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1 Introduction 
Positive linear operators are very important in 
approximation theory. There are a lot of operators 
that their Korovkin type properties of convergence 
are studied (for details it can be looked over [1]).  
One of the most remarkable operators are Szász 
operators which were defined by Szász and 
investigated their approximation results in [7]. 
These operators are the following.  
 

𝑆𝑆𝑛𝑛(𝑓𝑓; 𝑥𝑥)=𝑒𝑒−𝑛𝑛𝑛𝑛 ∑ (𝑛𝑛𝑛𝑛 )𝑘𝑘

𝑘𝑘!
𝑓𝑓 �𝑘𝑘

𝑛𝑛
� ∞

𝑘𝑘=0          (1)  
 
where 𝑥𝑥 ∈ [0,∞) and 𝑓𝑓 ∈ 𝐶𝐶[0,∞). 
The different generalizations of Szász operators 
were examined by many mathematicians and their 
approximation properties were obtained. The papers 
[3], [9] and [10] can be considered as an examples. 
For instance, in 2002, the modified Szász-Mirakjan 
operators were introduced by Ispir and Atakut in [5] 
as 

𝑆𝑆𝑛𝑛(𝑓𝑓; 𝑥𝑥) = 1
𝑒𝑒𝑎𝑎𝑛𝑛 𝑥𝑥

∑ (𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝑘𝑘!
𝑓𝑓 � 𝑘𝑘

𝑏𝑏𝑛𝑛
� ∞

𝑘𝑘=0       (2) 
 
here,  𝑥𝑥 ∈ [0,∞),𝑛𝑛 ∈ ℕ,  {𝑎𝑎𝑛𝑛} and {𝑏𝑏𝑛𝑛} are the 
sequences of positive numbers which were given 
increasing and unbounded that   
 

lim𝑛𝑛→∞
1
𝑏𝑏𝑛𝑛

= 0, 𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

= 1 + 𝑂𝑂 � 1
𝑏𝑏𝑛𝑛
�            (3)  

 
In 2014, Sucu was reconstructed the Szász operators 
in [8] by using generalized exponential function 

defined by Rosenblum in [6]. Now, first let us 
remind followings. 

𝑒𝑒𝜇𝜇 (𝑥𝑥) = ∑ 𝑥𝑥𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘)
∞
𝑘𝑘=0                     (4) 

and 
           

𝛾𝛾𝜇𝜇 (2𝑘𝑘) = 22𝑘𝑘𝑘𝑘!𝛤𝛤�𝑘𝑘+𝜇𝜇+1
2� �

𝛤𝛤�𝜇𝜇+1
2� �

 , 

 

 𝛾𝛾𝜇𝜇 (2𝑘𝑘 + 1) = 22𝑘𝑘+1𝑘𝑘!𝛤𝛤�𝑘𝑘+𝜇𝜇+3
2� �

𝛤𝛤�𝜇𝜇+1
2� �

, 

 

𝑘𝑘 ∈ ℕ0, µ > −  
1
2

. 

Noting that for the 𝛾𝛾𝜇𝜇  recursion relation is  

𝛾𝛾𝜇𝜇 (𝑘𝑘 + 1) = (𝑘𝑘 + 1 + 2𝜇𝜇𝜃𝜃𝑘𝑘+1)𝛾𝛾𝜇𝜇 (𝑘𝑘),𝑘𝑘𝑘𝑘ℕ0 (5) 

and here, 

𝜃𝜃𝑘𝑘 = �
0, 𝑖𝑖𝑖𝑖 𝑘𝑘 ∈ 2ℕ        
1, 𝑖𝑖𝑖𝑖 𝑘𝑘 ∈ 2ℕ + 1

�       .       (6) 

After bringing back these equations, here is the 
following operators given by Sucu. 

