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Abstract: - The basic Elliptic Curve Cryptosystem used for encryption is Elgamal encryption scheme, it is a 
public key cryptosystem which is based on the difficulty of the Elliptic Curve Discrete Logarithm Problem 
(ECDLP). However, this cryptosystem does not guarantee all the security constraints. In this article, we 
propose a new public key cryptosystem that provides all the security constraints such as confidentiality, 
integrity, authenticity and non-repudiation of the data using Elliptic Curves. 
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1 Introduction 

Asymmetric cryptography was introduced in 1976 
by White Diffie and Martin Hellman [1] in order to 
solve the problem of secret key exchange in 
unsecured channels, their secret key exchange 
protocol was based on the discrete logarithm 
problem. The Discrete Logarithm problem for a 
general algebraic group G can be stated as follows: 
given α ∊	G, find an integer such that β=αx, provided 
that an integer exists. The integer x is called 
Discrete Logarithm [2]. Diffie and Hellman have 
also proposed the theoretical model of an 
asymmetric cryptosystem, which consists of using 
two keys: a public key to encrypt, and a private key 
to decrypt data. This model has been applied by 
Elgamal [3]. 

  Nowadays, there is a growing interest in Elliptic 
Curve Cryptography, which was developed in 1985 
independently by two mathematicians, Neal Kobiltz 
[4] and Victor Miller [5]. It is a public key 
cryptography based on the arithmetic of elliptic 
curves and security of the hardness of the Elliptic 
Curve Discrete Logarithm Problem (ECDLP).  
Elliptic Curve Cryptography can be used for 
encryption, digital signature and key exchange. The 
advantage of elliptic curves is that they provide a 
level of security equivalent to that of existing public 
key systems but with shorter key lengths [6]. 

  The basic Elliptic Curve Cryptosystems such as 
Diffie-Hellman key exchange and Elgamal 
encryption scheme are vulnerable to man-in-the-

middle attacks. There exists several research works 
that treated of man-in-middle attacks.  

To ensure authentication in ECC, two methods 
exist, the first method consists of adding a digital 
signature scheme to the cryptosystem, while the 
second method consists in modifying the Diffie-
Hellman key exchange such that the digital 
authentication is integrated into the exchange 
scheme [10]. 

  In the first method, we find Elliptic Curve Digital 
Signature Algorithm ECDSA [11], which is the first 
algorithm of digital signature on EC. EDSA is the 
analogue of Digital Signature Algorithm DSA [12]. 
However, it is safer and faster than DSA. In 2011, 
two algorithms (ECDSA1 and ECDSA2) were 
proposed, which are an improvement of ECDSA. 
These algorithms reduce the computational cost 
while keeping the same security level as the original 
ECDSA [13]. In 2016, ECDSA1 and ECDSA2 were 
improved by using two random numbers of 
signature generation in order to reduce the 
probability of secret key risk exposure to potential 
attacks [14]. 

   In the second method, there are two ways of 
ensuring the authentication of the key. The first 
approach is the authenticated key agreement, where 
we find several works that propose to add a digital 
certificate [15], [16], [17] or add hash functions 
[18], [19], [20]. The second approach is the 
authentic key transport between two communicating 
parties. Here, we find the work proposed in [21], 
where key authenticity is ensured by publishing the 
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specific public key for each communicator. In 
addition, this specific public key is used in [22], 
where an algorithm of asymmetric encryption is 
proposed to ensure data authenticity. 

   This paper is a revised and expanded version of 
the work presented in [23]. In this paper, we 
propose a new public-key encryption system that 
satisfies all the security constraints such as data 
confidentiality and integrity, users’ authenticity, and 
transactions non-repudiation. Hence, the proposed 
cryptosystem is less susceptible to the man-in-
middle attack. The rest of the paper is organized as 
follows. Section 2 gives basic mathematical notions 
on which Elliptic Curve Cryptography is based. 
Section 3 summarises Elliptic Curve Encryption. 
Section 4 briefly gives the concept of a hash 
function. Section 5 presents the proposed 
cryptosystem. In Sections 6, comparisons are done, 
and Section 7 concludes the paper. 
 
 

2 Basic notions 

The elliptic curve E over a finite field is an algebraic 
curve non-singular [24], which can be represented 
by the generalized Weierstrass equation: 

Ex,y)|y2+xy+y-x3-x2-x-∪ሼߍሽ		ሺ1ሻ 

Where ,,, and 	∊	E and ߍ the point at 
infinity. 

