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Abstract: The paper gives an overview of time series modeling and forecasting, using multiplicativeSARIMA
models, with application in assessing and forecasting of epidemiological data. After general view of the main
models and the methodological issues used in Box-Jenkins approach, the paper presents a case study having as
subject the modeling and forecasting of a time series representing the measles infections, in Great Britain, 1971-
1994, quarterly recorded, and an example of intervention analysis, using as exogenous data the measles infections,
and as endogenous variable the number of vaccinated persons, in the same time period. The intervention analysis
proved to be a useful approach to model interrupted time series, when the time series is affected by the effect of
population vaccination.
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1 Introduction

Although the incidence of epidemic diseases has
reached historic lows in many parts of the world, these
diseases still causes substantial morbidity globally.
So, it is of great interest to explore the degree to which
new sources of data, combined with existing public
health data, can be used to evaluate the landscape of
immunity and the role of vaccination in the eradica-
tion of epidemic diseases. In this context, different
public health surveillance systems have been devel-
oped to facilitate the detection of abnormal behavior
of infectious diseases and other adverse health events.
To achieve this goal, different approaches have been
used for assessing and forecasting of infectious dis-
ease incidence. Time series analysis enjoys of great
interest in this field. It makes use of statistical mod-
els able to forecast the epidemiological behavior of
the historical surveillance data. Different methods
have been reported in the literature, such as: exponen-
tial smoothing, generalized regression, decomposition
methods, and multilevel time series models, among
others.

Seasonal autoregressive integrated moving aver-
age(SARIMA) models have been extensively used
for epidemic time series forecasting including the
hemoragic fever renal syndrome, [1], [2], dengue
fever,[3], [4], and tuberculosis, [5]. Also, the prob-
lem of modeling and forecasting of measles infection
is present in many papers, [6], [7], [8] [9], among oth-
ers, using different approaches.

The paper gives a general view on the time series
models, regression and intervention models, with ap-
plication in modeling and forecasting of epidemiolog-
ical surveillance data. The approach is used in mod-
eling and forecasting of measles infections in Great
Britain, 1971-1994, for a multiplicativeSARIMA
model and an interrupted time seriesITS model, tak-
ing into account the number of vaccinated persons.

2 Time Series Models

The statistical approaches adopted in time series
modeling and forecasting usually rely on multiplica-
tive SARIMA (Seasonal Auto Regressive Integrated
Moving Average) model. A such model has the fol-
lowing form for the time serieszt, [10]:

φ(B)Φ(Bs) ▽d
▽

D
s zt = θ(B)Θ(Bs)at (1)

whereat a white noise and

φ(B) = 1 + φ1B + φ2B
2 + · · · + φpB

p

θ(B) = 1 + θ1B + θ2B
2 + · · · + θqB

q

Φ(Bs) = 1 + ΦsB
s + Φ2sB

2s + . . . + ΦPsB
Ps

Θ(Bs) = 1 + ΘsB
s + Θ2sB

2s + . . . + ΘQsB
Qs

with B the time delay operator,Bzt = zt−1, ▽zt =
(1 − B) = zt − zt−1, nonseasonal differentiating op-
erator, and▽szt = (1 − Bs) = zt − zt−s, seasonal
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differentiating operator:d is the nonseasonal differ-
entiating order,D is the seasonal differentiating order
ands is the seasonal period of the series.

The modelSARIMA(p, d, q)(P,D,Q)s is pre-
sented in Fig.1, where(p, d, q) and(P,D,Q) denote
nonseasonal orders and seasonal orders of the model,
respectively.

at- θ(B)Θ(Bs)
▽dφ(B)▽DΦ(Bs)

zt-

Figure 1: ModelSARIMA(p, d, q)(P,D,Q)s

The multiplicative form of the model simpli-
fies the stationarity and invertibility conditions check-
ing; these conditions can be separately checked, for
seasonal and nonseasonal coefficients of the model.
Starting from the general model form of the model
SARIMA(p, d, q)(P,D,Q)s it can be obtain related
models.

In some situations, it is known that some external
events, or inputs, can affect the variables for which the
practitioner intends to forecast the future time series
values. The dynamic models, used in this case, are
special kind ofSARIMA model and are called inter-
vention models or interrupted time series (ITS) mod-
els, [11]. As examples of practical interventions can
be mentioned: the effect of medication on the health
of the patient, vaccination campaigns, the effect of the
exchange of the laws in legislation to prevent the mor-
bidity and mortality, etc.

A such intervention model can be represented like
a transfer function(TF ) model (see Fig. 2), wherezt

is the value of the endogenous variable at timet, ut =
[u1t, . . . , urt]

T is the vector of exogenous variables,
andat is a white noise error.

Ωi(B) = ωi0 + ωi1B + ωi2B
2 + · · · + ωini

Bni

i = 1, 2, . . . , r
∆i(B) = 1 + δi1B + θi2B

2 + · · · + δinδi
Bnδi

i = 1, 2, . . . , r

φ(B), θ(B),Φ(Bs) and Θ(Bs) have been described
above.

