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Abstract: - The present paper deals with the Goal Oriented Sensitivity Analysis. The median-oriented 
sensitivity analysis (MSA) is presented which measures sensitivities by applying absolute distances between 
model outputs Y and median of Y. The median is used as the alternative central parameter to arithmetical mean 
applied by the established Sobol sensitivity analysis (SSA). General agreements and differences between MSA 
and SSA are studied by applying the Ishigami function. The paper shows that the sensitivity analysis need not 
necessarily be based on the analysis of variance known as ANOVA, but that there exist alternate approaches, 
too. CPU demanding character of MSA is approximately identical to that of SSA. The proposed MSA is 
efficient and practical for the problems in which it is necessary to quantify the importance of each input 
variable with respect to the median. 
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1 Introduction 
Sensitivity analysis is the study of how uncertainty 
in the output of a model (numerical or otherwise) 
can be apportioned to different sources of 
uncertainty in the model input factors, factors from 
now on [1]. The sensitivity analysis (SA) is an 
important part of industrial applications where 
engineers solve difficult computer codes, often in 
large input [2, 3]. The reduction of the input 
dimension is inevitable so that the computer 
applications were satisfactorily effective at 
observing the optimum accurateness of outputs.  

One among the well introduced SA methods is 
the Sobol sensitivity analysis (SSA) [4, 5]. SSA is 
very popular and widely used approach which gives 
the contribution of the variability of each input w.r.t 
the outputs. SSA is the so-called global sensitivity 
analysis (GSA). 

The GSA is appropriate, above all, for the 
computation models which are nonlinear and non-
monotonic, and which are characterized by high 
number of dimensions and high-order interactions. 
GSA can help researchers find the crucial and 
unimportant input variables, measure relative 
contributions of the uncertainties of input variables 
to the uncertainty of model output or detect the 
interaction effect between different input variables 
[6]. Nevertheless, SSA need not always be the 
appropriate sensitivity indicator. Both pros and cons 

of the SSA are the sensitivity measurements by 
applying conditional mean values. It seems very 
intuitive that to estimate mean values could involve 
very different variables than to estimate e.g. 
medians. The importance of an input variable may 
vary depending on what the quantity (mean value or 
median) of interest is. For the evaluation of GSA, 
alternative solutions for the SSA require the finding 
of alternative approaches. 

In this paper, the application of a fairly new type 
of global median-oriented sensitivity analysis 
(MSA) is presented. The MSA is a subgroup of the 
so-called Goal Oriented Sensitivity Analysis 
methods [7]. The MSA is appropriate for the 
applications in which it is necessary to quantify the 
significance of each input variable owing to the 
median rather than to mean value. This paper is not 
oriented to practical problems of engineering 
reliability, but to Benchmark of MSA and SSA 
using Ishigami Function. The application to the 
Ishigami test function is discussed with the purpose 
of illustrating the properties of the new MSA. 

A numerical example of SA of Ishigami function 
is adopted at first. The MSA is compared to the SSA 
by research into sensitivity measurements of 
Ishigami Function [8]. Ishigami benchmark 
functions [9-12] and numerical aspects are 
investigated, and the results demonstrate that the 
proposed MSA is efficient and practical. 
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2 Brief overview of SA methods 
The model is represented by a mapping f (a 
deterministic or stochastic function) which relates 
the inputs domain to the output space: 

 
( )MXXXfY ,...,, 21=   (1) 

 
where Y is a scalar. The input factors (X1, X2, . . ., 
XM) are supposed to be random variables described 
by identified probability density functions which 
reflect the uncertain knowledge of the system under 
analysis [13]. 

Sensitivity analysis relates to the problem of 
investigating the contribution of the uncertainty in 
the input factors to the uncertainty in the model 
output Y [14]. Through SA, it is possible to 
decompose the model output uncertainty back to the 
input sources of uncertainty. The quantification of 
the signification of input uncertainties is useful for 
the identification of factors which must be measured 
with precision to reach the given accurateness of the 
model output. 

As far as the SA methodologies are concerned, 
the distinction can be made between qualitative and 
quantitative methods [13]. Qualitative methods are 
oriented to the identification of significant and 
insignificant factors using screening, but these 
provide only soft observations of the relative 
difference of importance [15]. Quantitative 
technologies can be designed and adapted so to 
provide information on the uncertainty quantity 
explained by each factor [16]. Mostly, a variance is 
considered [17] as the degree of uncertainty; 
nevertheless, also other degrees of sensitivity 
between statistic interferences are possible [7, 18].  

Another classification of available SA 
methodologies makes distinction between local and 
global methods [13, 16].  