 

 

 

 

 

 

 

Fig. 1. Graph of Elliptic Curve y2=x3-15x+20.	

In the present paper, we study an elliptic curve of 
third degree over a finite field k = Fp having the 
form (2) shown in the Fig. 1. for the elliptic curve 
y2=x3-15x+20.  

                     y2=x3+ax+b																																		(2) 

Where a,b ∊	k	 and 4a3 + 27b2 ് 0 .Together with an 
extra point ߍ, called the point at infinity. 
 
 
2.1 Group low of elliptic curve 

Let Ep(a,b) be an elliptic curve defined in a finite 
field k = Fp, the set of points on the curve with the 
point at the infinity, denoted ∞, form an Abelian 
group G whose composition law is the addition of 
points satisfying the following conditions: 

 Closure: ∀(P1,P2) ∊ Ep(a,b) | P1 + P2  ∊ 
Ep(a,b) 

 Commutativity: ∀ (P1,P2) ∊ Ep(a,b) | P1 + P2 

= P2 + P1  
 Associativity: ∀ (P1,P2,P3) ∊ Ep(a,b) | (P1 + 

P2) + P3 = P1 + (P2 + P3)  
 Identity element ∞: ∀P ∊ Ep(a,b) | P + ∞ = ∞ 

+ P =  
 Symmetrical element: ∀P(x,y) ∊ Ep(a,b), 

∃Q(x,-y) ∊ Ep(a,b) | P + Q = Q+ P = ∞ 
(Q is a symmetrical element of P denoted by 
–P).  
 

2.2 Geometric addition 

Let P(x1,y1) and Q(x2,y2) be two points on the elliptic 
curve  Ep(a,b) [23,24] 

 Point adding: P്Q, the group operator will 
allow us to calculate a third point P +Q = 
R(x3,y3) ∊ Ep(a,b) where  

x3= (y2 - y1 / x2 - x1) 2- x1 - x2  and 

y3= (y2 - y1 / x2 - x1 ) ( x1 - x3 ) - y1 

 Point doubling: P = Q, the group operator 
will allow us to calculate a third point P + P 
= 2P = R(x3,y3)∊ Ep(a,b) where  

x3= (3x1
2

 - a / 2y1) 2-2x1   and  

y3= (3x1
2

 - a / 2y1) 2-(x1 - x3) - y1    

 Adding vertical point: P = -P, the group 
operator will give us the point at infinity P + 
(-P) = ∞. 

 

2.3 Point multiplication  

Let P(x,y) be any point on the elliptic curve Ep(a,b) 
and k is a large integer  scalar multiplication 
consisting of computing the value k*P by doing a 
series of point doublings and additions until the 
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product point is reached [23,24]. kP = P +P + P…+ 
P, k times. 

 

2.4 Elliptic Curve Discrete Logarithm 
Problem 

 Elliptic Curve Cryptography (ECC) is based on the 
difficulty of Elliptic Curve Discrete Logarithmic 
Problem (ECDLP), the difficulty of this problem is 
to determine the value of k of the equation Q = k*P 
for the known points P and Q on the elliptic curve 
Ep(a,b),  where k is a Large random number less 
than p. 
 
 

3 Elliptic Curve Encryption  

     The basic  public-key cryptosystem proposed to 
encrypt and decrypt messages is the Elgamal 
cryptosystem [9]. When Alice wants to send a secret 
message to Bob, so she does the following [23]. 

1.  Alice downloads Bob's public key Qb , elliptic 
curve domain parameters Ep(a,b) and point 
generator G, where Qb = nb* G  and	nb	is	a	private	
key	of	Bob . 

 2. She transforms its message into a point M ∊ 
Ep(a,b). 

3.  She chooses a secret integer k and computes C₁ = 
k*G. 

4.  She calculates C₂ = M + k * Qb. 

5.  She sends the encrypted message Cᵢൌ	ሼ C₁, C₂ሽ 
to Bob.  

Bob decrypts a message as follow 
1. Bob receives the encrypt message Cᵢൌ	 ሼC₁, 

C₂ሽ	.	

2. He	calculates	M₁ൌ	nb*	C₁	.	

3. He	calculates	M	ൌ	C₂	‐	M₁	.	

The main weakness of the cryptosystem of Elgamel 
is that the authenticity of the message is unsure, an 
attacker can easily create a common key with the 
entities, so the entities think to communicate to each 
other, while they are actually communicating with 
the attacker [23]. 

