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Abstract: In this paper we investigate a mathematical model of non-local tumour invasion with proliferation pro-
posed by Gerisch and Chaplain. We show the global existence in time and asymptotic profile of the solution to the
initial boundary value problem for the model. For this purpose we deal with the problem applying the argument
of the singular integral operator to the non-local term, and we finally arrive at our desired result. In order to show
computer simulations of the model we consider an approximation problem of the model, and we can discuss the
time dependent change of the non-local tumour invasion process by computer simulations.

Key–Words:Non-local model, mathematical analysis, tumour invasion, Taylor expansion, simulation, integral op-
erator.

1 Introduction

Tumour invasion models in local or non-local en-
vironment of the cell( [1][3]-[5], further references
therein), base on the generic solid tumour growth,
which for simplicity they assume is at the avascular
stage. For the better understanding of this phenom-
ena mathematical models of cancer invasion of tissue
in local or non-local case, the effect of cell-cell and
cell-matrix adhesion is investigated.

In [5] Gerisch and Chaplain proposed a non-
local model of tumour invasion(cf. [4]):(CG)



∂n

∂t
= ∇ · [D1∇n− nA{u(t, ·)}] + µ1n(1− n− f),

(1)
∂f

∂t
= −γmf + µ2(1− n− f), (2)

∂m

∂t
= ∇ · [D3∇m] + αc− λm. (3)

wheren := n(x, t) is the density of tumour cells,
f := f(x, t) is the extra cellular matrix density
(ECM density),m := m(x, t)is degradation enzymes
concentration (MDE concentration) ,D1, D3, γ, α, λ,
µ1 andµ2 are positive constants,(x, t) ∈ Ω× (0,∞),
Ω is a bounded domain inRn, with a smooth
boundary∂Ω. The model describes a complicated
multiscale process cell-scale evolution of the tumour

and the non-local termA{u(t, ·)}(x) is referred as
the adhesion velocity. In this paper we assume for
one spacial dimension it takes the form for ”sensing
radius”R > 0, which detects the local environment
of the cell,

A{u(t, ·)}(x) = 1

R

∫ R

−R
Ω(r)g(u(t, x+ r))dr

whereΩ(r) is an odd function, for example,

Ω(r) =
1

2R
for r > 0,Ω(r) = − 1

2R
for r < 0.

g(u(t, x)) will be specified later.
In [2][4][5] it is shown that asR → 0 the non-

local model converges to a usual(local) tumour in-
vasion model same type of Chaplain and Lolas [3],
which described local tumour invasion with tumour
cell proliferation. The following is the mathematical
model proposed by Chaplain and Lolas without the
chemotaxis term in one spacial dimension.

(CL)



∂n

∂t
= dn

∂2n

∂x2
− γ

∂

∂x

(
n
∂f

∂x

)
+ µ1n(1− n− f)

(4)
∂f

∂t
= −ηmf + µ2v(1− n− f) (5)

∂m

∂t
= dm

∂2m

∂x2
+ αn− βm (6)
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wheredn, γ, µ1, η, µ2, dm, α andβ arepositive con-
stants. We have the global existence in time of solu-
tions to (CL) ([6]-[9]).

In this paper we deal with the initial-boundary value
problem for all the problem in one spacial dimension
satisfying
n(x, 0) = n0(x), f(x, 0) = f0(x),m(x, 0) = m0(x),

(7)
and zero-Neumann condition

∂

∂ν
n(x, t) =

∂

∂ν
f(x, t) =

∂

∂ν
m(x, t) = 0 (8)

on∂Ω× (0,∞) whereν is a outer unit normal vector.

It is supposed in our models that the tumour cells
produce MDEs which degrade the ECM locally and
that the ECM responds by producing endogeneous in-
hibitors. The ECM degradation, as well as making
space into which tumour cells can move by simple dif-
fusion, results in the production of molecules which
are actively attractive to tumour cells and which then
aid in tumour cell motility.