  𝑆𝑆𝑛𝑛∗(𝑓𝑓; 𝑥𝑥) = 1
𝑒𝑒𝜇𝜇 (𝑛𝑛𝑛𝑛 )

∑ (𝑛𝑛𝑛𝑛 )𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘)𝑓𝑓 �
𝑘𝑘+2𝜇𝜇𝜃𝜃𝑘𝑘

𝑛𝑛
� ∞

𝑘𝑘=0  (7) 

𝜇𝜇 ≥ 0,𝑛𝑛 ∈ ℕ, 𝑥𝑥 ≥ 0,𝑓𝑓 ∈ 𝐶𝐶[0,∞) whenever the 
above sum converges.  
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In the present paper, we first construct a 
modification of Dunkl analogue of Szász-Mirakjan 
operators and investigate the weighted 
approximation properties of these operators. These 
are constructed as, 

𝑅𝑅𝑛𝑛∗ (𝑓𝑓; 𝑥𝑥) = 1
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)

∑ (𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘) 𝑓𝑓 �
𝑘𝑘+2𝜇𝜇𝜃𝜃𝑘𝑘

𝑏𝑏𝑛𝑛
�∞

𝑘𝑘=0     (8) 

where 𝜇𝜇 ≥ 0,𝑛𝑛 ∈ ℕ, 𝑥𝑥 ≥ 0,𝑓𝑓 ∈ 𝐶𝐶[0,∞) and with 
the equations (4) and (5). 

 
2  Weighted Approximation  
As it is known usual Korovkin theorem is used on 
finite intervals. Therefore, it is required to be used 
the weighted Korovkin type theorem given by 
Gadzhiev in [2] to acquire approximation properties 
of positive linear operators on infinite intervals. 
We first bring to mind the definitions and theorem 
relative to weighted approximation. 
 

𝐵𝐵𝜌𝜌(ℝ+) ≔ �𝑓𝑓: |𝑓𝑓(𝑥𝑥)| ≤ 𝑀𝑀𝑓𝑓𝜌𝜌(𝑥𝑥)�         (9) 
 

𝐶𝐶𝜌𝜌(ℝ+) ≔ �𝑓𝑓: 𝑓𝑓 ∈ 𝐵𝐵𝜌𝜌(ℝ+) ∩ 𝐶𝐶[0,∞)�         (10) 
 
𝐶𝐶𝜌𝜌𝑘𝑘(ℝ+) ≔ �𝑓𝑓: 𝑓𝑓 ∈ 𝐶𝐶𝜌𝜌(ℝ+)𝑎𝑎𝑎𝑎𝑎𝑎 lim𝑥𝑥→∞

𝑓𝑓(𝑥𝑥)
𝜌𝜌(𝑥𝑥) = 𝑘𝑘 , �  

(11) 
 
here k is a constant, 𝜌𝜌(𝑥𝑥) = 1 + 𝑥𝑥2 is a weighted 
function and  𝑀𝑀𝑓𝑓 , depends only on f , is a constant. 
𝐶𝐶𝜌𝜌  and 𝐵𝐵𝜌𝜌  are the normed spaces endowed with the 
norm 

 
‖𝑓𝑓‖𝜌𝜌 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥≥0 |𝑓𝑓(𝑥𝑥)| 𝜌𝜌(𝑥𝑥)⁄ . 

 
Theorem 2.1 [2] Let {𝑇𝑇𝑛𝑛} be the sequence of linear 
positive operators which are mappings from 𝐶𝐶𝜌𝜌  into 
𝐵𝐵𝜌𝜌  satisfying the conditions 

lim
𝑛𝑛→∞

‖𝑇𝑇𝑛𝑛(𝑡𝑡𝛾𝛾 ,𝑥𝑥) − 𝑥𝑥𝛾𝛾‖𝜌𝜌 = 0, 𝛾𝛾 = 0,1,2 

then, for any function 𝑓𝑓 ∈ 𝐶𝐶𝜌𝜌𝑘𝑘  

lim
𝑛𝑛→∞

‖𝑇𝑇𝑛𝑛𝑓𝑓 − 𝑓𝑓‖𝜌𝜌 = 0, 

and there exists a function 𝑓𝑓∗ ∈ 𝐶𝐶𝜌𝜌\𝐶𝐶𝜌𝜌𝑘𝑘  such that 

lim
𝑛𝑛→∞

‖𝑇𝑇𝑛𝑛𝑓𝑓∗ − 𝑓𝑓∗‖𝜌𝜌 ≥ 1. 