 

4 Hash Function 

A hash function or a digest function is a function 
that transforms a message M to a value h called 
hash, H (M) = h, it is used in cryptography to satisfy 
the following properties: 

- In input, the size of message can be of any 
length, whereas in output, the h has a fixed 
value. 

- The computation of H (M) can be calculated 
very quickly. 

- H(M) is one way function (invertible), i.e. 
using the hash h, it is impossible to find the 
message M from h. 

- H(M) is collision-free, given two messages 
M1 and M2, it is infeasible to find H(M1) = 
H(M2). 

  The hash functions can be used as a digital 
fingerprint for a message or to check the integrity of 
the data in order to verify if the message has been 
corrupted or not. Examples of well known hash 
functions are MD2, MD5 and SHA-1, SHA-224, 
SHA-256, SHA-384, SHA-512 [25]. In the 
cryptosystem proposed in the next section, the   
SHA-1(M) function is used to hash the data. 
 
 

5 Proposed cryptosystem 

   In this section, a new method to encrypt and 
decrypt messages ensuring the confidentiality, 
integrity, authenticity and non-repudiation of 
messages, is proposed. Our contribution consists in 
introducing the specific public key for each 
communicating party [23,24] and a hash function.  

Two communicating parties Alice and Bob begin to 
generate their keys and then exchange them as in 
Algorithm 1 in accordance with the following steps: 

 Alice and Bob agree upon to use an elliptic 
curve Ep(a,b) where p is a prime number 
and a generator G of Ep(a,b). 

 Alice selects a large random number na < 
ord(G) and a point Pa on the elliptic curve 
as her secret keys, and calculates               
Qa = na* G  and publishes it as her public 
key.  

 Bob selects a large random number nb <  
ord (G) and a point Pb on the elliptic curve 
as his secret keys and calculates Qb = nb* G  
and publishes it as his public key. 
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Algorithm 1 key generation  

Input : p, E and G                                       
Output: the keys (ni ,Pi , Qi, Si ) 

// Generation of public key  

If (Alice)  
1- Select na // na < ord (G), private key 
2- Select Pa // Pa ߳ Ep(a,b) , private key 
3- Compute Qa = na* G  // public key 
4- Send (Qa, Bob) // Send Qa to Bob 

If (Bob)  
1- Select nb // nb < ord (G), private key 
5- Select Pb // Pb ߳ Ep(a,b) , private key 
2- Compute Qb = nb* G  // public key 
3- Send (Qb, Alice) // Send Qb to Alice 

// Generation of specific public key  

If (Alice)  
1- Compute Sa = na*( Pa + Qb) // specific 

public key 
2- Send (Sa, Bob) // Send Sa to Bob 

If (Bob)  
1- Compute Sb = nb*( Pb + Qa) // specific 

public key 
2- Send (Sb, Alice) // Send Sb to Alice 

Algorithm 2 Encryption 

Input : p, E, G, Qi, Si , ni ,Pi and M                      
Output: cipher text (Ci1, Ci2) and h  

If (Alice)  
1- Compute  h = H(M) // H(.) is hash 

function   
2- Select ka // ka < ord (G) 
3- Compute Ca1 = ka* G  
4- Compute Ca2 = M + Sb + ka* Qb + na* Pa 
5- Send ((h, Ca1, Ca2), Bob)  

If (Bob)  
1- Compute  h = H(M) // H(.) is hash 

function  
2- Select kb // kb < ord (G) 
3- Compute Cb1 = kb* G  
4- Compute Cb2 = M + Sa + kb* Qa + nb* Pb 
5- Send ((h , Cb1, Cb2), Alice)  

 Alice calculates Sa = na*( Pa + Qb) and 
publishes it as her specific public key for 
Bob. 

 Bob calculates Sb = nb*( Pb + Qa) and 
publishes it as his specific public key for 
Alice. 

For encryption, Alice and Bob calculate and 
exchange their ciphertext following the steps in 
Algorithm 2. In case Alice sends an encrypted 
message M to Bob, she calculates the hash function 
of the message then, she must convert all the 
characters of the message M = {c1, c2, …, cn} to the 
points of the elliptic curve by using a code table, 
which is agreed upon by the two entities Alice and 
Bob. Then, each point is encrypted on a pair of 
encryption points Ca1, Ca2 as follows: 

- She calculates h = H(M) , where H(M) =  
SHA-1(M). 

- She selects a large random number ka < 
ord(G) and computes Ca1 = ka * G. 

- She computes  

Ca2 = ci + Sb + ka * Qb + na* Pa. 

