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Abstract: - In several engineering fields, especially in the recent years, the development of adequate 

diagnostic/prognostic methodologies able to provide a timely and reliable evaluation of the health status of a 

given system has become a strategic task in order to guarantee suitable levels of reliability, robustness and 

logistic availability. In particular, at this moment are in the spotlight some prognostic approaches that, on the 

basis of some representative parameters (measured directly or indirectly), are able to evaluate the health status 

of a physical system with a suitable (and quantifiable) level of accuracy and robustness; it must be noted that, 

especially in recent years, these methods are increasingly meeting interest and application in many technical 

fields and, nowadays, they represent an important task in various scientific disciplines. If considered failures 

are characterized to progressive evolutions, the health status of a given dynamic system (e.g. environmental, 

mechatronic, structural, etc.) and the related failure modes can be identified and quantified by means of 

different approaches widely described in the literature. In the last ten years more and more researchers studied 

and proposed new strategies aimed to design prognostic algorithms able to identify precursors of the 

progressive failures affecting a system: in fact, when a degradation pattern is correctly identified, it is possible 

to trigger an early warning and, if necessary, activate corrective actions (i.e. proper remedial or maintenance 

tasks, replacement of the damaged components, etc.). Typically these methods are strictly technology-oriented: 

they can result extremely effective for some specific applications whereas may fail for other purposes and 

technologies; therefore, it is necessary to "design" and calibrate the prognostic algorithm as a function of the 

considered problem, taking into account several parameters such as the given (dynamic) system, the available 

sensors (physical or virtual), the considered progressive failures and the related boundary conditions. This work 

proposes an overview of the most common model-based diagnostic/prognostic strategies (derived from 

aerospace systems field), putting in evidence their applicability, strengths and eventual shortcomings. 
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1 Introduction 
The study of complex physical dynamic systems 

(e.g. environmental, thermochemical, mechanical, 

electronic, mechatronic) disposes nowadays of 

several tools able to recognize their peculiarities, 

identify their characteristic parameters, study their 

evolution and highlight, in a timely manner, 

abnormal or undesired conditions. In particular, 

combining together numerical modeling and 

simulation techniques with methods of signal 

analysis and evaluation of the characteristic 

parameters, it is possible to develop new analysis 

and monitoring tools, based on the comparison 

between the real (physical) system and the 

corresponding numerical model (e.g. a numerical 

algorithm, representing a simplified description of 

the real phenomena, that is assumed as the reference 

of the real one and operating as a monitor).  

This approach, commonly defined as "model-

based", is widely used in engineering disciplines, 

but can also find effective applications in many 

other technical-scientific fields. Indeed, especially 

in the recent years, the development of adequate 

diagnostic/prognostic (D/P) methodologies able to 

provide a timely and reliable evaluation of the 

system health status has become a strategic task to 

guarantee suitable levels of reliability, robustness 

and logistic availability. In general, the main goal of 

diagnostics is the identification of nature and causes 

of a certain (undesired) phenomenon affecting the 

monitored system. Diagnostics is applied in many 

different disciplines with variations in the use of 

logic, analytics, and experience to determine "cause 

and effect"; in systems engineering and computer 

science, it is typically used to determine the causes 

of symptoms, generate mitigation actions, and 

provide active solutions [1]. 
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The prognostics approach has been originally 

developed in engineering fields: in these contexts, 

its main purpose of this discipline, formally named 

Prognostics and Health Management (PHM) [2], is 

to provide real-time data of the current status of the 

system and to calculate the Remaining Useful Life 

(RUL) [3] before a fault occurs with the 

consequence that a component becomes unable to 

perform its functionalities at the desired level.  

For instance, referring to aeronautical onboard 

application field, the advantage of implementing 

PHM clearly emerges from the comparison with 

classical monitoring and maintenance concepts, 

based on overhaul or life-limited parts (e.g. primary 

flight controls are a critical part of the aircraft 

system and are therefore designed with a 

conservative safe-life approach, which imposes to 

replace the related components after having endured 

a fixed amount of flight hours or operating cycles; 

as reported in [4], by applying PHM strategies 

failures could be managed in a more effective way, 

reducing risks and criticalities and gathering several 

benefits in terms of costs, effectiveness and 

efficiency). It must be noticed that the said 

diagnostic and prognostic concepts, because of the 

variety of applications and the huge impact that they 

generate, have aroused great interest in the scientific 

and technological world and, especially in recent 

years, have been the subject of extensive 

development and dissemination in the scientific 

literature. Very often these contributions, despite 

being extremely innovative and significant, result 

too theoretical or specific and tend to overlook a 

more comprehensive approach (system engineering 

vision), dwelling on well-defined and circumscribed 

aspects of the considered problem [4]. 

