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Abstract.- In this paper stochastic information processing was studied.  Inference method by conditional 

distribution was examined. The Bayesian decision analysis for unknown event was performed. Prior and 

poserior distribution functions were studied and  applied to information definition about the  system 

state. Frequency meaning and subject probability were considered. Contribution of this paper are 

information processing method by likelihood function and   information processing in conflict 

resolution. 
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1   Introduction 
      The  decision problems  are nearly all 

concerened with the situation common in  

scientific  inference  where the prior  

distribution is dominated  by the likelihood 

[1]-[4].  

     The fact that  in such situations  different 

decisions can results from different choice of 

prior distribution has worred some statisticians 

[5]-[6]. However, that making explicit the 

dependence of the decision on the choice of 

what is believed to be true is an  advantage of 

Bayesian analysis rather than the reverse.  

Suppose four different executives, after careful 

consideration, produce  four different prior 

distributions for the size of a  potential market 

and separate analyses are made for each.  Then  

either  the decision will be  the same in spite of 

differences in the  priors,  or  the decission will 

be different. In either case  the Bayesian 

decision analysis  will be valuable. In the first 

case, the ultimate arbiter  would be  reassured  

that such differences in opinion did not 

logically lead to differences on what the 

appropriate action should be. In the second 

case,  it would be clear to him  the 

responsibility of ignoring the judgement of  

one or more of his executives,  or of arranging 

that further data be obtained to resolve the  

conflict. Far from nulifying  the value of  

Bayesian analysis, the fact that such analysis 

shows to what extent different decisions may 

not be appropriate when different prior 

opinions are held, seems to enhance it.  For 

problems  of this kind any procedure which 

took no account of such opinion would seem 

necessarily ill conceived. 

    In this paper inference for stochastic 

information processing was developed. 

     

  2 Conditional distribution 
      Conditional distributions and densisties 

will apear very often. The various definitions, 

if presented in their final form, could be very 

confusing.  They seem artificial, unrelated, and 

at best  difficult to remember. If, however, all 

definitions are  expressed  as conditional 

probabilities  of events, then the confusion  is 

eliminated and the  concepts become  almost 

self evident.  

     Given an event   with nonzero probability, 

                                                                                                     

0)( P                                        (1) 

 

it can define the conditional probability of    

assuming  , by  
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In words 0)( P  equals to probability  

of the event   , the part of    included in 

 , divided  by the probability of  . Clearly,  
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if    and    have no common  elements 

(mutual,  exclusively) then  0)( P . 

     If recall from eq.(2) that, with   an 

event such  that 

 

     0)( P                               (3)                                                         

 
The conditional probability  of   , assuming  

 , is given by eq.(1). 

                                                     

         In this section need to express   and   or both  

in terms of the random variable. 

Definition of )( xFx  and  )( xfx . The 

conditional distribution  is defined  as the  

conditional probability of the event )( xFx  of the 

random variable   X , assuming  , defined as the 

conditional probability  of the event :}{ xX   
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where },{ xX  is the event  consisting of all 

outcomes    such that  

 

             xX )(                             (5) 

  

That is, the set product  of the events { xX   }  and  

 . 

   The above is nothing else but  definition  in the 

experiment  ,   , )( P . Therefore all 

properties of ordinary distributions  apply also to 

)( xFx . Then, just have dropping the subscript     

 

    1)( xF                   0)( F   (6) 

 

and 
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If assumed that X continuous  type.  Its conditional  

density )( xf  is defined  as the derivative  of 

)( xF : 
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and it has all properties of ordinary  densities; 

                                                                                                                                                            

1)()()( 




 FFdxxf  (9)                 

 

3  Conditional inference 
       In Bayesian decision analysis, it is  

supposed that a choice has to  be made 

from a set of available actions  

),......,( 21 naaa , where the payoff of utility 

of a given action depends on a state of 

nature, say  , which  is unknown.  

 

   3.1 Bayes principle in inference 

         Suppose that  ),......,(' 21 nyyyY   is a 

vector of  n  observations  whose 

probability distribution  )( yp  depends 

on the values of k  parameters 

),......,(' 21 n  . Suppose also  that   

itself has a probability distribution )(P . 

Then, 

 

                     

)()(),()()( ypypyppyp     (10)                           

 

Given  the observed data y ,  distribution 

of the conditional   is  
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)()(
)(
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pyp
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
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Also, can write 

 

                                                          

 dpyp )()(  

                                         continuous (12) 

   1)()( cyEpyp      

                                         )()(  pyp    

                                           discrete       
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where the sum  or the integral is taken over the 

admissible range of   , and where )]([ fE  is 

the mathematical expectation of )(f  with 

respect to the distribution )(p . Thus  may 

write  eq.(12)  alternatively as   

 

            )()()(  pycpyp            (13)                                                         

 

The statement  eq.(10) or its equivalent 

eq.(13), is usually referred to as Bayes 

theorem. In this expression, )(p , which tells 

the quantity c is merely a normalizing constant 

neccessary to ensure  that the posterior 

distribution  what is known about   without 

knowledge of the data, the distribution of   a 

priori.  Correspondingly, )( yp  , which tells 

what is known about   given knowledge of 

the data, is called the posterior distribution of 

given  y , or the  distribution of    a 

posteriori. )( yp   integrates or sums to one. 