 

Lemma 2.2 The positive linear operators 𝑅𝑅𝑛𝑛∗  which 
were defined by (8) have the following properties. 

𝑅𝑅𝑛𝑛∗ (1;𝑥𝑥) = 1                              (12) 

𝑅𝑅𝑛𝑛∗ (𝑡𝑡; 𝑥𝑥) = 𝑎𝑎𝑛𝑛𝑥𝑥
𝑏𝑏𝑛𝑛

                            (13) 

                  
𝑅𝑅𝑛𝑛∗ (𝑡𝑡2;𝑥𝑥) = 𝑎𝑎𝑛𝑛2𝑥𝑥2

𝑏𝑏𝑛𝑛2
 + �𝑎𝑎𝑛𝑛

𝑏𝑏𝑛𝑛

1
𝑏𝑏𝑛𝑛

+ 2𝜇𝜇 𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

1
𝑏𝑏𝑛𝑛

𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) � 𝑥𝑥 

(14) 

𝑅𝑅𝑛𝑛∗ (𝑡𝑡3;𝑥𝑥) =
𝑎𝑎𝑛𝑛3𝑥𝑥3

𝑏𝑏𝑛𝑛3
+ �

3𝑎𝑎𝑛𝑛2

𝑏𝑏𝑛𝑛2
− 2𝜇𝜇

𝑎𝑎𝑛𝑛2

𝑏𝑏𝑛𝑛2
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) �  

𝑥𝑥2

𝑏𝑏𝑛𝑛
 

                 + �𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

+ 4𝜇𝜇2𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

+ 4𝜇𝜇𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) �

𝑥𝑥
𝑏𝑏𝑛𝑛2

 

(15) 

𝑅𝑅𝑛𝑛∗ (𝑡𝑡4;𝑥𝑥) =
𝑎𝑎𝑛𝑛4𝑥𝑥4

𝑏𝑏𝑛𝑛4
+ �

6𝑎𝑎𝑛𝑛3

𝑏𝑏𝑛𝑛3
+ 4𝜇𝜇

𝑎𝑎𝑛𝑛3

𝑏𝑏𝑛𝑛3
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) �

𝑥𝑥3

𝑏𝑏𝑛𝑛
 

             + �
7𝑎𝑎𝑛𝑛2

𝑏𝑏𝑛𝑛2
+ 4𝜇𝜇2 𝑎𝑎𝑛𝑛

2

𝑏𝑏𝑛𝑛2
− 8𝜇𝜇

𝑎𝑎𝑛𝑛2

𝑏𝑏𝑛𝑛2
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) �

𝑥𝑥2

𝑏𝑏𝑛𝑛2
 

               + �(1 + 12𝜇𝜇2)
𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

+ 2𝜇𝜇(3 + 4𝜇𝜇2)
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) �

𝑥𝑥
𝑏𝑏𝑛𝑛3

 

(16) 

Proof. We can easily obtain (12) and (13) from (4) 
and (5). 

 Now let us prove (14). 