The benefits deriving from the application of the 

prognostics to the system engineering (applied to 

industrial, mechanical or aerospace fields) could 

have a positive impact on many other technological 

domains, producing beneficial effects on safety and 

maintenance issues (e.g. reducing risks of 

unexpected system conditions, maintenance costs 

and inspection time). Then, wanting to extend these 

concepts from aeronautical system engineering to 

different technical disciplines, in a more general 

sense the main purpose of the prognostic is to 

predict when a particular system/component 

degrades, losing some of its functionality (e.g. being 

unable to meet the desired performances). It is 

fundamentally based on the comprehension and 

analysis of given set of possible failure modes and 

on the capability of individuating the related initial 

symptoms of aging or wear.  

Once properly gathered and organized, these 

databases can be effectively used as an input of a 

proper failure propagation model. In particular, at 

this moment are in the spotlight D/P approaches 

that, based on given representative parameters 

(measured directly or indirectly), are able to 

evaluate the health status of a physical system with 

a suitable (and quantifiable) level of accuracy and 

robustness; it must be noted that, especially in 

recent years, these methods are increasingly meeting 

interest and application in many technical fields and 

nowadays is an important task in various scientific 

disciplines. In accordance with the aforesaid 

considerations, this work proposes a critical 

comparison between several diagnostic/prognostic 

model-based strategies (derived from onboard 

system field), putting in evidence their applicability, 

strengths and eventual shortcomings. In order to 

compare the different approaches, highlighting the 

main criticalities and evaluating their performance, 

author will refer to a test case derived from 

aeronautical systems that, although relating to a very 

specific application, allows evaluating the different 

methods in a clearer and a more applicative way. 

 

 

2 D/P Model-Based Methods 
The health status of a given dynamic system (e.g. 

environmental, mechatronic, structural, etc.) and the 

eventual incipient failures that concern it, especially 

if related to progressive evolutions, can be identified 

and quantified by means of different approaches. It 

must be noted that, particularly in last decade, there 

has been a strong impulse in the development of 

strategies aimed to design prognostic algorithms 

able to identify precursors of the progressive 

damages/faults affecting a system: indeed, if it is 

correctly identified the degradation pattern, it is 

possible to perform a Fault Detection and 

Identification (FDI) [5], i.e. identify the 

unexpected/undesired effects and quantify their 

magnitudes, and an early warning can be triggered, 

leading to proper corrective actions (i.e. proper 

remedial or maintenance tasks, corrective actions to 

reduce the harmful effects of certain events, 

phenomena or activities, replacement of the 

damaged components, etc.). In literature, many 

different FDI methods have been investigated: 

model-based techniques based on the direct 

comparison between the output of real and 

monitoring system [2, 6-8], on the spectral analysis 

of well-defined system behaviors performed by Fast 

Fourier Transform (FFT) [9-10], on combinations of 

these methods [11] or on Artificial Neural Networks 

(ANN) [12-15]. 
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Since these algorithms are strictly technology-

oriented, they can show great effectiveness for some 

specific applications, while they may fail for other 

applications and technologies: therefore, it is 

necessary to properly conceive the specific D/P 

method as a function of several parameters such as 

the given (dynamic) system, the available sensors 

(physical or virtual), the considered progressive 

failures and the related boundary conditions.  

Then it is necessary to carefully analyze the 

considered system in order to identify the 

fundamental relationships that characterize its 

dynamics and, therefore, to formulate a numerical 

model capable of simulating its dynamic behavior. 

This model can be implemented in different ways, 

e.g. mathematical model obtained from its physical 

relationships, simplified best-fitting models, cause-

effect relationships, identification methods, sets of 

experimental data or empirical relations, approaches 

hybrids obtained by combining the previous ones. In 

this phase, it is necessary to evaluate the effects due 

to the considered faults/anomalous conditions on the 

system response, in order to identify the eventual 

precursors of failures [5] and to define proper test 

cases suitable to perform the FDI analysis [8, 10].  

