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Abstract: The main proposal of this article is the investigation and theoretical background of the direct-approximate
methods for the numerical solution of singular integro-differential(SIDE) equations(Cauchy type kernel) with un-
known function defined on the smooth contours of the Lypunov type. The equations are studied in the Lebesgue
spaces. The SIDE are defined on the displaced Fejér points of complex plane. The numerical schemes of colloca-
tion and mechanical quadrature methods for the SIDE defined on an arbitrary smooth closed contour of complex
plane are elaborated. The theorems of convergence of these methods have been proved in Lebesgue spaces.
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1 Introduction
Many theoretical and practical problems of math-
ematics, elasticity, aerodynamics, mechanics, ther-
moelasticity, queuing analysis, and mathematical bi-
ology lead to various classes of singular integral
equations(SIE) and singular integro- differential equa-
tions(SIDE) (one- dimensional and multidimensional)
(see [1]-[6] and the literature cited therein). The gen-
eral theory of SIE and SIDE has been widely inves-
tigated in the last decades [7]-[19]. The general the-
ory SIDE has been widely investigated in the mono-
graphes Muskhelishvili and Vekua [20]-[22]. On
these monographs have been proved that the exact so-
lution for systems of SIDE can be found in some par-
ticular cases. Even in these cases the analytical solu-
tion of SIE is rarely available. It should be mentioned
that using a con- formal mapping, one can transform
an arbitrary smooth closed contour to the unit circle.
However, this approach may not simplify the prob-
lem. The transition to another contour, different from
the standard one, implies many difficulties:

- The coefficients, kernel, and right part of trans-
forming equation lose their smoothness;

- The power of smoothness appears in conver-
gence speed of collocation method. So that the
evaluations of convergence speed will depend
from particular contour;

- The numerical schemes of researched methods

become more difficult. The singularity appears
in new kernel and we are not able to use the
numerical schemes of mechanical quadrature
method because of a singularity of the new ker-
nel.

That is why there is a necessity to elaborate the
approximate methods for solving SIDE and proving
the convergence. As usual the direct-approximate
methods for the SIDE have been studied in two cases:
when the contour was a unit circle and when the con-
tour Γ was an interval on the real line. However, the
case where the contour Γ is assumed to be a smooth
closed Jordan boundary of a simply connected do-
main around the origin has not been studied enough.
We note that the theoretical background of collocation
methods and mechanical quadratic methods for SIDE
was studied in [23]-[29].

In this research, we will study theoretical founda-
tion for SIDE defined on an arbitrary smooth closed
contour in the complex plane with displaced Fejér
points on contour Γ. The paper is organized as fol-
lows. In Section 2 we introduce some definitions and
notations. We present the evaluation of the norm for
Lagrange Interpolation Polynomial in Section 3. In
Section 4 we describe a Singular Integro-Differential
Equations with Regular Integral Operator Equal Zero.
We Formulate the Problem. In Section 4 we present
the numerical schemes of collocation methods for
case when hr(t, τ) = 0. We formulate the auxil-
iary results. We formulate the convergence theo-
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rems for collocation methods. We present the numer-
ical schemes of collocation methods for case when
hr(t, τ) 6= 0 and convergence theorem in Section 5
. In Section 6 we elaborated the numerical schemes of
mechanical quadrature methods.

2 Definitions of Function Spaces and
Notations

Let Γ be an arbitrary smooth closed contour bounding
a simply-connected region F+ of the complex plane,
let t = 0 ∈ F+, F− = C \ {F+ ∪Γ}, where C is the
complex plane. Let z = ψ(w) be a function, mapping
conformably the outside of unit circle Γ0 = {|w| =
1} on the domain F− so that

ψ(∞) =∞, ψ(′)(∞) = 1. (1)

We assume that the function z = ψ(w) has the second
derivative, satisfying on Γ0 the Hölder condition with
some parameter µ (0 < µ < 1); the class of such

contours is denoted by C(2;µ) [29]. Define
◦
W

(q)

p as

◦
W

(ν)

p =
{
g ∈ Lp(Γ) : g(q) ∈ Lp(Γ),

1

2πi

∫
Γ

g(τ)τ−k−1dτ = 0, k = 0, . . . , q − 1

 .
The norm in

◦
W

(q)

p is determined by the equality

||g||p,q = ||g(q)||Lp .

Let Un be the Lagrange interpolating polynomial

(Ung)(t) =
2n∑
s=0

g(ts) · ls(t), (2)

lj(t) =
2n∏

k=0,k 6=j

t− tk
tj − tk

(
tj
t

)n
≡

n∑
k=−n

Λ
(j)
k tk, t ∈ Γ, j = 0, . . . , 2n.