The models are identified by the mean of the au-
tocorrelation (ACF ) and the partial autocorrelation
functions (PACF ).
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Figure 2: Transfer function (TF ) model

3 Methodological Aspects
The time series model construction usually includes
the following stages, [10]:

• Identification (specification) of the time series
model using some data analysis tools (different
graphical representations, autocorrelation func-
tions (ACF ) and partial autocorrelation func-
tions (PACF )) in order to determine the types
of transformations to obtain stationarity and to
estimate the degree of differentiation needed to
induce stationarity in data, as well as the polyno-
mial degrees of autoregressive and moving aver-
age operators in the model.

• Model parameter estimation of the time series
implies the use of efficient methods (such as
maximum likelihood, among others) for parame-
ter estimation, standard errors and their correla-
tions, dispersion of residuals, etc.

• Model evaluation (validation) aims to establish
the model suitability, or to make some simplifica-
tions in structure and parameter estimates, using
residual analysis.

The process often add a preliminary stage of data
preparation and a final stage of model application, or
forecasting, [12].

Visual analysis of series data allows a first image
on the series’ non-stationarity and on the presence of
a seasonal pattern in the data. The final decision on
the inclusion of seasonal elements in the time series
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model will be taken after the autocorrelation function
(ACF ) and partial autocorrelation function (PACF )
analysis, as well as after the estimation results analy-
sis; the visual analysis of the data can provide useful
additional information.

Significant changes in the mean value of the se-
ries data require non seasonal differentiation of the
first order, while the varying of the rate for average
value imposes the nonseasonal differentiation of the
second order of the series. Strong seasonal variations
usually require, not more than the seasonal differenti-
ation of the first order of the series’data. Autocorre-
lation function of the series offers information on the
nonseasonal and seasonal degrees to be used to obtain
the stationarity of the data, as well as on the model
structure, [13], [14]. Also, in the validation-diagnosis
stage, the attention will be focused on the coefficients
of seasonal autocorrelations, usingt statistic test.

In the estimation stage, the use of the initial
estimates of the model parameters of the value of
0.1 leads to good results in most cases; better ini-
tial estimates for model parameters can be obtained
based on the autocorrelation and partial autocorrela-
tion functions. The criteria Akaike Information Cri-
terion (AIC), Bayesian information criterion (BIC) or
Schwarz information criterion (also SIC, SBC, SBIC),
[15], Adjusted Root Mean Square Error (ARMSE)
and Absolute Mean Percent Error (AMPE), [13], offer
information on the parameter estimation quality.

Forecasting is what the whole procedure is de-
signed to accomplish. Once the model has been se-
lected, estimated and checked, it is usually a straight
forward task to compute forecasts. The forecasting
problem can be solved, in the most direct way, using
the multiplicativeSARIMA model of the form (1).
The description of the model by an infinitely weighted
sum of current values and the earlier noise is prov-
ing useful, in particular, to estimate the variance of
forecasting values, as well as to determine their con-
fidence intervals. Standards and practices for time se-
ries forecasting are given in [16].

4 Case Study

The case studies making the object of this section
has as subject the modeling and forecasting of a time
series representing the measles infections, in Great
Britain in the period 1971-1994, quarterly recorded,
and an example of intervention analysis, using as the
exogenous data the number of measles infections, and
as endogenous variable the number of vaccinated per-
sons, in the same time period, using a transfer function
model.

4.1 Modeling and Forecasting of Measles In-
fections, in Great Britain 1971-1994

The time series representing the measles infections,
in Great Britain in the period 1971-1994, quarterly
recorded, is presented in Fig. 3.
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Figure 3: Number of measles infections/1000 inhabi-
tants, Great Britain, 1971-1994.

We present in Fig. 4 the autocorrelation(ACF )
and partial autocorrelation(PACF ) functions of the
original data, and the Ljung Box Q (LBQ) test.
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Figure 4: ACF and PACF functions of measles infec-
tions/1000 inhabitants, Great Britain, 1971-1994.

It can be noted, from the data analysis, the non-
stationary and seasonal character of the series. Be-
cause the data are quarterly recorded, it can be sup-
posed the presence in the data series of a seasonal
component of periods = 4 (yearly); it is also con-
firmed by the autocorrelation function(ACF ). So,
the original time series has been seasonal differenti-
ated with periods = 4, and it is presented in Fig. 5.

The ACF and PACF of differentiated series,
and Ljung Box Q test, are given in Fig. 6.

Starting from these functions, the following
SARIMA model structure resulted:

(1 + Φ4B
4 + Φ8B

8)(1 − B4)zt =

= (1 + θ1B + θ2B
2)(1 + Θ4B

4)at (2)

and v[at] = σ2.
The model parameter estimation has been per-

formed using the Broyden-Fletcher-Goldfarb-Shanno
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Figure 5: Differentiated series with s = 4.

