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Abstract: The paper presents a constructive way to modell the soliton propagate described by the classical nonlinear
Schrodinger equation. We investigate the performance of the nonlinear inverse synthesis (NIS) method, in which
the information is encoded directly onto the continuous part of the nonlinear signal spectrum. We consider the
features of statistical calculations requiring large computational resources on BFNT stage of NIS method. We
investigate numerically the feasibility of merging the NIS technique in a burst mode with high spectral efficiency
methods showing a performance improvement.
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1 Introduction
The rapidly increasing demand on communication
speed is exerting great pressure on the networks in-
frastructure at every scale, which explains the real mo-
tivation behind all optical communications research.
Since the introduction of fiber-optic communications
in the late 1970s, many technological advances, such
as erbium-doped fiber amplifiers, wavelength division
multiplexing (WDM), dispersion management, for-
ward error correction, and Raman amplification, have
been developed to enable the exponential growth of
data traffic. However, the continuing bandwidth de-
mand is pushing the required capacity close to the
theoretical limit of the standard single-mode fiber
(SSFM), which is imposed by the fibers nonlinear-
ity effects (Kerr effect) [1]. In recent years, there
have been extensive efforts in attempting to surpass
the Kerr nonlinearity limit through various nonlinear-
ity compensation techniques. However, there are still
many limitations and challenges in applying the afore-
mentioned nonlinear compensation methods, because
the transmission technologies utilized in optical fiber
communication systems were originally developed for
linear (radio or open space) communication channels.
Therefore the true limits of nonlinear fiber channels
are yet to be found.

The propagation of optical signals in fiber can
be accurately modelled by the nonlinear Schrodinger

equation (NLSE) [1], which describes the continuous
interplay between dispersion and nonlinearity. It is
well known that the NLSE (without perturbation) be-
longs to the class of integrable nonlinear systems. In
particular, this means that the NLSE allows the exis-
tence of a special type of solutions: highly robust non-
linear waves, called solitons. Solitons were proposed
as the information carriers for the high-capacity fiber-
optic communications. In this article we use multi-
processor computing to modell the soliton propagate
where the number of nuclei runs into hundreds of
thousands puts forward Monte Carlo methods (MCM)
the most adapted to parallel calculations, both from
the point of view of the simplicity of parallelizing
the algorithms and the necessity of carrying out a
huge number of identical calculations. The highest
efficiency of using MCM in parallel calculations is
achieved on modeling long term random processes,
in particular, the solutions of stochastic differential
equations. By modeling on supercomputer indepen-
dent from each other trajectories of the solutions of
SDE, one can evaluate any required functionals from
the solutions with an assigned accuracy. The calcula-
tions were carried out on the cluster of NCC-30T of
Siberian Supercomputer Center at the ICM&MG SB
RAS.
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2 Nonlinear Schrodinger equation

Let us consider as a model of the propagation of
a complex slowvarying optical-field envelope q(z,t)
along a single-mode lossless optical fiber the NLSE

iqz −
β2
2
qtt + γq|q|2 = 0 (1)

where z is the propagation distance and t is the time
in the frame co-moving with the group velocity of
the envelope. Here, we consider the case of the con-
stant chromatic dispersion coefficient is β2 < 0 in Eq.
1 and hence deal with the socalled focusing type of
NLSE. The higher-order dispersion terms are not con-
sidered here. The instantaneous Kerr nonlinearity co-
efficient γ is

γ = n2ω0/cAem (2)

where n2 is the refractive index, Aem is an effective
mode area, c is the vacuum speed of light and ω0 is
the angular carrier frequency.

For further purposes we will use NLSE in the nor-
malized form:

iqz − qtt + q|q|2 = 0 (3)

which can be obtained through the following rescaling
of variables:

t

Ts
−→ t,

z

Zs
−→ z,

√
γZs −→ q (4)

where Ts is a free parameter (e.g., a characteristic time
scale of the input waveform) and the associated space
scale is Zs = T 2

s β2. Note that all the quantities q, t,
and z in the normalized equation are now dimension-
less.