𝑅𝑅𝑛𝑛∗ (𝑡𝑡2;𝑥𝑥) =
1

𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)�
(𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘) �
𝑘𝑘 + 2𝜇𝜇𝜃𝜃𝑘𝑘

𝑏𝑏𝑛𝑛
�

2

   
∞

𝑘𝑘=0

 

Using (5) and from (12) and (13) we can write 

 𝑅𝑅𝑛𝑛∗ (𝑡𝑡2; 𝑥𝑥) =
𝑎𝑎𝑛𝑛𝑥𝑥
𝑏𝑏𝑛𝑛

�
1

𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)�
(𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘)
𝑘𝑘 + 2𝜇𝜇𝜃𝜃𝑘𝑘

𝑏𝑏𝑛𝑛

∞

𝑘𝑘=0

� 

               + 𝑎𝑎𝑛𝑛𝑥𝑥
𝑏𝑏𝑛𝑛2

1
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)

∑ (𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘) �1 + 2𝜇𝜇(−1)𝑘𝑘�∞
𝑘𝑘=0  

=
𝑎𝑎𝑛𝑛2𝑥𝑥2

𝑏𝑏𝑛𝑛2
+
𝑎𝑎𝑛𝑛𝑥𝑥
𝑏𝑏𝑛𝑛2

+
𝑎𝑎𝑛𝑛𝑥𝑥
𝑏𝑏𝑛𝑛2

2𝜇𝜇
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)  

and the proof is completed. 

𝑅𝑅𝑛𝑛∗ (𝑡𝑡3; 𝑥𝑥) =
1

𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)�
(𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘) �
𝑘𝑘 + 2𝜇𝜇𝜃𝜃𝑘𝑘

𝑏𝑏𝑛𝑛
�

3

.
∞

𝑘𝑘=0

 

By using (5) and  from (12), (13) and (14) 

𝑅𝑅𝑛𝑛∗ (𝑡𝑡3;𝑥𝑥) =
𝑎𝑎𝑛𝑛𝑥𝑥
𝑏𝑏𝑛𝑛3

1
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)�

(𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘)

∞

𝑘𝑘=0
× (𝑘𝑘 + 1 + 2𝜇𝜇𝜃𝜃𝑘𝑘+1)2 
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   = 𝑎𝑎𝑛𝑛𝑥𝑥
𝑏𝑏𝑛𝑛3

1
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)

∑ (𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘)
(𝑘𝑘 + 2𝜇𝜇𝜃𝜃𝑘𝑘)2∞

𝑘𝑘=0  

+
2𝑎𝑎𝑛𝑛𝑥𝑥

𝑏𝑏𝑛𝑛3𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)
�

(𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘)
(𝑘𝑘 + 2𝜇𝜇𝜃𝜃𝑘𝑘)

∞

𝑘𝑘=0
× �1 + 2𝜇𝜇(−1)𝑘𝑘� 

    + 𝑎𝑎𝑛𝑛𝑥𝑥
𝑏𝑏𝑛𝑛3𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)

∑ (𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘) �1 + 2𝜇𝜇(−1)𝑘𝑘�2∞
𝑘𝑘=0  

and we get the (15). With the same methods of 
proofs of the others we acquire (16) by using (5) and 
from (12), (13), (14) and (15). So, 

𝑅𝑅𝑛𝑛∗ (𝑡𝑡4; 𝑥𝑥) =
1

𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)�
(𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘) �
𝑘𝑘 + 2𝜇𝜇𝜃𝜃𝑘𝑘

𝑏𝑏𝑛𝑛
�

4

  

∞

𝑘𝑘=1

 

=
𝑎𝑎𝑛𝑛𝑥𝑥

𝑏𝑏𝑛𝑛4𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥)
�

(𝑎𝑎𝑛𝑛𝑥𝑥)𝑘𝑘

𝛾𝛾𝜇𝜇 (𝑘𝑘) �𝑘𝑘 + 2𝜇𝜇𝜃𝜃𝑘𝑘 + 1 + 2𝜇𝜇(−1)𝑘𝑘�3

  

∞

𝑘𝑘=1

 

and the equation is proved. 