It should be noted that this model must be 

appropriately tested and validated in order to verify 

its fidelity and robustness and, especially if designed 

for monitoring or FDI activities, it is necessary to 

verify its ability to accurately simulate the behavior 

of the system in the presence of the aforementioned 

failure modes. The so obtained monitoring model 

(MM), sensitive to the considered failures and to 

any significant boundary conditions [16], can be 

used to estimate the health status of the system on 

the base of different approaches that will be briefly 

described in the following. 

3 Fault Maps Method 
A first method for estimating the health status of a 

system, particularly effective when the faults 

considered are few and they are relatively 

independent of each other, is that based on the so-

called "fault maps" (FMs) [8, 10]. A FM constitutes 

the graphical representation of how a system-

representative parameter varies as a function of 

different types of faults. In other words, if the 

measurement of the real system parameter is 

available, this instrument allows supposing which 

extent a certain couple of faults has on the actuator. 

More exactly, a fault map displays the first fault G1 

on x-axis and the representative parameter P1 (i.e. a 

systems characteristic assumed as failure precursor) 

on y-axis. Each map represents a set of curves P1 = 

f(G1) that is parameterized with the second fault G2.  

A proper choice of P1 is crucial in order to obtain a 

useful fault map. In the first place, this parameter 

should be a function of both G1 and G2 and be 

highly sensitive to changes in fault levels. In 

particular, its dependence from the two kinds of 

fault should be monotonic, i.e. the curves plotted on 

the maps should not intersect. The last feature is the 

most important, since it allows detecting a specific 

area on the map containing all the possible fault 

levels. However, the proposed method, in order to 

identify the system conditions with high enough 

accuracy, requires more than one of these maps for a 

specific couple of faults. It must be noted that, when 

several maps are employed, they have to be 

independent from each other: in this way, the 

parameter represented on each map is a magnitude 

that is not related to the others. By using three 

independent maps, i.e. representing three different 

parameters P1, P2 and P3, an accurate area containing 

the possible faults is identified (Fig. 1). 

 

 

   

(a) (b) (c) 

 
Fig. 1: Example of FMs referring to the example shown in [10]: these maps report the evolution of the three failure 

precursors P1, P2 and P3, calculated, respectively, for different values of the progressive faults (FSSspool and Kintas). 
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This FDI method is relatively simple, relatively 

inexpensive for the processor and fast enough 

(because, typically, requests reduced CPU time), but 

needs a rather complex and time-consuming 

preparation phase in which it is necessary to define 

the FMs by comparing, for various combinations of 

faults, the responses of the real system with those of 

the corresponding MM. In fact, in order to calculate 

the above FMs, it is necessary to acquire the 

responses of the physical system for different 

combinations of faults and then, comparing them 

with the corresponding response of the MM, in 

order to calculate the relative fault precursors.  

It is clear that this “experimental-like” data 

acquisition can be rather expensive, both in 

economic and in chronological terms; furthermore, 

compared to other methods, this approach does not 

allow for a very detailed FDI but rather a relatively 

coarse classification of faults. 

 

 

4 Evolutionary Algorithms 
Several optimization techniques are commonly used 

also for model parameter estimation tasks, which 

can be classified into two main categories: 

deterministic (direct or indirect) and probabilistic 

(stochastic, as the Monte Carlo method, simulated 

annealing and genetic algorithms). As reported in 

[10], a large part of these methods are local minima 

search algorithms and often do not find the global 

solution (i.e. they are highly dependent on a good 

initial setting). Local-minima approaches would not 

be robust and may provide a false indication of 

parameter changes in an on-line system (i.e. a wrong 

selection of starting settings could determinate 

problems of convergence or global minima). 

Otherwise, global search methods, such as genetic 

algorithms (GA) and simulated annealing (SA), 

provide more promising options for on-line model 

identification [6-7]. Starting from these, it is 

possible to develop model-based (M-B) FDI 

methods, able to identify fault levels of a given 

system, analyzing its dynamic response and 

comparing it, through a process of optimization, 

with the response generated from a corresponding 

numerical model. Then, the proposed approach to 

detect these faults is based on the comparison of two 

signals provided respectively from the reference 

system (RS) and the monitor (MM). It should be 

noted that the latter is a simplified model (consistent 

with the detailed one) with the requirement to be 

simple and suitably fast (both in terms of 

implementation and computational time), since 

these methods needs several iterations, making the 

heavily detailed model inappropriate to the purpose. 