 

Likelihood function. Now given the data y , 

)( yp   in  eq.(13)  may be regarded as a 

function not of  y  but of  . When so 

regarded, following Fisher [1], it is  called the 

likelihood function of    for a given y  and 

can be written )( yl  . Thus can write  Bayes 

formula as  

 

          )()()(  pylyp        (14)                                       

 

In order words, then, Bayes theorem tells that 

the probability distribution  for   posterior to 

the data y  is proportional  to the product  of 

the distribution  for   prior to the data  and the 

likelihood for   given y . That is,   coming 

from  the data.  

   

ondistributiprior

xlikelihoodondistributiposterior  (14a)    

 

    The likelihood function )( yl  plays a very 

important  role in this formula. It is the 

function  through  which the data y  modifies 

prior knowledge of  , it can  therefore be 

regarded as representing the information about. 

   The likelihood function is defined  up to a 

multiplicative constant, that is, multiplication 

by a constant  leaves the likelihood unchanged. 

This is in accord  with the role it plays in 

Bayes formula, since multiplying the 

likelihood function by an arbitrary constant 

will have no effect on the posterior distribution 

of   . The constant will cancel  upon 

normalizing  the product on the write  side of 

eq.(14). It is only the relative  value of the 

likelihood which is of importance . 

      When the integral )()(  pyl , taken 

over the admissible range  of  , is finite then 

occasionally it will be convenient to refer to 

the quantity 

 

              

)()(

)(





pyl

yl



         (15)                                                                 

It is so called standardized likelihood, that is, 

the likelihood scaled so that the area, volume, 

or hypervolume under the curve, surface, or 

hypersurface, is one. Eq.(14a)provides a 

mathematical formulation of how previous 

knowledge may be combined with new 

knowledge. Indeed, the theorem allows to 

continually update information about a set of 

parameters   as more observations are taken. 

    Thus, suppose  that have an initial sample of 

observations 1y , then Bayes formula gives 

              )()()( 1  pylyp    (16)                                           

 

    When, suppose  that have a second sample 

of observations 2y  distribured independently 

of the first sample, then 

 

                          

)()()(),( 2112 ylylpyyp    

                                                (17) 

)()( 21 ylyp                                       

 
     The expression eq.(17) is predisely  of the 

same form as  eq.(16) except that  )( 1yp  , 

the posterior distribution for   given 1y , plays  
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the role  of the prior  distribution for the 
second sample. Obviously this process can be 

repeated any number of times. In particular, 

there is n  independent observations, the 

posterior distribution can, if desired, be 

recalculated after  each new observation, so 

that at the m th stage  the likelihood associated 

with the m th observation to give the new 

posterior distribution 

 

      

,(),....,(),....,( 12121 mmm ylyyypyyyp  

   nm ,......,3,.2                               (18) 

 

 

where )()()( 11 ylpyp   . 

   Thus Bayes theorem describes, in  a 

fundamental way, the process of learning from 

experience, and shows how knowledge about 

the state of nature represented by   is 

continually modified as new data becomes 

available. 

 

 4 Probability interpreted as 

frequencies 
   Applications of Bayes formula with 

probability interpreted as frequencies has been 

questioned about some difficulties. The 

difficulties concern 

 

1. The meaning of probability, and  

2. The choice of, and necessity for, the prior 

distribution. 

 

      Specific examples can be found  of 

applications of  Bayes formula where  the 

probabilities  involved may  be directly 

interpreted in terms of frequencies and may  

therefore be said to be objective, and where 

the prior probabilities can be  supposed  

exactly known. The validity  of applications 

of this sort  has not been in serious dispute. 

      Some examples of this situation were 

described in literature [2],[3]. Other 

application of this sort are to be found in the 

theory of design sampling inspection 

schemes[3]. In these  exampes, all the 

probabilities, both prior and posterior, are 

objective in the sense that they may be given a 

direct limiting frequency interpretation and 

are, in principle, subject to experimental 

confirmation. 

   5  Subjective probability 
      Let consider probability as a mathematical 

expression of our  degree of belief with respect 

to a certain proposition, in this context the 

concept of verification of probabilities by 

repeated experimental trials is regarded merely 

as a means of calibrating a subjective attitude.  