2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1
A.C.F. of Diff. of measles patients, LBQ = 457.90

2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1
P.A.C.F. of Diff. of measles patients

Figure 6: ACF and PACF of differentiated series
with s = 4.

(BFGS) optimization algorithm, [17]. The results are
presented in Table 1, with the objective function =
315.7083, nr. of iterations = 24 and information cri-
teria: AIC = 6.7728 and SBC = 6.9341; the correla-
tion matrix of model parameter estimates denotes the
model quality.

Table 1: Results forSARIMA model parameter es-
timation

Param. Estim. Appr. Std. Dev. t-test
Φ4 -0.461 0.104 -4.435
Φ8 -0.509 0.100 -5.084
θ1 1.043 0.106 9.824
θ2 0.507 0.088 5.755
Θ4 -0.492 0.096 -5.110

v[at] 40.653 5.986 6.790

The model residuals are presented in Fig. 7, and
residualACF , PACF , Ljung Box Q test, are given
in Fig. 8.

The estimation results confirm the model quality,
according with the Box-Jenkins methodology used in
time series analysis, [13].

The forecasting, for the resulted model, has been
performed, started from the 92 quarter for a horizon
time of 4 quarters and the 95% confidence limits, to
compare the original data with the forecasting results.
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Figure 7: Model residuals
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Figure 8: ACF and PACF of model residuals.

It can be noted that the forecasting results follow the
evolution trend of the original time series, and are in
the confidence limits 95%. The forecasting results and
confidence limits are given in Fig. 9.
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Figure 9: Forecasting results and confidence limits
95% for 4 quarters.

4.2 Modeling and Forecasting of Measles In-
fections, in Great Britain Function of
Vaccinations 1971-1974

In this case an intervention model, a transfer function
(TF ) model, has been used, with the exogenous vari-
able the number of measles infections,zt, and with
endogenous variable the percent of vaccinated per-
sons,ut, in the time period making the object of the
analysis. The percent of measles vaccinations, Great
Britain, 1971-1994 is presented in Fig. 10.
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Figure 10: Percent of measles vaccinations, Great
Britain 1971-1994.

After preliminary analysis of the data, and differ-
ent model structures, resulted the following structure
of the transfer function model, representing the inter-
vention model:

(1 − B4)zt =
ω1

1 + δ1B
ut+

+
(1 + θ1B + θ2B

2)(1 + Θ4
4)

1 + Φ4B4 + Φ8B8
at (3)

with v[at] = σ2 ands = 4, due to the nostationarity
of the data. For the model parameters and variance,
σ2, have been used as initial values 0.1. Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimization algo-
rithm, [17], was used for parameter estimation, result-
ing the following values for model parameters (see Ta-
ble 2):

Table 2: Results forTF model parameter estimation
Param. Estim. Appr. Std. Dev. t-test

Φ4 -0.580 0.090 -6.397
Φ8 -0.349 0.086 -4.065
θ1 1.055 0.088 11.893
θ2 0.529 0.079 6.683
Θ4 -1.000 0.037 -26.382
ω1 -0.289 0.118 -2.443
δ1 0.873 0.063 13.721

v[at] 25.682 4.137 6.208

for an objective function = 290.7013, nr. of iterations
= 50 and information criteria: AIC = 6.2884, and SBC
= 6.5035; the correlation matrix ofTF model param-
eter estimates denotes the model quality.

The model residuals are presented in Fig. 11, and
the residualACF andPACF , with Ljung Box Q test,
are given in Fig. 12.

The results confirm the model quality, according
with the Box-Jenkins methodology used, [13]. The
forecasting results, for the transfer model resulted,
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Figure 11: Transfer function model residuals.
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Figure 12:ACF andPACF transfer function resid-
uals.

started from the 92 quarter for a horizon time of 4
quarters and the 95% confidence limits are given in
Fig. 13; the values used, as percent of vaccinations
for the forecasting measles infections, in forecasting,
represent the values recorded for the last 4 quarters of
the original series. It can be noted that the forecasting
results follow the evolution trend of the time series
of measles infections, and are in the confidence limits
95%.
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Figure 13: Forecasting results and confidence limits
95% for 4 quarters using transfer function model.

5 Conclusions
The time series modeling and forecasting of epidemi-
ological surveillance data using seasonal multiplica-
tive SARIMA models and the attractive features of
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the Box-Jenkins approach provide an adequate de-
scription to the data in this field. TheSARIMA pro-
cesses are a very rich class of possible models and it
is usually possible to find a process which provides
an adequate description to the data. Also, the inter-
vention analysis, orITS model using, proved to be
a useful approach to model interrupted time series, in
this case, when such time series are affected by the
effect of medication on the health of the patient, pop-
ulation vaccination policies, some law constraints, etc.
The case study presented in the paper proved the effi-
ciency of the approach.

The Box-Jenkins methodology, applicable to a
wide variety of statistical modeling situations, pro-
vides a convenient framework which allows an ana-
lyst to think about the data, and to find an appropriate
statistical model which can be used to help answer rel-
evant questions about the data.
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