The comparison between the reference system 

(RS) and the monitoring model (MM) is performed 

by an optimization algorithms that aim to minimize 

proper fitness functions [17], e.g. a quadratic error 

function, by changing iteratively one or more 

parameters (defined as representative of the 

examined faults) of the monitor model until the 

output signal best overlaps with the reference 

system response. If these parameters, calculated by 

the optimization algorithm, match with the real 

ones, the method has worked properly; if the 

monitor model is accurate enough, the optimization 

algorithm gives a good detection of the system 

health. Operationally speaking, the parameters so 

obtained (relative to the MM) can then be correlated 

to the corresponding progressive failure (affecting 

the RS) in order to perform the aforementioned FDI. 

The optimization process is usually governed by 

means of Genetic Algorithms (e.g. see [17]) or other 

evolutionary systems such as Simulated Annealing 

[18-21], MS-ABC [22], Cuckoo Search [23], Firefly 

Algorithm [24], etc. In this paragraph, to clarify the 

different methods, the author will now refer to GA 

[25] and SA [26]. 

 

 
4.1 Simulated Annealing 
The SA method originates, as the name suggests, 

from the study of thermal properties of solids. 

Indeed, this procedure [18-19], was then an exact 

copy of the physical process which could be used to 

simulate a collection of atoms in thermodynamic 

equilibrium at a given temperature. As reported in 

the literature [20-21], there is a significant 

correlation between the terminology of the 

thermodynamic annealing process (the behavior of 

systems with many degrees of freedom in thermal 

equilibrium at a finite temperature value) and 

combinatorial optimization finding the global 

minimum of a given function based on many 

parameters. As reported in [27]. the aforesaid 

association between the thermodynamic simulation 

and the combinatorial optimization reported in 

Table 1 can be more clearly explained by noting that 

the cost of a solution represents the corresponding 

objective function value (i.e. the function that the 

aforesaid optimization algorithm attempts to 

minimize in order to identify the optimal solution), 

the neighbor solution is a new system solution 

calculated by the optimization algorithm and 

evaluate, with respect to the previous one, using the 

said cost functions, and the control parameter is the 

system parameter iteratively modified by the 

optimization process so as to minimize its objective 

function, as shown in literature by [28-29].  
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Table 1. Association between thermodynamic simulation 

and SA combinatorial optimization. 

Thermodynamic Annealing Combinatorial Optimization 

System State Feasible Solutions 

Energy of a State Cost of Solution 

Change of state Neighbor solution 

Temperature Control parameter 

Minimum Energy Minimum Cost 

 

 

Figure 2 shows the operating logic scheme of the 

Simulated Annealing optimization method. 

 

 

Fig. 2: Operating Logic of SA Method [30-31]. 

 

Operatively speaking the SA optimization 

method operates as follows: at a given temperature 

and energy (i.e. the cost of the solution), a new 

nearby solution i+1 is generated (at each iteration) 

as a random displacement from the current solution 

i; the energy of the resulting new solution is then 

computed and the energetic difference ∆E is 

determined with respect to preceding energy as: 

ii EEE  1  (1) 

The acceptance probability of the new solution is: 
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This means that, if the new nearby solution has a 

lower energy level (successful iteration), the 

transition is accepted. Otherwise (unsuccessful 

iteration), a uniformly distributed random number r 

more or equal than 0 and less than 1 is drawn and 

the step will only be accepted in the simulation if it 

is less or equal the Boltzmann probability factor, i.e. 

r ≤ P (∆E).  

After a certain number of steps at the same 

temperature T, the latter is decreased following the 

specified cooling schedule scheme. It is worth 

noticing that the temperature does not take part 

directly to the optimization itself, but it acts merely 

as an exploration parameter. As at high temperatures 

T the factor P (∆E) is very close to 1, most likely 

many up-hill steps are accepted, even if they are 

unsuccessful. In this way, a wide exploration of the 

search space can be performed (this is the main 

feature of this algorithm). Subsequently, as the 

temperature falls off, the search is confined in a 

more limited space since Boltzmann factor P (∆E) 

collapses to very low values, thus decreasing the 

acceptance probability in case of ∆E > 0 (the 

algorithm becomes more selective). Finally, the 

global optimum should be found as soon as the 

temperature reaches its minimum value but, in 

practice, reannealing is performed, raising the 

temperature after a certain number of new points 

have been accepted so that the search starts again at 

the higher temperature. Basically, it avoids be 

caught in local minima. It must be noted that, with 

respect to Genetic Algorithms, Simulated Annealing 

methods are more effective at finding the global 

minima, but at the cost of a larger amount of 

iterations [2, 26]. 

