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Abstract: In this paper we investigate a mathematical model of non-local tumour invasion with proliferation pro-
posed by Grisch and Chaplain in 2008. For the better understanding of the model we consider an approximation
model expanding the non-local term into Taylor series. We prove the global existence in time and asymptotic profile
of the solution to the initial boundary value problem for the approximation model in 1 spacial dimension. Apply-
ing known mathematical results of usual(local) tumour invasion models, which are corresponding to the same type
problem of Chaplain and Lolas model, we discuss the existence and property of solutions to the problem. Finally
we show the time dependent change of the non-local tumour invasion process by computational simulations of the
approximation model.
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1 Introduction

The tissue invasion by tumour is one of the hallmarks
of cancer. For the better understanding of this phe-
nomena mathematical models of cancer invasion of
tissue:local and non-local models, the effect of cell-
cell and cell-matrix adhesion is investigated through
the models by a number of authors([2][4]-[6], further
references therein).

In [6] Gerisch and Chaplain proposed a non-
local model of tumour invasion(cf. [5]):(CG)

∂n

∂t
= ∇ · [Dn∇n− nA{u(t, ·)}] + µ1n(1− n− v),

(1)
∂v

∂t
= −γmv + µ2(1− n− v), (2)

∂m

∂t
= ∇ · [Dm∇m] + αc− λm. (3)

wheren := n(x, t) is the density of tumour cells,
v := v(x, t) is the extra cellular matrix density (ECM
density),m := m(x, t)is degradation enzymes con-
centration (MDE concentration) ,Dn,Dm, γ, α, λ, µ1

andµ2 are positive constants,(x, t) ∈ Ω× (0,∞), Ω
is a bounded domain in Rn, with a smooth boundary
∂Ω. The model describes a complicated multiscale
process cell-scale evolution of the tumour and the
non-local termA{u(t, ·)}(x) is referred as the adhe-

sion velocity. In this paper we assume for 1 spacial
dimension andµ2 = 0 it takes the form for ”sensing
rudius”R > 0, which detects the local environment of
the cell,

A{u(t, ·)}(x) = 1

R

∫ R

−R
Ω(r)g(u(t, x+ r))dr

whereΩ(r) is an odd function, for example,

Ω(r) =
1

2R
for r > 0,Ω(r) = − 1

2R
for r < 0.

In addition we assume thatg(u(t, x + r)) = v(x, t)
for our convenience.
In [3][5][6] it is shown that asR → 0 the non-local

model converges to a localised tumour invasion model
same type of Chaplain and Lolas [4], which described
local tumour invasion with tumour cell proliferation.
The following is the mathematical model proposed by
Chaplain and Lolas without the chemotaxis term in
one spacial dimension.

(CL)



∂n

∂t
= dn

∂2n

∂x2
− γ

∂

∂x

(
n
∂v

∂x

)
+ µ1n(1− n− v)

(4)
∂v

∂t
= −ηmv + µ2v(1− n− v) (5)

∂m

∂t
= dm

∂2m

∂x2
+ αn− βm (6)
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wheredn, γ, µ1, η, µ2, dm, α and β are positive
constants. We have the global existence in time and
the asymptotic behaviour of solutions to (CL) in [12]-
[15].

In this paper we deal with a boundary value problem
for all the problem in one spacial dimension satisfying
initial data:
n(x, 0) = n0(x), v(x, 0) = v0(x),m(x, 0) = m0(x),
and zero-Neumann condition

∂

∂ν
n(x, t) =

∂

∂ν
v(x, t) =

∂

∂ν
m(x, t) = 0

on∂Ω× (0,∞) whereν is a outer unit normal vector.

Tumour invasion models without considering the
non-local environment of the cell, for instance [2]
[4], base the mathematical model on generic solid tu-
mour growth, which for simplicity they assume is at
the avascular stage. While most tumours are asymp-
tomatic at this stage, it is still possible for cells to es-
cape and migrate to the lymph nodes and for the more
aggressive tumours to invade.