3 IST method

3.1 Forward Nonlinear Fourier transform
Similarly to the forward FT, the purpose of the FNFT
is to decompose the signal into the IST spectral data.
This operation is achieved by solving the Zakharov-
Shabat problem (ZSP) [3]. The latter corresponds to
a scattering problem for a non-Hermitian (in the case
of anomalous dispersion) Dirac-type system of equa-
tions for two auxiliary functions v1(t), v2(t), with the
NLSE input pulse profile, q(0, t) ≡ q(t), serving as
an effective potential entering into these equations:

dv1
dt

= q(t)v2 − iζv1,
dv2
dt

= −q̄(t)v1 + iζv2 (5)

Here, ζ is a (generally complex) eigenvalue, ζ =
ξ+iη, q̄(t) is the complex conjugation of the potential

q(t), which is assumed to decay as t −→ ±∞ (for the
exact conditions imposed on the decay rate, see [3]).
In order to define the continuous part of the nonlin-
ear spectrum (for real ζ = ξ) one fixes two linearly-
independent Jost solutions of equation (5) as:

Φ(t, ξ) = [ϕ1, ϕ2]
T , Φ̃(t, ξ) = [ϕ̄2,−ϕ̄1]T , (6)

with the initial condition at the left end:

Φ(t, ξ)|t→−∞ = [e−iξt, 0]T (7)

In the same way, we fix two other Jost solutions,

Ψ(t, ξ) = [ψ1, ψ2]
T , Ψ̃(t, ξ) = [ψ̄2,−ψ̄1]

T , (8)

at the right end:

Ψ(t, ξ)|t→+∞ = [0, eiξt]T (9)

These two solution sets are linearly dependent and can
be expressed through the Jost scattering coefficients
a(ξ) and b(ξ) as:

Φ(t, ξ) = a(ξ)Ψ̃(t, ξ) + b(ξ)Ψ(t, ξ)

Φ̃(t, ξ) = −ā(ξ)Ψ(t, ξ) + b̄(ξ)Ψ̃(t, ξ)
(10)

The reflection coefficient, giving the continuous part
of the nonlinear spectrum, is defined as:

r(ξ) = b̄(ξ)/a(ξ) (11)

The solitons correspond to the complex eigenvalues
ζn, where a(ζn) = 0. The forward NFT maps
the initial field, q(0, t), onto a set of scattering data∑

= [(r(ξ)], ξ is real); (ζn, γn = (b(ζn)a
′
ζ(ζn))

−1)],
where the index n runs over all discrete eigenvalues of
the ZSP (discrete non-dispersive part of the nonlinear
spectrum). Herein, the complex-valued function r(ξ)
of the real argument ξ (nonlinear spectrum) is similar
to the usual Fourier spectrum. Therefore, within the
NIS method we use this continuous part of the non-
linear spectrum, r(ξ), to encode and transmit the in-
formation, and ξ plays the role of the frequency. The
nonlinear spectral (NS) function, defined as:

N(ω) = −r(ξ)|ξ=−ω/2 (12)

serves as the direct nonlinear analog of the Fourier
spectrum, tending to the ordinary FT of q(0, t) in the
linear limit.

3.2 Backward Nonlinear Fourier transform

The Backward Nonlinear Fourier transform (BNFT)
is an inverse operation for the forward NFT that maps
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the scattering data
∑

onto the field q(t) (or, more gen-
erally, onto q(t, z)) in the time domain. This can be
achieved via solving the Gelfand-Levitan-Marchenko
equation (GLME) for the unknown function K(t, x)
[4, 5, 6, 7]. In the NIS method described above,
we consider only the soliton-free case, for which the
GLME can be written as:

K(t, x) + F (t+ x)+

+
t∫

−∞
ds

t∫
−∞

dr K(t, r)F̄ (s+ y)F (r + s) = 0

(13)
Here the kernel F (x) is the linear FT of r(ξ) given in
terms of spectrum

F (x) =
1

2π

+∞∫
−∞

r(ξ)e−iξxdξ (14)

Solving equation (24) for K(t, x), the inverse NFT of
r(ξ) can be obtained as:

q(t) = 2 lim
x→t−0

K(t, x) (15)

4 Numerical methods

4.1 Computing the continuous spectrum

The continuous spectrum (i.e., Jost coefficients a(ξ)
and b(ξ) and the reflection coefficient r(ξ), can be
computed by directly integrating the Zakharov-Shabat
system (5) and then evaluating the limits for the cor-
responding Jost function components as:

a(ξ) = lim
t→+∞

ϕ1(t, ξ)e
iξt

b(ξ) = lim
t→+∞

ϕ2(t, ξ)e
−iξt (16)

PCA method can be used to solve the ZSP (5). It can
be implemented effectively in parallel to reduce the
computational time [8, 9]. Although the ZSP is de-
fined on the infinite time line, we must truncate the po-
tential outside a sufficiently large interval in order to
make the numerical solution possible. As a result, we
reduce the infinite-line spectral problem to a problem
with a finite-width potential and to the corresponding
boundary conditions for the truncated potential.