In complex space Lp(Γ) 1 < p <∞ of the func-
tions g(t) ∈ Lp(Γ) with norm

||g| =

1

l

∫
Γ

|g|p(τ)dτ

 ,
where l is the length of Γ. By Hβ(Γ) we denote
the classical Hölder spaces which satisfies the Hölder

condition with exponent β (0 < β < 1) and with
norm

‖g‖β = ‖g‖C +H(g;β),

H(g, β) = sup
t′ 6=t′′

∣∣∣g(t
′′
)− g(t

′
)
∣∣∣

|t′ − t′′ |β
, t

′
, t

′′ ∈ Γ.

By H(q)
β (Γ) q = 0, 1, . . . , H(0)(Γ) = H(Γ) we de-

note the space of q times continuously-differentiable
functions. The derivatives of the qth order for these
functions are elements of space Hβ(Γ). The norm in
H

(q)
β (Γ) is given by the formula

||g||β,q =
q∑

k=0

||g(k)||c +H(g(q);β). (3)

Definition 1 By index of the function[30] G(t) with
respect to the contour Γ we understand the increment
of its argument, in traversing the curve in the positive
direction, divided by 2π.

If the increment of a quality ω in traversing the con-
tour Γ be denoted by [ω]Γ, the index of G(t) can be
written in the form

χ = IndG(t) =
1

2π
[argG(t)]Γ.

3 Function Approximation in
Lebesgue spaces

In this section we present the evaluation of norm for
Lagrange Interpolation Polynomial (2) Un : C(Γ) →
Lp(Γ), 1 < p <∞.

Theorem 2 Let F (t) ∈ C(2;µ) and

tj(θ) = ψ

[
exp

(
2πi

2n+ 1
(j − n) + θi

)]
, (4)

j = 0, . . . , 2n, θ ∈ (0; 2π) i2 = −1,

are displaced Fejér points. Then ||Un||C→Lp ≤ B1

(< ∞), B1 = B1(p) is the constant which depends
from p.

Remark 3 On the Theorem 2 we proved that the
operator Un is bounded as operator reflecting from
C(Γ) to Lp(Γ).

As it was proved in [23] the operator Un : Lp(Γ) →
Lp(Γ) is unbounded even for simplest case:when Γ is
an unit circle. This means ||Un||Lp =∞.
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Theorem 4 Let Γ ∈ C(2;µ) and the points tj j =
0, ..., 2n form the displaced Fejér points [31],[32] (4)
on Γ. Then for every continuous function g(t) from Γ
the following relation holds

||g − Ung||p ≤ (1 +B1(p))En(g; Γ) (5)

En(g; Γ is the best uniform approximation of the
function g(t) by polynomials from the class Υ =

{
n∑

k=−n
rkt

k.}

Remark 5 If g(t) ∈ Hr
α(Γ), r = 0, 1, 2, . . . , then

from the relation (5) the following inequality takes
place:

||g − Ung||p ≤ (1 +B1(p))C
H(g(r);α)

nr+α
,

where C is a constant.

4 Problem Formulation. Singu-
lar Integro-Differential Equations
with Regular Integral Operator
Equal Zero (hr(t, τ) = 0)

We consider the SIDE

Lx ≡
q∑
r=0

{
Ãr(t)x

(r) +

B̃r(t)

πi

∫
Γ

x(r)(τ)

τ − t
dτ

 = y(t), t ∈ Γ, (6)

Ãr(t), B̃r(t), and y(t) are known functions from
C(Γ); x(0)(t) = x(t) is the unknown function

x(r)(t) =
drx(t)

dtr
, (r = 1, . . . , q), (q is a positive in-

teger). We search for a solution of (6) in class of the
functions, satisfying the condition

1

2πi

∫
Γ

x(τ)τ−k−1dτ = 0,

k = 0, . . . , q − 1. (7)

The SIDE (6 with conditions (7) we denote as
”problem (6- (7).” Using the Riesz operators P =
1
2(I+S), Q = I−P , (where I is the identity operator,

and (Sx)(t) =
1

πi

∫
Γ

x(τ)

τ − t
dτ is the singular operator

(with Cauchy kernel)), we rewrite the Eq. (6) in the
form convenient for consideration:

(Mx ≡)
q∑
r=0

[Ar(t)(Px
(r))(t)+

Br(t)(Qx
(r))(t)] = f(t), t ∈ Γ, (8)

where Ar(t) = Ãr(t) + B̃r(t), Br(t) =

Ãr(t)− B̃r(t), r = 0, . . . , q.

4.1 Auxiliary Results

We denote by Lp,q the image of the space Lp with re-
spect to the map P + t−qQ equipped with the norm of
Lp, 1 < p <∞. We formulate Lemma 6 and Lemma
7 from [33]. We use these lemmas to prove the con-
vergence theorems.