They assume that the tumour cells produce MDEs
which degrades the ECM locally and that the ECM
responds by producing endogeneous inhibitors (e.g.,
TIMPs). The ECM degradation, as well as making
space into which tumour cells may move by sim-
ple diffusion, results in the production of molecules
which are actively attractive to tumour cells (e.g., fi-
bronectin) and which then aid in tumour cell motility.
Hence they refer to the movement of tumour cells up
a gradient of such molecules as haptotaxis and then
choose to consider tumour cell motion to be driven
only by random motility and haptotaxis in response to
adhesive or attractive gradients created by degradation
of the matrix.

Recently Gerisch and Chaplain in [6] proposed a
non-local model of tumour incasion for a single cell
population to describe a complicated multiscale pro-
cess of cell-scale evolution of the tumour and the in-
teraction between cell-cell and cell-matrix adhesion.
They investigate and explorate the model by com-
putational simulations. Mathematical analysis of the
model is given by Chaplain, Lachowicz, et al. [3].
However their result is not applicable to our case be-
cause of the restriction of the regularity of the solu-
tion. Since in [6] they verify the form of the non-local
term by using Taylor expansion of the non-local term,
in this paper according to their way we consider an
approximation model of (CG) by expanding the non-
local term into Taylor series and computational simu-
lations of it.

On the other hand, there are many related mathe-
matical models which can be found in the literature
describing tumour angiogenesis(cf. [1], [20], [21],
[22]). In [20] Levine and Sleeman apply the diffu-
sion equation provided by Othmer and Stevens [21]
to obtain the understanding of tumour angiogenesis,
which arises in the theory of reinforced random walk.
Anderson and Chaplain [1] proposed a model for an-
giogenesis considered into endothelial tip-cell migra-
tion, i.e., the model considered the motion of the cells
located at the tips of the growing sprouts. The model
has cell migration governed by three factors: diffu-
sion, chemotaxis and haptotaxis.

Also mathematical approaches for tumour growth
models are known( see [3] [7]-[19][20][22] and [23]).
Levine and Sleeman [20] and Yang, Chen and Liu
[23]studied the existence of the time global solution
and blow up solutions to a simplified case of Othmer
and Stevens type of the model. Kubo et al. [7]-[19]
show the time global solvability and asymptotic be-
havior of the solution to tumour growth models con-
sidered in [1][2][4]-[6][20]-[22].

In this paper we deal with an approximation model
of nonlocal invasion model (CG), which is considered
by using Taylor expansion of the non-local term, and
obtain the existence and asymptotic behaviour of so-
lutions of the problem by applying our mathematical
results of (CL) to the model and we obtain the under-
standing of non-local tumour invasion and computa-
tional simulations. By computational simulations we
see the effect of the Taylor expansion terms on the
model as the amplitude of Taylor coefficients changes.
Actually visualizing the asymptotic behaviour of so-
lutions of the model, we can observe easily the rela-
tionship and change between tumour cells, ECM and
MDE, depending on time.

2 Approximation model

2.1 Taylor expansion of the non-local term
In the non-local term we consider Taylor expansion

of g(u(t, x+ r)) atx,

g(u(t, x+ r))dr =
K∑
k=0

rk

k!

dk

dxk
g(u(t, x)) + g̃K(r)

whereg̃K(r) is a remainder term. Then we have

A{u(t, ·)}(x) =
K∑
k=0

dk

dxk
g(u)Ak(R) + g̃K(r)
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where

Ak(R) :=
1

R

∫ R

−R

rk

k!
Ω(r)dr.

Whenk is even number considering thatΩ(r) is an
odd function

Ak(R) =
1

R
p.v.

