 32 34

( ) ( ) 1

( ) ( ) 1

( ) ( ) ( ) 1

a n a n

a n a n

a n a n a n

 
  
   

  

 
The equations limiting to (23) are given by  

* *
1 12 2 13 3 1

*
11 1

* *
2 21 1 23 3 2

*
22 2

* *
3 34 3 31 1

* *
32 2 3 33 3

( 1) = ( ( ) ( ) ( ) ( ))(1 ( ))

( ) ( )

( 1) = ( ( ) ( ) ( ) ( ))(1 ( ))

( ) ( )

( 1) = ( ( ) ( ) ( ) ( )

( ) ( ))(1 ( )) ( ) ( )

x n a n x n a n x n x n

a n x n

x n a n x n a n x n x n

a n x n

x n a n x n a n x n

a n x n x n a n x n

    


    


   
  

 (24) 

where the functions * ( )ija n  are limiting ones for ija  

correspondingly, i.e. there exists the sequence kn   

such that  

* ( ) = ( )limij ij k
nk

a n a n n


 

Consider the Lyapunov vector function candidate 

1 2 3( ) = ( , , )TV x V V V  such that 1 1=V x , 2 2=V x  and 

3 3=V x . 

One can easily obtain the following  

( ( 1)) = ( ) ( ( )) ( , )V x n A n V x n Q n x   

where the matrix ( )A n  and the vector 

1 2 3( , ) = ( , , )TQ n x Q Q Q  are such as  

1 12 2 13 3 1

2 21 1 23 3 2

3 31 1 32 2 34 3 3

( ) = ( )

= ( ( ) ( ) ( ) ( )) ( )

= ( ( ) ( ) ( ) ( )) ( )

= ( ( ) ( ) ( ) ( ) ( ) ( )) ( )

jkA n a n

Q a n x n a n x n x n

Q a n x n a n x n x n

Q a n x n a n x n a n x n x n




 
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The comparison system is then given by  

( 1) = ( ) ( )w n A n w n  (25) 

 
The zero solution 1 2 3= = = 0w w w  of (25) is 

uniformly stable if the following holds  

= 0

0 0

( ) =

,

j k

k
A j M const

k k k



   



Z

 (26) 

 
One can easily see that the set *

1 2 3{ ( , , , ) = 0}Q n x x x  

does not contain the solutions of (24) except the zero 
solution 1 2 3= = = 0x x x . From (26), using Theorem 2.6, 

we get the global asymptotic stability of the equilibrium 
point 1 2 3= = = 0x x x  of the system (23). 

Now, consider the Lyapunov scalar function 
= ( , )V V n x  such that 1 2 3=V fx gx hx  , where f , g  

and h  are some positive reals. 
One can obtain that the sufficient conditions of the 

uniform stability of the equilibrium state position 

1 2 3= = = 0x x x  of the system (23) are such as follows  

11 21 31

12 22 32

13 23 33 34

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

fa n ga n ha n f n

fa n ga n ha n g n

fa n ga n ha n ha n h n






  
   
    

 (27) 

where the function ( )n  satisfies the following 

inequality  

0 0 0
= 0

( ) = , > ,
j n

n
j m const n n n    Z  (28) 

 
The set * * *

1 2 3{ = = = 0}Q Q Q  doesn't contain the 

solutions of (24) except for the zero solution 

1 2 3= = = 0x x x . 

Therefore, using Theorem 2.6 we obtain that the zero 
solution 1 2 3= = = 0x x x  of (23) is globally uniformly 

asymptotically stable if there exist the positive constants 
f , g  and h  and the function :  Z R  such that 

the inequalities (27) and (28) hold. 
Analyze the conditions (27). Introducing the 

parameters = / > 0u f g  and = / > 0v h g  we obtain 

that the system of inequalities (27) can be written as 
follows  

11

22

33 34

11 21

31 31

22 12

32 32

13

33 34

23

33 34

( ) > ( )

( ) > ( )

( ) > ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

n a n

n a n

n a n a n

n a n a n
v u

a n a n

n a n a n
v u

a n a n

a n
v u

a n a n n

a n

a n a n n
















 


  



  



    



 

 (29) 

 
From the last three inequalities in (29), we obtain 

some domain (see Figure 1) on the plane ( , )u v . 