 

 

4.2 Genetic Algorithms 
As previously mentioned, the optimization 

process used to achieve the said FDI could be 

performed by means of a GA approach. It must be 

noted that GAs are a class of evolutionary 

algorithms that take inspiration to the natural 

selection process. GAs have been used in science 

and engineering as adaptive algorithms for solving 

practical problems and as computational models of 

natural evolutionary systems [32]. About that, it 

must also be noted that, especially in order to 

implement a model-based FDI algorithm able to 

perform the health diagnosis of a real EMA 

evaluating several variables (typically five or more), 

the method based upon GAs are usually more 

effective and reliable with respect to other 

approaches (e.g. deterministic methods). In recent 

years the applications of genetic algorithms in the 

development of diagnostic systems based on 

numerical models have found wide interest in the 

scientific world and have led to several technical 

applications. For example, in the fields of 

mechatronics and electromechanical systems, much 

research has been published on new diagnostic and 

prognostic algorithms integrating GA optimization 

and M-B approach [7].  
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Optimization starts with a population of points 

(called chromosomes) which together represent the 

human genome. Each chromosome is a potential 

solution of the problem, the so called fitness 

function (i.e. the error function), calculated for each 

of them. According to the obtained value, a rank is 

assigned to them: since it is a minimization, 

chromosomes who give lower fitness values have a 

better rank and are selected to be the parents of a 

new population of points (the following generation) 

created by means of different operators called 

crossover (a combination of parents), migration and 

mutation. This process, widely described in [17], is 

repeated iteratively until the last child of the last 

generation fulfills a stopping criterion, that can be a 

tolerance on the fitness function, a limit on the stall 

generations, a maximum number of generations, etc. 

By tuning these settings, the method can be more or 

less fast or may or not converge to a final solution.  

It is important to consider that there is a strong 

dependence on the particular problem taken into 

account. GAs are generally suitable for parameters 

estimation since both single and multiple faults give 

accurate results for different levels of damage; 

furthermore, they are able to manage several 

parameters and, by making use of appropriate 

numerical devices (e.g. by parallelizing the 

calculation on different processors, adoption of 

appropriately simplified numerical models, 

implementation of the whole algorithm on low-level 

codes), it is possible to considerably reduce the 

calculation times making them compatible with the 

common maintenance procedures. However, since 

GAs can suffer from local minimum problems (i.e. 

they are not always able to identify the 

corresponding global minima), it is necessary to 

properly design and calibrate the algorithm [25]. 

 

 

5 Test Case 
In order to compare the different M-B FDI 

approaches, it is considered a test case derived from 

aeronautical systems; in fact, even if related to a 

very specific application, this example can be useful 

to evaluate the different methods in a clearer and 

more applicative way. For this reason, the author 

evaluated the effectiveness of the aforementioned 

prognostic method on an electromechanical actuator 

(EMA) typically employed in modern aircraft flight 

control systems, according to “More Electric 

Aircraft” paradigm [34] and “All Electric Aircraft” 

paradigm [35]. As shown in Fig. 3, a typical EMA 

for flight controls can be schematically divided into 

the following main subsystems: 

 

 

Fig. 3: Electromechanical Actuator Scheme [33]. 

 

1. an actuator control electronics (ACE) that closes 

the feedback loop, by comparing the commanded 

position (FBW) with the actual one, elaborates 

the corrective actions and generates the reference 

current (I_ref); 

2. a Power Drive Electronics (PDE) that regulates 

the three-phase electrical power; 

3. an electrical motor, often BLDC (BrushLess 

Direct Current) type; 

4. a gear reducer having the function to decrease 

the motor angular speed (RPM) and increase its 

torque to desired values; 

5. a system that transforms rotary motion into linear 

motion: ball or roller screws are usually 

preferred to acme screws because, having a 

higher efficiency, they can perform the 

conversion with lower friction; 

6. a network of sensors used to close the feedback 

loops (current, angular speed and position) that 

control the whole actuation system. 