∫ R

−R

rk

k!
Ω(r)dr = 0

Only the term with the derivatives of odd order are
remained in the Taylor series of the non-local term.
Therefore the non-local term is expanded into Taylor
series as follows,

A{u(t, ·)}(x) =
K∑
k=0

A2k+1(R)
d2k+1

dx2k+1
v+ g̃2K+1(r).

Sinceg(u(t, x+ r)) = v(x, t), then we have

A2k+1
∂2k+1

∂x2k+1
g(u(t, x)) = A2k+1

∂2k+1

∂x2k+1
v.

Hence in case ofK = 0 the model is same as the lo-
cal tumour invasion model provided by Chaplain and
Lolas [4].

In the next subsection we consider an approximation
model and in the next section show global existence
in time and asymptotic behaviour of solutions of the
initial boundary value problem for such models.

2.2 Approximation model of (CG)

By using Taylor expansion of the non-local term in-
stead of itself we consider an approximation equation
of (1) and an approximation problem of (CG) by ne-
glecting the remainder term of Taylor series.

(CG)’



∂n

∂t
= ∇ · [Dn∇n− nAK(v)] + µ1n(1− n− v),

∂v

∂t
= −γmv + µ2(1− n− v),

∂m

∂t
= ∇ · [Dm∇m] + αc− λm.

whereAK(v) =
K∑
k=0

A2k+1
∂2k+1

∂x2k+1
v.

Since the original non-local termA{u(t, ·)} is in the
integral form, it seems to be difficult to understand
the interaction between the term and the invasion phe-
nomena. However in (CG)’, sinceAK(v) is in the
form of a sum of derivatives ofv, it enables us to in-
vestigate the the effect of the non-local term on the
invasion phenomena more clearly.

3 Existence theorem
In [12]-[15] we obtain the global existence in time

and the asymptotic behaviour of the solution to (CL).

Theorem 1 (Existence theorem of (CL))For suffi-
ciently smooth initial data{n0(x), v0(x),m0(x)} and
m ≥ [n/2]+3, assume that∥n0−1∥2m+1 is sufficiently
small,a is large enough, then there are classical so-
lutions of (CL)):{n(x, t), v(x, t),m(x, t)} such that
they satisfy the following asymptotic behaviour

lim
t→∞

||n(x, t)− 1||m−1 = 0, lim
t→∞

v(x, t) = 0.

By applying the existence theorem of (CL) to (CG)’
we obtain existence of solutions to (CG)’. In fact, first
we consider the case ofK = 0, (i.e.)

AK(u) = A1
∂

∂x
v,

then we see that (CG)’ coincides with (CL) forµ2 =
0. Hence by Theorem 1 we obtain the existence theo-
rem of (CG)’.
In the same way by applying Theorem 1 forAi from
i = 1 to i = K we have the global existence in time
and the asymptotic behaviour of the solution to (CG)’
by takingm ≥ [n/2] + 3 + 2K in the statement of
Theorem 1.
Our main result is as follows.

Theorem 2 (Existence theorem of (CG)’)For suffi-
ciently smooth initial data{n0(x), v0(x),m0(x)} and
m ≥ [n/2]+3+2K, assume that∥n0−1∥2m+1 is suf-
ficiently small,a is large enough, then there are clas-
sical solutions of (CG)’: {n(x, t), v(x, t),m(x, t)}
such that they satisfy the following asymptotic be-
haviour.

lim
t→∞

n(x, t) = 1, lim
t→∞

v(x, t) = 0.

4 Computational simulations

Since we obtain the existence and asymptotic be-
haviour of the solution in Theorem 2 , it essentially
justifies the following numerical experiments by com-
putational simulations. We show the computational
simulations of the following problem.