 

 
 Fig. 1. Graphical interpretation of the 

conditions (29).   

Let find the intersection points of the half-planes in 
Figure 1. 

    • One can find the minimum value of u  on the 
half-plane defined by the fourth relationship in (29) 
using the following equality  

11 21

31 31

( ) ( ) ( )
=

( ) ( )

n a n a n
u

a n a n

 
 

   • There exists the intersection point *
1 ( )u n  of the 

boundaries of the half-planes defined by the fourth 
relationship and the sixth one in (29) if the following 
holds  

* 23 31 21 34 33
1

34 33 11 13 31

( )
( ) =

( )( )

a a a a a
u n

a a a a a


 

  
   

 

  

11 34 33 13 31( )( ) >a a a a a     

• There exists the intersection point *
2 ( )u n  of the 

boundaries of the half-planes defined by the fifth 
relationship and the sixth one in (29), which is defined 
by  
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2
* 34 33 22 22 34 23 32 22 33
2

13 32 12 34 32

( )
( ) =

( )

a a a a a a a a a
u n

a a a a a

 


     
  

 

 
• One can find the minimum value of u  on the half-

plane defined by the fifth relationship in (29) using the 
following equality  

22 12

32 32

( ) ( ) ( )
=

( ) ( )

n a n a n
u

a n a n

 
 

If n  Z  the following inequalities hold  

* *21 22

11 12

*
*11 21

31 31

*
*13 23

33 34

*
*22 12

32

( ) ( ) ( )
0 <

( ) ( ) ( )

( ( ) ( )) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

a n n a n

n a n a n

n a n a n

a n a n

a n a n

n a n a n

n a n a n

a n


 



 







 



  




 




 

 


  

then there exists the point * *( , )   which belongs to the 

domain (29), where * = > 0const  and * = > 0const . 

Therefore, one can obtain the following estimations 
for the function ( )n : (28) and  

        

*
22 12

11 21*

*
11 21 31*

* *
22 12 32

*

11
21

*
33 34 13 23*

( ) ( ) ( )

1
( ) ( ) ( )

1
( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( )

( ) ( )
( )

1
( ) ( ) ( ) ( ( ) ( ))

n a n a n

n a n a n

n a n a n a n

n a n a n a n

n a n
a n

n a n a n a n a n

 




 


  



 


 

 

  

  

 

   

 (30) 

 
The compatibility of the estimates (30) is expressed 

as follows. Let there exist the positive constants * > 0 ,  
* > 0 , * > 0  such that the following inequality holds 

*
11 21 31*

* *
22 12 32

*

11
21

*
33 34 13 23*

1
max{ ( ) [ ( ) ( )],

( ) ( ) ( )}

min{ ( ) ,
( )

1
( ) ( ) ( ( ) ( ))}

a n a n a n

a n a n a n

a n
a n

a n a n a n a n




 






 

  

 

  

  

Then, the zero state 1 2 3= = = 0x x x  of (23) is 

uniformly globally asymptotically stable. 

4 Conclusion 

We have addressed the global asymptotic stability 
problem for non-autonomous systems of nonlinear 
difference equations. A quasi-invariance principle for 
such systems has been proposed and new theorem of La-
Salle's type on the limit behavior of the solutions has 
been proved. By employing both the Lyapunov vector 
function method and the quasi-invariance principle, a 
novel solution to the global asymptotic stability problem 
has been obtained. It is well-known that the basic 
condition of the classical comparison theorem for the 
asymptotic stability property consists in the requirement 
of this property for the zero solution of the comparison 
system. In this paper the aforementioned condition is 
weakened to the requirement of the stability property for 
the zero solution of the comparison system. In order to 
show the effectiveness of the proposed approach we 
provide the examples on stability analysis of some non-
autonomous discrete epidemic models. 
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