Theorem 2.2 Assume that  {𝑅𝑅𝑛𝑛∗ } are the sequence of 
linear positive operators and they are defined  as in  
(8). Then for each function 𝑓𝑓 ∈ 𝐶𝐶𝜌𝜌𝑘𝑘 , 

lim𝑛𝑛→∞‖𝑅𝑅𝑛𝑛∗ (𝑓𝑓; 𝑥𝑥) − 𝑓𝑓(𝑥𝑥)‖𝜌𝜌 = 0.          (17) 

 

Proof. 

i. From (12) it is easy to say that  

lim
𝑛𝑛→∞

‖𝑅𝑅𝑛𝑛∗(1; 𝑥𝑥) − 1‖𝜌𝜌 = 0. 

ii.  

sup𝑥𝑥∈[0,∞)
|𝑅𝑅𝑛𝑛∗ (𝑡𝑡;𝑥𝑥)−𝑥𝑥|

1+𝑥𝑥2 = �𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛
− 1� ×  

sup
𝑥𝑥∈[0,∞)

𝑥𝑥
1 + 𝑥𝑥2 = 𝑂𝑂 �

1
𝑏𝑏𝑛𝑛
� sup
𝑥𝑥∈[0,∞)

𝑥𝑥
1 + 𝑥𝑥2 

and because of the (3) the proof is completed. 

iii. Using the properties of supremum and from 
(14) we obtain the following. 

sup
𝑥𝑥∈[0,∞)

|𝑅𝑅𝑛𝑛∗ (𝑡𝑡2;𝑥𝑥) − 𝑥𝑥2|
1 + 𝑥𝑥2 ≤ 

                  �𝑎𝑎𝑛𝑛
2

𝑏𝑏𝑛𝑛2
− 1� sup

𝑥𝑥∈[0,∞)

𝑥𝑥2

1+𝑥𝑥2    

+
𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛2

(1 + 2𝜇𝜇) sup
𝑥𝑥∈[0,∞)

𝑥𝑥
1 + 𝑥𝑥2 

 

then we get the proof from (3). 

It is conspicuous that we get the proof of Theorem 
2.2 by using above proofs and from Theorem 2.1 
Consequently, Theorem 2.2 is obtained. 

 
3  Order of Approximation  
In this section we obtain the order of approximation 
of functions f  belongs to the space 𝐶𝐶𝜌𝜌𝑘𝑘  by the 
operators 𝑅𝑅𝑛𝑛∗  on [0,∞). Taking into consideration 
that the usual modulus of continuity 𝜔𝜔(𝛿𝛿) does not 
tend to 0, as 𝛿𝛿 → 0, on infinite interval, İspir and 
Atakut in [5] defined a weighted modulus of 
continuity 𝛺𝛺(𝑓𝑓; 𝛿𝛿) of the functions f,    
coorespondingly in [4]. It tends to zero, as 𝛿𝛿 → 0, 
on infinite interval and defined as 

𝛺𝛺(𝑓𝑓;𝛿𝛿) = sup|ℎ|≤𝛿𝛿 ,𝑥𝑥∈[0,∞)
|𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)|
(1+ℎ2)(1+𝑥𝑥2) , f ∈ 𝐶𝐶𝜌𝜌𝑘𝑘    

(18) 

 

Lemma 3.1 [4] Let f ∈ 𝐶𝐶𝜌𝜌𝑘𝑘  

i. 𝛺𝛺(𝑓𝑓;𝛿𝛿) is a monotonically increasing 
function of 𝛿𝛿 ≥ 0. 

ii. For every f ∈ 𝐶𝐶𝜌𝜌𝑘𝑘 , 𝑙𝑙𝑙𝑙𝑙𝑙𝛿𝛿→0 𝛺𝛺(𝑓𝑓; 𝛿𝛿) = 0. 

iii. For each positive value of 𝜆𝜆 

 

𝛺𝛺(𝑓𝑓; 𝜆𝜆𝜆𝜆) ≤ 2(1 + 𝜆𝜆)(1 + 𝛿𝛿2)𝛺𝛺(𝑓𝑓;𝛿𝛿).   (19) 