Lemma 6 The differential operator Dq :
◦
W

(q)

p →
Lp,q, (Dqg)(t) = g(q)(t) is continuously invertible

and its inverse operator D−q : Lp,q →
◦
W

(q)

p is de-
termined by the equality

(D−qg)(t) = (N+g)(t) + (N−g)(t),

(N+g)(t) =
(−1)q

2πi(q − 1)!
×∫

Γ

(Pg)(τ)(τ − t)q−1 log(1− t

τ
)dτ,

(N−g)(t) =
(−1)q−1

2πi(q − 1)!
×∫

Γ

(Qg)(τ)(τ − t)q−1 log(1− τ

t
)dτ.

From Lemma 6 it follows

Lemma 7 The operator B :
◦
W

(q)

p → Lp, B = (P +
tqQ)Dq is invertible and

B−1 = D−q(P + t−qQ).

The proofs of Lemma 6 and Lemma 7 can be found
in [33].

We search for the approximate solution of prob-
lem (6)-(7) in the form

xn(t) =
n∑
k=0

ξ
(n)
k tk+q +

−1∑
k=−n

ξ
(n)
k tk, t ∈ Γ, (9)

with the unknown coefficients ξ
(n)
k = ξk (k =

−n, . . . , n); we note that the function xn(t), con-
structed by formula (9), satisfies condition (7).
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4.2 Collocation Methods. Convergence The-
orem

Let Θn(t) = Mxn(t)− f(t) be the residual of SIDE.
The collocation method consists in setting it equal
to zero at some distinct points tj , j = 0, . . . , 2n
on Γ. Thus we obtain a system of linear algebraic
equations (SLAE) for the unknown complex numbers
ξk, (k = −n, . . . , n) which can be determined by
solving

Θn(tj) = 0, j = 0, . . . , 2n. (10)

Using the formulae from [23]

(Px)(r)(t) = (Px(r))(t),

(Qx)(r)(t) = (Qx(r))(t), (11)

and the relations

(tk+q)(r) =
(k + q)!

(k + q − r)!
tk+q−r, k = 0, . . . , n,

(t−k)(r) = (−1)r
(k + r − 1)!

(k − 1)!
t−k−r, k = 1, . . . , n,

S(τk) =

{
tk, when k ≥ 0;
−tk, when k < 0;

(12)

from (8) and (10) we obtain the system of linear alge-
braic equations (SLAE) for collocation method:

q∑
r=0

{
Ar(tj)

n∑
k=0

(k + q)!

(k + q − r)!
tk+q−r
j ξk

+ Br(tj)
n∑
k=1

(−1)r
(k + r − 1)!

(k − 1)!
t−k−rj ξ−k

}

= f(tj), j = 0, . . . , 2n. (13)

where Ar(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t) −
B̃r(t),r = 0, . . . , q.
The SLAE (13) contains 2n+ 1 equations and 2n+ 1
unknowns ξk, k = −n, . . . , n.

Theorem 8 Let the following conditions be satisfied:

1) Γ ∈ C(2, µ), 0 < µ < 1;

2) the functions Ar(t) and Br(t) belong to the
space Hα(Γ) 0 < α < 1;

3) Aq(t)Bq(t) 6= 0, t ∈ Γ;

4) the index of the function tqB−1
q (t)Aq(t) is equal

to zero;

5) function f(t) ∈ C(Γ);

6) the operator M :
◦
W

(q)

p → Lp(Γ) is linear and in-
vertible;

7) the points tj (j = 0, . . . 2n) form a system of
displaced Fejér knots on Γ:

tj(θ) = ψ

[
exp

(
2πi

2n+ 1
(j − n) + θi

)]
,

j = 0, . . . , 2n, θ ∈ (0; 2π) i2 = −1.

Then, the SLAE (13) of collocation method has the
unique solution ξk (k = −n, . . . , n), for the num-
bers n ≥ n1, large enough numbers. The approximate
solutions xn(t), constructed by formula (9), converge

when n → ∞ in the norm of space
◦
W

(q)

p to the exact
solution x(t) of the problem (6)-(7) and the following
estimation for convergence holds:

||x− xn||p,q = O

(
1

nα

)
+

O(ω(f ;
1

n
))

def
= δn, (14)

To prove the Theorem 9 we can apply the scheme
from [23].