Recently Gerisch and Chaplain [5] proposed a non-
local model of tumour invasion for a single cell pop-
ulation to describe a complicated multiscale process
of cell-scale evolution of the tumour and the interac-
tion between cell-cell and cell-matrix adhesion. They
investigate and explorate the model by computational
simulations. Mathematical analysis of the model is
given by Chaplain, Lachowicz, et al. [2].

However in their result the regularity of the solu-
tion is limited and further, though in [5] they verify
the special form of the non-local term by using Tay-
lor expansion and the principal value of the non-local
term, they deal with the model without the structure of
the principal value in [5]. In this paper taking account
of such mathematical structure, we consider the non-
local term as a singular integral operator and show the
energy estimate. By using the estimate in the same
way as used in our previous papers we obtain the ex-
istence and asymptotic behaviour of solutions of the
problem and we gain the understanding of non-local
tumour invasion and computer simulations.
In the previous paper [8] instead of (CG) we consider

an approximation problem of (CG) by using Taylor
expansion of the nonlocal term. However in this paper
we can directly deal with (CG) applying the argument
of the singular integral operator to the nonlocal term,
finally arrive at the our desired result in the same way
as used in (CL) or so. Replicating the asymptotic be-
haviour of solutions of the model, we can observe eas-
ily the relationship and change between tumour cells,
ECM and MDE, depending on time.

2 Existence and asymptotic profile

2.1 Singular integral operator

Following to Domschke, Trucu, Gerisch and Chaplain
[4] we consider the non-local term in the form.

A{u(t, ·)}(x) = 1

R

∫ R

−R
Ω(r)g(u(t, x+ r))dr

=
1

R

∫ R

−R
Ω(r)g̃(n, f)(t, x+r)((ann+aff)(t, x+r)dr

(9)
whereg̃(n, f)(t, y) is a zero-extension forx /∈ Ω and
an, af are constants. Samely we can consider a zero-
extention functions̃n, f̃ of n,f in [0, T ] × R so that
they satisfy (see Mizohata[Th.3.13;14])

∥ñ∥m ≤ C∥n∥m,Ω, ∥f̃∥m ≤ C∥f∥m,Ω. (10)

where∥·∥m,Ω is the Sobolev norm of orderm defined
in Ω and it is written by∥ · ∥m whenΩ = R. We also
denote∥·∥0 and∥·∥0,Ω by ∥·∥ and∥·∥Ω respectively.
Puttingx+r = y, the non-local term can be expressed
by the form:

1

R

∫ ∞

−∞
Ω(y − x)g̃(c, v)(t, y)(anñ+ af f̃)(t, y)dy

taking account of the principal value of the non-local
term as used in [5] for the justification of the form of
it,

:=
1

R
lim
ϵ→0

∫
|y−x|≥ϵ

Ω(y−x)g̃(c, v)(t, y)(anñ+af f̃)(t, y)dy.

which can be regarded as a singular integral operator.

2.2 The estimate of the nonlocal term

In the below we putan = 0 for the sake of simplicity.
ConsideringΩ(r) is homogeneous of order 0, due to

|Ω(r)| = 1

2R

1

r
· r

thenwe obtain by the well knownL2 estimate of the
singular integral operators(see Mizohata[Chap.6;14])

∥A{u(t, ·)}(x)∥2Ω ≤ C∥f∥2Ω (11)

Thenin (2) we have by the reduction process as used
in [6]-[12]

∂

∂t
(log f) = −γm+ µ2(1− n− f).
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integrating the both sides of the above over(0, t)

f(x, t) = f0(x)·e
−γ

∫ t

0
mds+ µ2

∫ t

0
(1− n− f)ds

.