(CG)’4



∂n

∂t
= D1

∂2n

∂x2
− ∂

∂x
(nA4(v))

+µ1n(1− n− v),
∂v

∂t
= −γmv + µ2(1− n− v),

∂m

∂t
= D3

∂2

∂x2
+ αcv − λm.
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In Figure1 ∼ 5 we show the computational simula-
tions of (CG)’4 for A4(u+2v) instead ofA4(v), since
the result is similar to the case ofA4(v) but much
more stable than it. We observe tumour cell prolifer-
ation, migration and interactions between the tumour
and the surrounding tissue: tumour cell density (thick
line), ECM density (thin line), and MDE concentra-
tion (dotline), takingA3 ∼ A9 from 0 to 10−1 at t =
0, 0.35, 0.7, 1.05 and 1.4.

t = 0

t = 0.35

t = 0.7

t = 1.05

t = 1.4

A1 = 0.01 A3 = 1.67× 10−5 A5 = 8.33× 10−13,
A7 = 1.98× 10−18, A9 = 2.76× 10−24

Figure 1: Three components are very stable in the time
dependent simulation. Therefore based on the ampli-
tude ofA1 ∼ A9 as above, in the below changing
the value ofA1 ∼ A9 appropriately we observe the
change of the relationship between tumour cell den-
sity and the value ofA1 ∼ A9.

(1) t = 0.7,
A1 = 0.01 A3 = 1.67× 10−5 A5 = 8.33× 10−13,

A7 = 1.98× 10−18, A9 = 2.76× 10−24
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(2) t = 0.7
A1 = 0.01 A3 = 1.67× 10−7A5 = 8.33× 10−13,

A7 = 1.98× 10−18, A9 = 2.76× 10−24

Figure 2: We takeA3 = 1.67 × 10−5 in (1) and
1.67 × 10−7 in (2). Compared with two figures, it is
observed that the amplitude ofA3 makes the tumour
cell density increase around the boundary of ECM in-
tersecting tumour cell as it increases.

t = 0.7
A1 = 0.02 other coefficients are same as

in Figure 1-(1)

Figure 3: We takeA1 = 0.02 which is more than
in Figure 1-(1). Compared with two figures, it is ob-
served that the amplitude ofA1 makes the tumour cell
density increase around the boundary of ECM inter-
secting tumour cell as it increases.

t = 0.7
A1 = 0.01 other coefficients are 0

Figure 4: We takeA1 = 0, 01 which is same as in
Figure 1-(1) again. In this case our model is same as
(CL). Compared to Figure 1-(1), it is observed that the
amplitude ofA3 ∼ A9 makes the tumour cell density
increase around the boundary of ECM intersecting tu-
mour cell as they increase.

t = 0.7
A3 = 0, other coefficients are same as in Figure

1-(1).
Figure 5: Aftert = 0.7 the simulation becomes
unstable soon. Instead taking the coefficients

A5 ∼ A9 larger as below, the simulation becomes
stable again.

t = 0.7
A1 = 0.01, A3 = 0,A5 = 8.33× 10−10, A7 =

1.98× 10−12, A9 = 2.76× 10−16

5 Conclusions

The non-local model shows that the multiscale pro-
ces of tumour invasion into tissue and the complicated
interaction between cell-cell and cell-matrix adhesion,
as showed in computational simulations in section 4
in a certain region of parameter space. Expanding the
non-local term into Taylor series we consider an ap-
proximation problem of (CG) and show rigorously the
global existence in time and the asymptotic behavior
of solutions of it. Our main aim is focused on a better
mathematical understanding of the model and it gu-
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ranteesthe validity of computational simulations that
qualitively replicate the complicated morphologies of
non-local invasive tumour. Numerical experiments in
section 4 imply that as the amplitude of Taylor coef-
ficients increases the density of tumour cell increases
around the boundary of ECM intersecting tumour cell,
which means that Taylor series of the non-local term
work asdissipation andviscosity. Hence we might
respect the non-local term as dissipation term in the
tumour invsion. In Taylor coefficients of the non-local
term A1, A2 are crucial for the stability and the be-
haviour of the tumour cell density in the simulation.
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