The potential q(t) is truncated outside a range
(T0;T0). Inside this range, q(t) is chosen to be con-
stant, qn = q(tn), on each elementary subinterval (or
numerical time-step) (tn −∆t/2; tn +∆t/2), where
tn = −T0 + n∆t, ∆t = T0/M is the time step,
and 2M + 1 is the total number of mesh nods inside
the considered range. The idea of the PCA method
is based on the fact that equation (5) can be solved

exactly inside each elementary mesh interval for an
arbitrary value of the spectral parameter ξ as:

Φ(tn +∆t/2, ξ) = T (qn, ξ)Φ(tn −∆t/2, ξ), (17)

where transition matrix T (qn, ξ) is given by

T (qn, ξ) = exp

[
∆t

(
−iξ qn
−q̄n iξ

)]
(18)

The scattering problem can be solved by propagat-
ing the solution iteratively, starting from −T0 to the
right boundary T0 , using the set of transfer matrices
T (qn, ξ) given by equation (4.1). The final result can
be expressed as:

Φ(T0 −∆t/2, ξ) =
∏
(ξ)Φ(−T0 +∆t/2, ξ)∏

(ξ) =
2M∏
n=1

T (qn, ξ)

(19)
The initial condition defined at the right truncation
end can be written as:

Φ(−T0 −∆t/2, ξ) = (1, 0)T e−iξ(−T0−∆t/2) (20)

Then, at the left end of the full interval we have:

Φ(T0 −∆t/2, ξ) =
a(ξ)e−iξ(T0−∆t/2)

b(ξ)eiξ(T0−∆t/2) (21)

and, therefore, the Jost coefficients are given by:

a(ξ) =
∏

11(ξ)e
2iξT0

b(ξ) =
∏

21(ξ)e
−iξ∆t,

(22)

where
∏

11(ξ) and
∏

21(ξ) are corresponding compo-
nents of matrix

∏
(ξ). In general, when the poten-

tial q(t) is truncated outside the interval (Tmin, Tmax)
with arbitrary borders, the expression (22) can be
modified as:

a(ξ) =
∏

11(ξ)e
iξ(Tmax−Tmin)

b(ξ) =
∏

21(ξ)e
−2iξ(Tmax+Tmin−∆t),

(23)

From (19), one can see that the transfer matrixes
T (qn, ξ) can be calculated independently of each
other. As a result, the PCA algorithm can be easily
implemented in parallel to reduce the computational
time for high-speed NIS-based systems.
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4.2 Computing the BNFT
The GLME can be rewritten in the form of two cou-
pled integrated, which are more convenient for numer-
ical calculations:

A1(x, t) +
x∫

−∞
F (t+ x)Ā2(x, y)dy = 0

A2(x, t)−
x∫

−∞
F (t+ x)Ā1(x, y)dy = F (x+ t), x > t

(24)
where F (t) is the linear backward FT of r(ξ). For the
numerical analysis we use the following change of the
variables [43]:

u(x, s) = Ā1(x, x− s), v(x, τ) = Ā2(x, τ − x),
(25)

so the GLME (24) can be rewritten in the form:

u(x, s) +
2x∫
s
F (t− s)v(x, τ)dτ = 0

v(x, τ)−
τ∫
0

F (t− s)u(x, s)ds = F (τ)
(26)

Functions u(x, s) and v(x, s) are defined inside the
interval 0 ≤ τ ≤ 2x ≤ 2T0. The BNFT mapping
r(ξ) onto the time domain is then given by

q(x) = 2v(x, 2x− 0) (27)

Following the discretization procedure provided in
[9], we divide the interval τ ≤ 2T0, where the func-
tion F () is known, into segments of length h =
2T0/N . The discrete variables n, sk, and xm are de-
fined as:

sk = h(k − 1)/2, k = 1, 2, . . . ,m
τn = h(n− 1)/2, n = 1, 2, . . . ,m
xm = mh/2, m = 1, 2, . . . , N