Substitutingf(x, t) by the right hand side of the
above in (1) we have

(RP )


∂2

∂t2
u = D1△ut −∇ · utA{g̃(ut, f0(x)Θ)}

−µ1ut(1 + ut + f0(x)Θ)− µ1f0(x)Θ
∂2

∂t2
v = D3△vt + αut − λvt

wheref = f0Θ andΘ = e−a−bt−γv−µ2(u+
∫ t

0
fds) for

positive parametera, b andn = 1 + ut, m = b+ vt.
By using the estimate of the non-local term (11) we
have the following estimate.

Lemma 1 For sufficiently smoothu, v satisfying (RP)
we have

∥A{g̃(ut, f0(x)Θ)∥2Ω ≤ C∥ut∥2Ω (12)

By using this Lemma we obtain the following estimate
of (RP).

Theorem 2 (Estimate of (RP)) For the smooth solu-
tion of our problemu(x, t) andv(x, t) of (RP) satis-
fying |ut| < 1 it holds that form ≥

[
n
2

]
+ 1

∥∂m
t ut∥2Ω +

∫ t

0
∥∂m

t ∇ut∥2m,Ωdτ ≤ C(∥ut∥2m,Ω(0)

+e−2a∥∇u∥2m,Ω(0))
for sufficiently largea.

Remark 3 It is very crucial to consider the princi-
pal value in the non-local term because they use it for
the verification of the special form of the term. There-
fore any argument and result concerning the non-local
term without the principal value seems to be not es-
sential. But in[4], not considering it they derive the
estimate and the existence theorem of (CG).

2.3 Existence theorem

In the same way as used in [6]-[12] using Theorem
2 we obtain the global existence in time of solutions
and asymptotic behaviour.

Theorem 4 (Existence theorem of (CG))For suffi-
ciently smooth initial data{n0(x), f0(x),m0(x)} and
m ≥ [n/2]+3, assume that∥n0−1∥2m+1 is sufficiently
small,a is large enough, then there are classical so-
lutions of (CG)):{n(x, t), f(x, t),m(x, t)} such that
they satisfy the following asymptotic behaviour

lim
t→∞

||n(x, t)− 1||m−1 = 0, lim
t→∞

f(x, t) = 0.

Remark 5 We can take the regularity of the solution
higher as required according to the smoothness of the
initial data. However in [4] they can not increase
the regularity of the solution as required even for any
smooth initial data.
SinceA1 is of the special form ofA1 = R, there-
fore takingA1 larger is to take the sensing radiusR
larger, which plays a very important role in the non-
local properties of the model.

3 Computational simulations

3.1 Approximation model

In the section in order to obtain the simulation
of (CG) we consider an approximation problem of
(CG) same as used in [4]. Since the non-local term
A{u(t, ·)} is in the integral form, it seems to be diffi-
cult to realize the simulation and understand the in-
teraction between the term and the phenomena by
computational simulation. Hence we consider an
approximation model by using Taylor expansion of
g(u(t, x+ r)) = v(x+ r, t) at r = 0 in the non-local
term,

A{u(t, ·)}(x) =
K∑
k=0

dk

dxk
g(u)Ak(R) + g̃K(r),

Ak(R) =
1

R
p.v.

∫ R

−R

rk

k!
Ω(r)dr.

Our approximation problem of (CG) is as follows by
neglecting the remainder term̃gK(r) of Taylor series.

(CG)′



∂n

∂t
= D1

∂2n

∂x2
− ∂

∂x
(nAK(f))

+µ1n(1− n− f),
∂f

∂t
= −γmf + µ2(1− n− f),

∂m

∂t
= D3

∂2

∂x2
+ αcf − λm.

whereAK(f) =
K∑
k=0

A2k+1
∂2k+1

∂x2k+1
f . It is noticed

thatA2k = 0, k = 0, 1, 2, · · · becauseΩ(r) is an odd
function. (see [5][8]).

Remark 6 In case ofK = 0 the model is same as
the local tumour invasion model proposed by Chap-
lain and Lolas [3]. We obtain the existence theorem
of (CG)’ in the previous paper(see [8]), which verifies
our simulations. Especially the Taylor coefficientA1

is crucial becauseA1 is equal to the sensing radiusR
and it mainly governs the non-local phenomena of the
model.