5 Collocation methods for Singu-
lar Integro-Differential Equations
with Regular Integral Operator
Different from Zero (hr(t, τ) 6= 0)

In the complex space Lp(Γ) we consider the SIDE

(Mx ≡)
q∑
r=0

[Ãr(t)x
(r)(t) + B̃r(t)

1

πi

∫
Γ

x(r)(τ)

τ − t
dτ+

+
1

2πi

∫
Γ
hr(t, τ)x(r)(τ)dτ ]

= f(t), t ∈ Γ, (15)

where Ãr(t), B̃r(t), hr(t, τ) (r = 0, . . . , q) and f(t)

are known functions; x(0)(t) = x(t) is the unknown

function x(r)(t) =
drx(t)

dtr
, (r = 1, . . . , q), (q is a

positive integer). The equation (15) with conditions
(7) we denote as problem ”(15)-(7)”. Applying the
similar approach as in 4 for collocation methods to
the SIDE(15) we obtain the following SIDE for the
problem (15)-(7)

q∑
r=0

Ar(tj)
n∑
k=0

(k + q)!

(k + q − r)!
tk+q−r
j ξk,ρ
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+Br(tj)
n∑
k=1

(−1)r
(k + r − 1)!

(k − 1)!
t−k−rj × ξ−k,ρ

+
n∑
k=0

(k + q)!

(k + q − r)!

2n∑
s=0

hr(tj , ts)t
1+k−r
s Λ

(s)
−kξk,ρ+

+
n∑
k=1

(−1)r
(k + r − 1)!

(k − 1)!

2n∑
s=0

hr(tj , ts)t
−k−r
s Λ

(s)
k ξ−k

= f(tj), (16)

Theorem 9 Let the following conditions be satisfied:

1) Γ ∈ C(2, µ), 0 < µ < 1;

2) the functions Ar(t) and Br(t) belong to the
space Hα(Γ) 0 < α < 1;

3) Aq(t)Bq(t) 6= 0, t ∈ Γ;

4) the index of the function tqB−1
q (t)Aq(t) is equal

to zero;

5) hr(t, τ) (r = 0, . . . , q) ∈ C(Γ×Γ), 0 < β ≤ 1,
function f(t) ∈ C(Γ);

6) the operator M :
◦
W

(q)

p → Lp(Γ) is linear and in-
vertible;

7) the points tj (j = 0, . . . 2n) form a system of
displaced Fejér knots on Γ:

tj(θ) = ψ

[
exp

(
2πi

2n+ 1
(j − n) + θi

)]
,

j = 0, . . . , 2n, θ ∈ (0; 2π) i2 = −1.

Then, the SLAE (16) of collocation method has the
unique solution ξk (k = −n, . . . , n), for the numbers
n ≥ n1, large enough. The approximate solutions
xn(t), converge when n → ∞ in the norm of space
◦
W

(q)

p to the exact solution x(t) of the problem (15)-(7)
and the following estimation for convergence holds:

||x− xn||p,q = O

(
1

nα

)
+O(ω(f ;

1

n
))+

O(ωt(h;
1

n
))

def
= δn, (17)

Here ω(g; δ) = sup
|t′−t′′ |≤δ

|g(t
′
) − g(t

′′
)|, (t

′
, t

′′
) ∈ Γ

is the continue module for function g(t).

6 Mechanical Quadrature Methods
for Singular Integro-Differential
Equations

We approximate the integrals in SLAE (16) by
quadrature formula:

1

2πi

∫
Γ

g(τ)τ l+kdτ ∼=
1

2πi

∫
Γ

Un(τ l+1 ·g(τ))τk−1dτ,

where k = 0, . . . , n, at l = 0, 1, 2, . . . and k =
−1, . . . ,−n, for l = −1,−2, . . . , and Un is the La-
grange interpolation operator defined by formula (2).

Thus, we obtain the following SLAE from (16):

q∑
r=0

Ar(tj)
n∑
k=0

(k + q)!

(k + q − r)!
tk+q−r
j ξk,ρ

+Br(tj)
n∑
k=1

(−1)r
(k + r − 1)!

(k − 1)!
t−k−rj × ξ−k,ρ

+
n∑
k=0

(k + q)!

(k + q − r)!

2n∑
s=0

hr(tj , ts)t
1+k−r
s Λ

(s)
−kξk,ρ+

+
n∑
k=1

(−1)r
(k + r − 1)!

(k − 1)!

2n∑
s=0

hr(tj , ts)t
−k−r
s Λ

(s)
k ξ−k,ρ

= f(tj), j = 0, . . . , 2n. (18)

Theorem 10 Let all conditions of Theorem 9 be sat-
isfied. Then the SLAE () has a unique solution ξk,
k = −n, . . . , n for numbers n ≥ n2(≥ n1) large
enough. The approximate solutions xn(t) converge

when n→∞ in the norm
◦
W

(q)

p to exact solution x(t)
of the problem (15)-(7) and the following estimation
for the convergence is true:

||x− xn||p,q = δn +O(ωτ (h;
1

n
)). (19)

To prove the Theorem 10 we can use the scheme from
[23].
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