In local approaches (also known as one-at-a-
time, OAT, methods), the influence of a single 
factor is studied supposing that all the other factors 
are fixed on nominal values, see e. g. [19]. The main 
shortcoming of this approach is the impossibility to 
find the interaction between the factors, because it 
manifests itself, when the inputs chase 
simultaneously. The local sensitivity index can be 
obtained very intuitively by computation of 
derivatives, see e.g. [20]. The influence of the input 
factor on the model output Y is computed, for the 
deterministic value of input *

iX as [13]: 
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The inclusion of stochastic uncertainty of the 

input factor can be reached by normalizing the 
derivatives by the factors’ standard deviations. 
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The relations (2) and (3) provide applicable 

information only if the model is linear or if the 
range of uncertainty of the input factors is small. 
The interactions among factors cannot be detected. 

The majority of published sensitivity analyses 
are either local or OAT analyses, relying on 
unjustified assumptions of model linearity and 
additivity [21]. GSA which would obviate these 
shortcomings, are applied by a minority of 
researchers [21]. 

Generally, GSA allow the use of model 
independent methods as they do not require 
assumptions of linearity or additivity [2, 3]. GSA 
can be deterministic [22], stochastic [2, 3] or based 
on fuzzy sets [23]. The stochastic GSA is often 
noticed particularly in connection with the analysis 
of variance (ANOVA), where the studied variance 
in a particular variable is partitioned into 
components attributable to different sources of 
variation [24]. More details of GSA can be found in 
the reviews about sensitivity analysis [21, 25-28]. 

In GSA, variance-based methods are commonly 
used [2, 4, 5] for quantifying the sensitivity of the 
output to the inputs in terms of a reduction in the 
variance of model output. Non-variance approaches 
to GSA are applied by a minority of researchers, and 
therefore it is great challenge for further research 
work. There exist many papers in which the 
objective classification of the SA method is not 
possible, because the term "sensitivity analysis" is 
generally used in the context of uncertainty 
analysis [21]. 

The paper presented deals with the study into the 
qualities of fairly new type of quantitative global 
"non-variance" GSA, called MSA in the paper, as an 
alternative method to be applied to classical 
ANOVA techniques. 
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3 Decomposition-based GSA 
The comparison of the Sobol method (based on the 
measurement of distance between Y and mean of Y) 
with SA applying contrasting functions (distance 
between Y and median of Y) [7, 18] is presented in 
the following chapters. 
 
3.1 Sensitivity measure - method of Sobol’ 
The one of traditional form of GSA is the Sobol’ 
method [4]. The basic idea of Sobol’ method [4] is 
to decompose the function (X1, X2,..., XM) into terms 
of increasing dimensionality, 
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If the input factors are statistically independent, then 
there exists a unique decomposition of (4) such that 
all the terms are mutually orthogonal. The 
decomposition (5) is not a series expansion, because 
it has 2M (finite number) of members. The variance 
of the output variable Y can be decomposed into: 
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where Vj, Vjl,..., V1,2,...M denote the variance of fi, fij, 
..., f1,2,. . .,M, respectively. In this approach the Sobol 
first-order sensitivity index for factor Xi is given by: 
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In [4], Sobol proposed an alternate definition 

Si=corr2(Y,E(YXi)) based on the evaluation of the 
correlation between output random variable Y and 
the conditional random arithmetical mean E(YXi). 
The sum of all Si is equal to 1 for additive models, 
and less than 1 for non-additive models. The 
difference 1-∑iSi is an indicator of the presence of 
interactions in the model. 

The second and third orders sensitivity indices 
can be write as 
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Sensitivity index Sij expresses the influence of 
doubles on the monitored output. 
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The other higher orders sensitivity indices can be 

written and calculated analogously. 
The Sobol indices have been widely used in 

many contexts. Application studies generally show a 
common drawback, Sobol indices are based on 
mean value as on the central parameter. The mean 
value, however, is, in general, not necessarily 
appropriate for each statistical purpose. It seems 
very intuitive that the sensitivity analysis based on 
another central parameter can show different results. 
 
 
3.2 Sensitivity measure - method of contrast 
A more general sensitivity measurement is based on 
contrasts [7]. The choice of the contrast (loss) 
function can determine global sensitivity indices of 
different types [7]. In the present paper, the SSA 
will be compared to the sensitivity analysis based on 
the measurement of distance between Y and median 
of Y. Median as the alternative central parameter 
could involve very different variables than mean 
value. 

The contrast (1oss) function ψ associated with 
median can be written with parameter µ as  
 

 ( ) µµ −= YEψ 5.0   (9) 
 

and the estimator of median µ* is given by 
µ*=Argminψ(µ). The first order median contrast 
index Mi can be written as 
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The second order sensitivity index can be written 

as 
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The higher order quantile contrast indices can be 
written and calculated analogously. The sum of all 
indices is equal to one. 
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The decomposition (12) is similar to the Sobol 
decomposition described in detail and discussed, 
e.g., in [3], nevertheless, the significance of indices 
can be different. 
 
 
4 GSA test using Ishigami function 
The nonlinear and non-monotonic Ishigami 
function [8] is a widely used test tool in the 
study of sensitivity analysis techniques [9-12]. 
The applications SA methods described in the 
Chapter 2 are studied with the purpose of 
illustrating the properties of the new indicators 
Mi, Mij, Mijk. 
 