Akisato Kubo, Yuto Miyata
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 12 Volume 4, 2019



3.2 Computational simulations

Since we obtain the existence and asymptotic be-
haviour of the solution in Theorem 2 , it essentially
justifies the following numerical experiments. We
show the computer simulations of (CG)’, approximat-
ing (CG).

We can improve the simulations by Mathematica 11
so that it is more stable for enough time and we can
take some parameters larger and realize the peak of
tumour cell density becomes much higher in ECM re-
markably.

In the following Figures, first we show the computer
simulations of (CL), then (CG)’ to observe tumour
cell proliferation, migration, ECM re-establishment,
and interactions between the tumour and the surround-
ing tissue: tumour cell density (thick line), ECM den-
sity (thin line), and MDE concentration (dashdot).

t = 0

t = 1

t = 2

t = 3

t = 4

Figure 1: Solutions of (CL) with the parameter values
dn = 0.002, dm = 0.001, xn = 0.007, γ = 0.1, η =
10, µ1 = 0.1µ2 = 0.1, α = 0.1, andβ = 0. The three
components are very stable in the time dependent sim-
ulation result and the peak of the tumour cell density
much higher than in the previous results ([6]-[9]) re-
markably.
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t = 0

t = 1

t = 2

t = 3

t = 4

A1 = 0.01, A3 = 1.67 × 10−5, A5 = 8.33 ×
10−13, A7 = 1.98× 10−18, A9 = 2.76× 10−24

Figure 2: The above simulation result is already ob-
tained in [8]. Here since it is very difficult to take
A1 higher than0.01, we putA1 = 0.01. However in
this paper we can improve the simulation method so
thatA1 can be taken more than 0.01 and the result is
shown in the next figure.

t = 0

t = 1
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t = 2

t = 3

t = 4

A1 = 0.02, A3 = 1.67 × 10−5, A5 = 8.33 ×
10−13, A7 = 1.98× 10−18, A9 = 2.76× 10−24

Figure 3: Compared with Figure 2 the peak of the tu-
mour cell density is clearly appear, while compared
with Figure 1 the height of the peak become much
lower. In this paper our improvement of numerical
experiments enables us to realize the simulations by
takingA1 ≥ 0.2, though in [8] it is impossible to take
A1 more than0.01.

4 Conclusions

In this paper we show the global existence in time
and asymptotic profile of the solution to the initial
boundary value problem (CG). From the stand point

of view of [4], the non-local term can be considered
as a singular integral operator by using appropriate
zero-extensions of the nonlocal term and the unknown
functions and derive the energy estimates of (CG). By
using it we can arrive at the desired result by the stan-
dard argument.

The model shows the multiscale process of tumour
invasion and the complicated interaction between cell-
cell and cell-matrix adhesion, as in computer simu-
lations in section 3, in a certain region of parameter
space. For this purpose expanding the non-local term
into Taylor series we consider an approximation prob-
lem of (CG) , of which the global existence in time and
the asymptotic behavior of solutions of it is shown al-
ready in our previous paper [8]. We can gain a better
mathematical understanding of the model and it guar-
antees the validity of computer simulations.
Numerical experiments are much more improved by

the usage of Mathematica ver. 11 than in the previous
paper [8]. In [8] we should takeA1 = R = 0.01 only
and it is very difficult to take it more but in this paper
our device make it possible. The Taylor coefficient
A1 are very crucial for the stability, the behaviour of
the tumour cell density and the no-local property in
the simulations because ofA1 = R for the sensing
radiusR, which mainly governs the non-local prop-
erties of the model. The larger we takeR, the more
the non-local property seems to appear clearly. Espe-
cially taking it more than 0.01 it is observed the tu-
mour cell density makes a small peak in ECM, which
is much lower than in (CL). Hence it is concluded that
the non-local term seems to work on the tumour inva-
sion asdissipationandviscosity.
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