After encrypting all the characters of the 
message, Alice communicates the hash of 
the message as well as an encrypted 
message to Bob in a public channel {h,    
([Ca₁, Ca₂] ; [Ca₁, Ca₂] …)}. 

For decryption, Alice and Bob decrypt their 
messages following the steps in Algorithm 3. In 
case Bob receives the hash of the message and an 
encrypted message, he decrypts it as follows: 

- He computes  
ci = Ca2 – Sa  –  nb* Ca1 – nb*Pb. 

- He computes H(M) = h’ and compares the 
two hashes if h’  is different to h the 
message has been modified (corrupted) 
during transmission.     

Decryption works out properly 

ci = Ca2 – Sa  –  nb*Ca 1 – nb*Pb 

    = ci + Sb + ka* Qb + na* Pa – Sa – nb*C1             
.     – nb*Pb 

   = ci + nb Pb + nb	na G  + ka	nb G  + na Pa –                  
.     na Pa – na nb G  – nb ka	G  – nb Pb  

   = ci 
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Algorithm 3 Decryption 

Input : p, E, G, Qi, Si , ni ,Pi and (Ci1, Ci2, h)     
Output: plaintext  M or corrupted 

If (Alice)  
1- Compute M = Cb2 – Sb – na*Cb1 – na*Pa 
2- if  ( H(M) = h ) Output  (M) 

else Output ‘corrupted’ 

If (Bob)  
1- Compute M =Ca2 – Sa  –  nb*Ca1 – nb*Pb 
3- if  ( H(M) = h ) Output  (M) 

else Output ‘corrupted’ 

5.1 Security consideration  

  In this method, to encrypt each character of a 
message, the sender uses a different random number 
that allows having different points of the elliptic 
curve for the same letter. The sender encrypts the 
message with [23]: 

-  Receiver’s public key in order to ensure the 
confidentiality of the message, 

- Receiver’s public key specific for the sender 
in order to ensure the authenticity of the 
message because with this specific public 
key for the sender alone the receiver ensures 
that the encryption was done by the sender 
only, 

- Sender’s private key, in order to digitally 
sign the message.  

   Moreover, by communicating the hash of the 
message, the receiver can check whether the 
message has been changed or not, which allows 
ensuring the integrity of the message transmitted. 
Hence, the cipher has achieved the qualities of 
confidentiality, integrity, authentication and non-
repudiation. Therefore, our cryptosystem is less 
vulnerable to man-in-middle attack and the security 
of our cryptosystem is based on the difficulty of the 
discrete logarithm problem in elliptic curve 
(ECDLP). 

5.2 System test  

The following example shows the steps to follow by 
applying our cryptosystem to message transfer 
between two communicating parties Alice and Bob. 

Let E be an elliptic curve define over Fp. 

Where p = 47 and parameters a = 1, b = 4. 

The graph of the curve y2 = x3 + x +4 is shown 
below in Fig.2. 

 

 

 

 

 

 

 

 

Fig.2.Elliptic Curve y2 = x3 + x +4. 

The points on the elliptic curve E61(1, 4) are : 
{∞,  (0 , 2 ), (0 , 45), (1 , 10), (1 , 37), (2 , 22 ),       
(2 , 25 ), (3 , 9), (3 , 38 ), (4 , 5 ), (4 , 42 ), (7 , 5),    
(7 , 42), (8 , 17),  (8 , 30), (9 , 15), (9 , 32), (10 , 11), 
(10 , 36), (14 , 6), (14 , 41), (16 , 11), (16 , 36),     
(20 , 9), (20 , 38), (21 , 11), (21 , 36), (23 , 16),    
(23 , 31), (24 , 9), (24 , 38), (25 , 12), (25 , 35),     
(26 , 13), (26 , 34), (27 , 16), (27 , 31), (30 , 3),    
(30 , 44 ), (31 , 13), (31 , 34), (34 , 12), (34 , 35), 
(35 , 12), (35 , 35), (36 , 5), (36 , 42), (37 , 13),    
(37 , 34), (38 , 21), (38 , 26),  (39 , 1), (39 , 46),   
(41 , 8), (41 , 39), (44 , 16 ), (44 , 31), (46 , 7),     
(46 , 40) }. 

 

 

 

 

 

 

 

 

   Fig.3.Elliptic Curve E47(1,4). 
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The points on the elliptic curve over finite field 
E47(1,4): (y2 = x3 + x +4) mod 47 is shown above in 
Fig.3. 