As previously said, for this study two numerical 

models of the EMA were developed: they have been 

implemented in MATLAB/Simulink® environment. 

A very detailed reference model (representing 

the RS) is used as a virtual test rig for the FDI 

algorithm, simulating the behavior of the faulty 

physical system. Given that the computing time 

required by this model, however, is not compatible 

with the use in the FDI algorithm itself, a simplified 

monitor model (i.e. the MM) was built to achieve a 

light computing cost and, at the same time, a high 

accuracy in reproducing the early effects of different 

incipient fault modes. The reference model (RS), 

widely described in [33], contains a detailed 

simulation of the physical phenomena acting in the 

EMA, in particular regarding the EM stator-rotor 

coupling [36-39], end-of-travels, compliance and 

backlashes acting on the mechanical transmission 

[40-41], dry friction acting on bearings, gears, 

hinges and screw actuators [42] and a precise model 

of the behavior of the power electronics, including 

the solid-state inverter and the PWM control of the 

three electrical phases. 
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The monitor model (MM) is a simplified 

representation of the system using, for example, an 

equivalent single-phase DC motor with a single 

feedback loop instead of the more complex 

electromagnetic (EM) model of the BLDC. This 

requires the introduction of a shape function based 

model for the simulation of the electrical fault, 

which is not strictly related to the physics of the 

system, but allows reproducing the effects of faults 

with goof accuracy [16]. The above models have 

been used to evaluate the performances of the 

different FDI methods in the case of combined 

progressive failures: results for the three methods 

considered in the present work (FMs, SA and GAs) 

are respectively reported in [8], [33] and [17]. 

 

 

6 Conclusion 
In this work the author considered three Model-

Based (M-B) Fault Detection/Identification (FDI) 

methods applied to physical dynamic systems, 

introducing briefly their main characteristics, 

strengths, shortcomings and providing some 

bibliographic reference useful to understand these 

approaches or evaluate their performances.  

As previously reported, the Failure Maps (FMs) 

method is relatively simple, not expensive for the 

processor and fast enough (reduced CPU time), but 

requires a rather complex and expensive preparation 

phase for identifying the aforesaid maps; however, 

being based on a deterministic type algorithm, this 

method is exempt from the criticalities typical of 

heuristic methods. Operatively speaking, it must be 

noted that the so obtained FDIs result typically 

rather coarse (as a consequence of the discretization 

introduced parametrizing the FMs curves), are able 

to handle only a few parameters (generally no more 

than two or three progressive failures) and their 

performances are markedly dependent on the 

uncertainties and errors that characterize the 

mapping process. Vice versa, the Simulated 

Annealing (SA) results trustworthy also for 

combined failures and it is possible to assess its 

validity even on other possible different conditions 

(i.e. different combinations of progressive faults and 

boundary conditions). With respect to other 

optimization algorithms that are highly dependent 

on good initial settings, SA-based algorithms are 

usually able to perform the optimization process 

reaching the corresponding global minimum 

independently by the starting settings. However, 

especially when it is necessary to manage an 

optimization process on many parameters, the SA 

shows its limits with respect to genetic algorithms, 

resulting less fast and effective.  

As regards genetic algorithms, they are usually 

effective and reliable in the FDI of failures 

precursors; in particular, GAs are particularly 

suitable for parameters estimation since both single 

and multiple faults give accurate results for different 

levels of damage. Compared to FMs and SA 

methods, the GA approach is certainly more 

performing and promising for FDI applications but, 

as already explained in the previous paragraph, it is 

necessary to appropriately design the algorithm to 

avoid (or, at least, appropriately limit) the risk of 

false positive and incorrect/omitted identifications. 

In conclusion, it should be noted that, although 

referred to an onboard application, the author 

already tested the three methods (FM, GA and SA) 

by means of a numerical test-bench simulating a 

typical electromechanical actuator for primary flight 

controls; several progressive failures have been 

evaluated and, as reported in [8, 11, 16, 33], the 

three FDI prognostic methods (albeit with different 

performances, calculation times and levels of 

accuracy) provided encouraging results. 
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