(28)

We also define the grid functions:

u(m)
n = u(xn, τm), v(m)

n = v(xn, τm), Fn = F (nh)
(29)

Using the rectangular quadrature scheme to approx-
imate the integrals in equation (26), one obtains the
following discrete form of the GLME:

u
(m)
k + h

m∑
n=k

F̄n−kv
(m)
n = 0

v
(m)
n − h

m∑
k=1

Fn−ku
(m)
k = Fn

(30)

The mth mesh element of the BNFT (in the time do-
main) is then given by:

q(m) = v(m)
m (31)

Equations (30) can now be written in a matrix form
as:

Gm =

(
u(m)

v(m)

)
= b(m) (32)

where b(m) is formed from the zero vector of dimen-
sion m and the vector of dimension m with compo-
nents Fn; G(m) in (32) is a square matrix of dimen-
sions 2m× 2m, which has the following form:

Gm =

(
E(m) hF̄(m)

−hF(m) E(m)

)
(33)

Here, E(m) is the identity (unity) m×m matrix, F(m)

is the lower triangular Toeplitz m × m matrix of the
form:

Fm =


F0 0 . . . 0
F1 F0 . . . 0
...

...
...

...
Fm Fm−1 . . . F0

 (34)

and (m) is the Hermitian conjugate of the matrix F (m).
For constructing statistical alghoritms we can rewrite
equation (32) in form(

u(m)

v(m)

)
= Gm

0

(
u(m)

v(m)

)
+ b(m), (35)

where substochastic matrix Gm
0 is derived from Gm

as

Gm
0 =

(
0 −hF̄(m)

hF(m) 0

)
(36)

One of the approaches to constructing statistical al-
gorithms for solving (36) is based on the following
presentation

u = (I −Kc)
−1h = h+Rch, Rc =

∞∑
i=1

Ki
c (37)

5 Certain Nonlinear Schrodinger
equation

5.1 Problem
The aim of this work is to study the nonlinear effects
in the propagation of laser pulses in a long optical
fiber, arising due to the modulation instability. The
propagation of long pulse in an optical fiber is de-
scribed by the linear Schrodinger equation [1]:

∂A

∂z
+

1

c

∂A

∂t
= i

|β2|
2

∂2

∂t2
A+ iγ|A|2A− αA, (38)
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where A(t, z) is the amplitude of the electromagnetic
field on the carrier frequency ω0 = 2πn0/λ0, the am-
plitude is normalized by power P = |A|2; c is the
speed of light in an optical fiber with a refractive in-
dex n0; β2 = −10 km−1 ·nm−2 is dispersion on wave-
length 1550 nm; γ = 3 W−1 ·km−1 is the nonlinearity
coefficient; α = 0.17 dB/km is the coefficient of op-
tical losses.

The boundary condition at the input to the opti-
cal fiber is given as the sum of Gaussian pulse with a
width at half maximum T0 = 100 ns and noise ampli-
tude An(t):

A(t, 0) =
√
P0 exp

(
− t2

T 2
0

2 ln 2

)√
4 ln 2

π
+An(t).

(39)
Here P0 = ε0/T0 is the average power of the pulse
of energy ε0. Random noise has a nonzero spectral
density power Pn(ω) = |An(ω)|2 (Pn(ω) = εn/∆) in
the spectral range of ∆ = 1 nm relative to the central
carrier frequency ω0; εn is the average noise energy
over the period τ = 2 ms pulse. The ratio of pulse
energy and noise ε0/εn is taken equal to 0.7 [2]

5.2 Numerical calculations

For the numerical solution of equation (38) was used
the above described modificated NIS sheme with In
calculations time T = 1 ms was considered with the
number of time points N = 220. Step by spatial
variable was ∆z = 0.1mm. As the initial distribu-
tion was set to Gaussian pulse with duration at half
maximum intensity of 100ns and variable peak power
Pp, namelyA(0, t) =

√
Pp exp(−t2/2T 2

0 ), and white
Gaussian noise with spectral band 1nm was added to
it. Number of modelled impulses was 106.

6 Conclusion

The results in the previous sections demonstrate the-
oretical and the corresponding NIS numerical meth-
ods. Numerical calculation confirmed that for the NIS
method a performance improvement can be achieved
by using parallel statistical methods on BNFT stage.
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