Let G=(30,3) is the generator of the cyclic group 
E61.(1,4). 

TABLE.1. CORRESPONDING CHARACTERS TO 
THE CO-ORDINATE POINTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keys exchange 

 Alice selects a random number na = 3, any 
point Pa = (21, 11) on the elliptic curve as 
her secret keys. She computes 

Qa = na* G = 3(30,3) = (14,41) and 
publishes it as her public key. 

 Bob selects a random number nb = 7, any 
point Pb = (7, 5) on the elliptic curve as his 
secret key. He computes 

Qb = nb * G = 7(30,3) = (23,31) and 
publishes it as his public key. 

 Alice calculates Sa = na*( Pa + Qb)= 
3[(21,11) + (23,31)] = (37,34) and publishes 
it as her specific public key for Bob. 

 Bob calculates Sb = nb*( Pb + Qa)= 7[(7,5) 
+ (14,41)] = (10,36) and publishes it as his 
specific public key for Alice. 

The keys of Alice and Bob 
- Alice’s private keys are	 na = 3 and            

Pa = (21, 11). 
- Alice’s public key is Qa = (14,41). 
- Alice’s specific public key for Bob is         

Sa = (37,34). 
- Bob’s private keys are	 nb = 7 and              

Pb = (7, 5). 
- Bob’s public key is Qb = (23,31). 
- Bob’s specific public key for Alice is         

Sb = (10,36). 
 

Encryption 

If Alice wants to send the message M = “secret” 
to Bob: 
- She calculates the hash function           

SHA-1(secret) of the message h = 
9005453664329993909. 

-  She must convert all the text characters of 
the message into points on elliptic curve 
using agreed upon code table as presented 
in TABLE.1 

secret = {(14,6), (2,22), (1,10), (10,36), (2,22),  
(14,41)} 
 Alice encrypts the first character “s” 

corresponds to point (14, 26) as follows. 

- She selects a random number ka= 12 
and computes  

- Ca1 = ka *G = (0,45). 

- Ca2 = c1 + Sb+ ka * Qb + na* Pa = 
(4,42). 

So the character “s” in the plain text 
is encrypted by the two points 
[(0,45), (4,42)]. 

 Alice encrypts the second character “e” 
corresponds to point (2, 2) as follows. 

 a b c d e 

∞ (0 , 2) (0 , 45) (1 , 10) (1 , 37) (2 , 22 ) 

f g h i j k 

(2 , 25 ) (3 , 9) (3 , 38 ) (4 , 5 ) (4 , 42 ) (7 , 5) 

l m n o p q 

(7 , 42) (8 , 17) (8 , 30) (9 , 15) (9 , 32) (10 , 11) 

r s t u v w 

(10 , 36) (14 , 6) (14 , 41) (16 , 11) (16 , 36) (20 , 9) 

x y z 0 1 2 

(20 , 38) (21 , 11) (21 , 36) (23 , 16) (23 , 31) (24 , 9) 

3 4 5 6 7 8 

(24 , 38) (25 , 12) (25 , 35) (26 , 13) (26 , 34) (27 , 16) 

9 , . : ( ) 

(27 , 31) (30 , 3) (30 , 44) (31 , 13) (31 , 34) (34 , 12) 

! ? @ & % * 

(34 , 35) (35 , 12) (35 , 35) (36 , 5) (36 , 42) (37 , 13) 

/ - + ^ = £ 

(37 , 34) (38 , 21) (38 , 26) (39 , 1) (39 , 46) (41 , 8) 

$ # ; ‘ ç  

(41 , 39) (44 , 16) (44 , 31) (46 , 7) (46 , 40)  
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- She selects a random number ka= 11 
and computes  

- Ca1	 = ka *G = (44,16). 

- Ca2 = c2 + Sb+ ka * Qb + na* Pa = 
(10,11). 

So the character “e” in the plain text 
is encrypted by the two points 
[(44,16), (10,11)]. 

 Alice encrypts the third character “c” 
corresponds to point (1, 10) as follows. 

- She selects a random number ka = 5 
and computes  

- Ca1	 = ka *G = (4,5). 

- Ca2 = c3 + Sb+ ka * Qb + na* Pa = 
(7,5). 

So the character “c” in the plain text 
is encrypted by the two points 
[(4,5), (7,5)]. 

 Alice encrypts the fourth character “r” 
corresponds to point (10,36) as follows. 

- She selects a random number ka= 17 
and computes  

- Ca1	 = ka *G = (2, 22). 