     The actual elucidation of what is believed 

by a particular person can be  attempted in 

terms of betting odds. If, for example,  the 

value of a continuous  parameter  is in 

question, may,  in suitable circumstances, infer 

an experimenter's prior distribution by asking 

at what  value 
0

   would be prepared to bet at 

particular odds that  >
0

 . Given that a 

subjective  probability distribution of this kind 

represents a priori what a person believes, then 

the posterior distribution obtained by 

combining this prior with the likelihood 

function shows how the prior beliefs are 

modified by information coming from the data. 

 

 

 

6 Inference analysis  
       Statistical inference  means inference  

about the state  of nature made in terms of 

probability, and a statistical inference problem 

is  refarded as solved as soon as can make an 

appropriate probability statement about the 

state of nature in question. Important  as the 

topic is, concern will not  be with ern.  Usually 

the state of nature is described by  the value of 

one or more parameters. Such a parameter 

could, for example, be the velocity of light  or 

the thermal conductivity of a certain alloy. 

Thus, a  solution to the inference  problem is 

supplied by a posterior distribution 

)( yp  which shows what can be inferred 

about the parameters   from the data y given 

a relevant prior state of knowledge  

represented by )(p . 

       Let consider which concerning the 

estimation of the location parameter    of 

a Normal distribution. In general, if the 

prior distribution is Normal ),(
2

0


o
N  

and n  independent observations with 

average y are taken from the distribution 

),(
2

N , then  from 
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with   2

0
0

1


w   and   2

n
n

nw


 . 

the posterior distribution of   is  

 

 

),(
2

nnN   ,with                   (20)                  

),(
1

00

0

yww
ww

n

n

n 


  and (21)    

nww 


0

2

 ,                                     (22) 

where  
2

00

w  is the weight associated with 

the prior distribution and 
2

0/nwn  is the 

weight associated with the likelihood. In this 

expression, if 0w  is small compared with nw  

then approximately the posterior distribution is 

numerically equal to the standardized 

likelihood, and is  

 

               ),(
2

n
yN


                          (23)                    

 

      Strictly speaking, this  result is attained 

only when the prior  variance 
2

0 becomes 

infinite so that 0w  is zero. Such a limiting 

prior distribution would. However, by itself 

make little theoretical or practical sense.  For, 

when 2

0 , in the limit the prior density 

becomes  uniform over the entire line from 

  to  , and is therefore not a proper 

density function. Furthermore, it  represents a 

situation where all values of   from   to 

  are equally accepable a priori. But it is 

difficult, if  not impossible, to imagine a 

practical situation where sufficiently extreme 

values could not be virtually ruled out. The 

practical situation is represented not by the 

limiting case where 00 w , but by the case 

where 0w  is  small compared with nw , that is, 

where  the prior is locally flat so that the 

likelihood dominates the prior. 

    It is, therefore, important to note that the use 

of the limiting posterior in eq.(23)  

corresponding to  00 w  to supply a 

numerical approximation to the  practical 

situation is not the same thing as assuming 

0w is actually zero. Limiting cases of this kind 

are frequently used, but it must be remembered 

this is for the purpose of supplying a numerical 

approximation and for this purpose only. 

 

 Proper and Improper prior distribution. A 

basic property of a probability density function  

)(xf  is that it integrates or sums over its 

admissible range to 1, that is,  

 

 dxxf )(        1           )( continuousx                

)(xf                       )( discretex (24) 

 

If )(xf is uniform over the entire line  from 

  to   

 

,)( kxf    , x      ,0k       (25)                                

 

then it is not a proper density  since the 

integral 

               








 dxkdxxf )(                 (26) 

 

does  not exist no matter how small k is. Density 

functions of this kind are sometimes called 

improper distributions. As another  example, the 

function 

 

,)( 2 kxxf      ,0  x       ,0k  (27)   

                         
is also improper.   Density functions of the types to 

eq.(24) and eq.(25) are frequently employed to 

represent the local benhavior of the prior  

distribution in the region where the likelihood is 

appreciable, but not over its entire admissible 

range. By supposing that to a sufficient 

approximation the prior follows the form  eq.(26) 

and eq.(27) only over the range of appreciable 

likelihood and that it suitably tails to zero outside 

that range, to ensure that the priors actually used are 

proper. Thus, by employing the distribution in a  

way that makes practical sense need to relieve of a 

theoretical difficulty.  

 

 

 

Jelenka Savkovic-Stevanovic
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 47 Volume 4, 2019



7 Conclusion 
           In this paper stochastic information processing  

      was examined. Inference analysis was employed to  

      information processing. Bayes formula states 

      that the probabilities   may  be directly interpreted 

      in terms of frequencies and may  therefore be said to  

      be objective. 

    Prior and posterior distributions include  

likelyhood function. Proper and improper prior 

distribution were considered. Prior belief function 

was studied and weighting factors were defined. 

     

 Notation 

E -expectation  

)( yl  -likelihood function 

)(xP distribution probability function 

)(xp density probability function 

X - random variable 

x - value of random variable X  

 

Greek Symbols 

 -set 

 -experiment 

 -variance 

 -event 

 -arbitrary event 
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