 
4.1 Ishigami function 
The mathematical expression of the Ishigami 
function is 

 

1
4
32

2
1 sinsinsin xbxxaxY ++=  (13) 

 
where the three inputs Xi (i = 1, 2, 3) are 

independent and follow the uniform distribution 
U(-π, π). The step by step description is used for 
parameters a, b. The change of parameters a and b 
proceeded numerically through the intervals 
a∈[0, 10], b∈[0, 1] with steps 0.2 for a, and 0.02 
for b. 

The Latin Hypercube Sampling (LHS) method 
[29, 30] was applied to generate input random 
variables. Twenty one thousand LHS runs were used 
for the evaluation of E(YXi) in (6), and other twenty 
one LHS runs were used for the evaluation of 
V(E(YXi)). The variance V(Y) was evaluated with 
forty two thousand LHS runs. It can be noticed that 
SSA of (13) has the analytical solution, too [9], 
which is in very exact agreement with numerical 
results presented here. Other indices described in 
Chapter 2 were evaluated analogously with the 
above described number of LHS runs. Each index 
defined in 2.1 and 2.2 is computed using double 
loop, thus the total numerically demanding character 
of computation of one index is 220002 LHS runs. 

The general agreement occurs in case of 
sensitivity indices which are zero value; these are 
M3=S3=0 and M23=S23=0. The examples in which the 

general agreement does not occur are presented in 
Figs 1 to 10 where parametric analyses of 
dependence of sensitivity indices on parameters a, b 
are presented. The courses of M1 and S1 are similar 
in shapes but they are not identical, the maximum 
agreement (minimum difference) is abs(M1-
S1)=0.028 in the point b=0, a=10. The courses M2 
and S2 are similar in shapes, and there exist pairs of 
parameters a, b, where M2 and S2 are identical. The 
courses M12 and S12 are identical (zero) 
approximately for pro b>0.25, see Fig. 3 and Fig. 6. 
The agreement of indices M13 and S13 is illustrated 
in Fig. 11. 

The courses of M123 and S123 are not similar in 
shape, but there exist parameters a, b, where 
M123=S123=0. In general, it holds that the higher is 
the order of indices, the greater differences are 
between MSA and SSA. 

In general, the GSA as also the MSA, are model-
free settings, because neither of them requires 
assumptions of additiveness or linearity [3]. 
Therefore, both of them can be applied with 
effectiveness to the reliability analysis based on 
many types of stochastic models [31-36]. The 
disadvantage of GSA is the fact that it usually leads 
to computationally demanding estimations, 
nevertheless the potential for research into the GSA 
method for the future is evident. It can be noted that 
CPU time consumption can be effectively reduced 
by using GSA-oriented types of meta-models [33-
36]. 
 
 
5 Conclusion 
It has been found by the Ishigami function 
sensitivity analyses that MSA provide relevant 
information which cannot be revealed by the SSA. 
First order sensitivity indices are similar in shape, or 
identical. Higher differences between results of 
MSA and SSA are identified for higher order 
sensitivity indices. 

It is important to take into consideration that 
MSA has not any analogy with variance 
decomposition. The sensitivity measured by the 
MSA measures absolute distances from the median, 
whereas the SSA measures square power of the 
distance from mean value. It can be noticed that the 
absolute distance can be measured also between 
another point than median. MSA can be generalized 
for any upper or lower quantile. 
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Fig.1: First order sensitivity index M1 
 

 
 
Fig.2: First order sensitivity index M2 
 

 
 
Fig.3: Second order sensitivity index M12 

 
 
Fig.4: First order sensitivity index S1 
 

 
 
Fig.5: First order sensitivity index S2 
 

 
 
Fig.6: Second order sensitivity index S12 
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Fig.7: Second order sensitivity index M13 
 

 
 
Fig.8: Third order sensitivity index M123 
 
 
MSA belongs into the group of global sensitivity 

analysis, because it is based on decomposition, and 
thus it is possible to compute all first and higher 
order indices (describe all interaction effects) the 
sum of which must be equal to one. The next 
research can concern the output sensitivity with 
respect to each factor individually and the total 
factor sensitivity inclusive of interactions. The 
research into the total effect can link up with 
extensive knowledge on total sensitivity indices 
realized within the framework of SSA [3]. The 
failure probability is the most important contribution 
to the reliability analysis. The above presented MSA 
can be modified for identification of crucial input 
quantities, which influence the failure probability to 
maximum, or, on the contrary, they are peripheral. 

 
 
Fig.9: Second order sensitivity index S13 
 

 
 
Fig.10: Third order sensitivity index S123 
 

 
Fig.11: Difference between indexes M13 and S13 
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It shows that MSA and SSA are only part of a 
higher whole of the Goal Oriented Sensitivity 
Analysis, which merits much further work to 
become a practical and useful tool for the future. 
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