- Ca2 = c4 + Sb+ ka * Qb + na* Pa = 
(20,38). 

So the character “c” in the plain text 
is encrypted by the two points 
[(2,22), (20,38)]. 

 Alice encrypts the fifth character “e” 
corresponds to point (2, 22) as follows. 

- She selects a random number ka= 21 
and computes  

- Ca1	 = ka *G = (7,42). 

- Ca2 = c5 + Sb+ ka * Qb + na* Pa = 
(9,32). 

So the character “c” in the plain text 
is encrypted by the two points 
[(7,42), (9,32)]. 

 Alice encrypts the sixth and last character 
“t” corresponds to point (14,41) as follows. 

- She selects a random number ka= 10 
and computes  

- Ca1 = ka *G = (24,38). 

- Ca2 = c6 + Sb+ ka * Qb + na* Pa = 
(34,35). 

So the character “c” in the plain text 
is encrypted by the two points 
[(24,38), (34,35)]. 

Alice sends the hash of the message as well as 
an encrypted message {9005453664329993909, 
[(0,45), (4,42)], [(44,16), (10,11)], [(4,5), (7,5)], 
[(2,22), (20,38)], [(7,42), (9,32)], [(24,38), 
(34,35)]} to Bob in public channel. 

Decryption 

Bob after receiving the cipher text decrypts it as 
follows. 

 c1 = Ca2 – Sa  –  nb* Ca1	– nb*Pb = (14,6) 
which corresponds to the character “s” in 
the code table. 

 c2 = Ca2 – Sa  –  nb* Ca1	– nb*Pb = (2,22) 
which corresponds to the character “e” in 
the code table. 

 c3 = Ca2 – Sa  –  nb* Ca1	– nb*Pb = (1,10) 
which corresponds to the character “c” in 
the code table. 

 c4 = Ca2 – Sa  –  nb* Ca1	– nb*Pb = (10,36) 
which corresponds to the character “r” in 
the code table. 

 c5 = Ca2 – Sa  –  nb* Ca1	– nb*Pb = (2,22) 
which corresponds to the character “e” in 
the code table. 

 c6 = Ca2 – Sa  –  nb* Ca1 – nb*Pb = (14,41) 
which corresponds to the character “t” in the 
code table. Then “secret” is the plain text. 

Bob finds the decrypted message M= ‘secret’, 
then he computes the hasher h’ of the message 
M, in order to compare it with the hasher which 
has received h.  

h’ = SHA-1(secret)  

    = 9005453664329993909 

    = h. 

6 Comparison 

   TABLE 2 shows a comparison between our 
cryptosystem and the cryptosystem of D. S. Kumar 
et al. [22] considering the number of operations, the 
number of points and the security constraints such 
as confidentiality, integrity, authentication and non-
repudiation. P.A denotes the operation of point 
adding and S.M denotes the operation of scalar 
multiplication. 
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   The below comparison shows that in our 
cryptosystem there are fewer scalar multiplication 
operations than in D. S. Kumar et al [22], which 
allows us to have a faster cryptosystem and fewer 
points than D. S. Kumar et al [22], which is 
beneficial, because it is not always easy to find 
points on an elliptic curve. Moreover, in our 
cryptosystem we find that the integrity of the 
messages is ensured contrary to the cryptosystem of 
D. S. Kumar et al [22]. Therefore, our cryptosystem 
is more robust than D. S. Kumar et al [22]. 

TABLE.2. COMPARISON OF OUR CRYPTOSYSTEM 
AND D. S. KUMAR ET AL [22]. 

 

 Our 
cryptosystem 

D. S. Kumar 
et al [22] 

Operations P.A 8 8 

 S.M 9 11 

Number of points  13 16 

Confidentiality Yes Yes 

Integrity Yes No 

Authentication Yes Yes 

Non-repudiation Yes Yes 

 

7 Conclusion 
In this paper, we proposed a new public-key 
cryptosystem that ensures all security constraints 
such as confidentiality, integrity, authenticity, and 
non-repudiation of the cipher text. In our 
cryptosystem, the confidentiality of the message is 
ensured by the public key, the integrity is ensured 
by the hash function of the message and the 
authenticity of the message is ensured by the 
specific public key published by each entity for a 
specific communicator. Moreover, the private key of 
the sender guarantees that the message has been 
implicitly signed by the sender. Therefore, our 
cryptosystem is less prone to man-in-middle attack 
and its security is based on the difficulty of the 
discrete logarithm problem in elliptic curve 
(ECDLP). 
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