Using the definition of 𝛺𝛺(𝑓𝑓; 𝛿𝛿) and the inequality 
(19), we have 

|𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑥𝑥)| ≤ 2 �1 + |𝑡𝑡−𝑥𝑥 |
𝛿𝛿
� (1 + 𝛿𝛿2)𝛺𝛺(𝑓𝑓; 𝛿𝛿) ×

 (1 + 𝑥𝑥2)(1 + (𝑡𝑡 − 𝑥𝑥)2),𝑓𝑓 ∈ 𝐶𝐶𝜌𝜌𝑘𝑘 , 𝑥𝑥, 𝑡𝑡 ∈  [0,∞).          

(20) 

Theorem 3.2 Assume that 𝑓𝑓 ∈ 𝐶𝐶𝜌𝜌𝑘𝑘 . Then , 

  sup𝑥𝑥≥0
|𝑅𝑅𝑛𝑛∗ (𝑓𝑓;𝑥𝑥)−𝑓𝑓(𝑥𝑥)|

(1+𝑥𝑥2)3 ≤ 𝐾𝐾𝜇𝜇 �1 + 1
𝑏𝑏𝑛𝑛
�𝛺𝛺 �𝑓𝑓; 1

�𝑏𝑏𝑛𝑛
�     

(21) 

 

is obtained for a sufficiently large n plus 𝐾𝐾𝜇𝜇  is a 
constant independent of 𝑎𝑎𝑛𝑛  and 𝑏𝑏𝑛𝑛 . 

It would be useful to give a lemma for the proof of 
this theorem.  
 
Lemma 3.3 Let the 𝑅𝑅𝑛𝑛∗  operators defined in (8). 
Then, for these operators the second and the fourth 
moments are the followings. 
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i. 𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)2; 𝑥𝑥) =  𝑂𝑂 � 1
𝑏𝑏𝑛𝑛
�  ×  [𝑥𝑥2 + 𝑥𝑥(1 + 2𝜇𝜇)]      

(22) 

 

ii.  𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)4; 𝑥𝑥) = � 1
𝑏𝑏𝑛𝑛
� × [𝑥𝑥4 + (8𝜇𝜇3 + 12𝜇𝜇2 +

24𝜇𝜇 + 3)(𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥)]  
(23) 

 

Proof. To prove this Lemma it is used (12), (13), 
(14), (15) and (16). 

i. 𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)2;𝑥𝑥) = 𝑅𝑅𝑛𝑛∗ (𝑡𝑡2 − 2𝑡𝑡𝑡𝑡 + 𝑥𝑥2; 𝑥𝑥) 

             𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)2;𝑥𝑥) = �𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛
− 1�

2
𝑥𝑥2 

                                           + 𝑥𝑥
𝑏𝑏𝑛𝑛
�𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

+ 2𝜇𝜇 𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) � 

                                           ≤ 1
𝑏𝑏𝑛𝑛
�𝑥𝑥2 + 𝑥𝑥(1 + 2𝜇𝜇)� 

ii. 𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)4;𝑥𝑥) 

 =  𝑅𝑅𝑛𝑛∗ (𝑡𝑡4 − 4𝑡𝑡3𝑥𝑥 + 6𝑡𝑡2𝑥𝑥2 − 4𝑡𝑡𝑥𝑥3 + 𝑥𝑥4;𝑥𝑥) 

    = 𝑥𝑥4 �
𝑎𝑎𝑛𝑛4

𝑏𝑏𝑛𝑛4
− 4

𝑎𝑎𝑛𝑛3

𝑏𝑏𝑛𝑛3
+ 6

𝑎𝑎𝑛𝑛2

𝑏𝑏𝑛𝑛2
− 4

𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

+ 1� 

             +
𝑥𝑥3

𝑏𝑏𝑛𝑛
�6
𝑎𝑎𝑛𝑛3

𝑏𝑏𝑛𝑛3
+ 4

𝜇𝜇𝑎𝑎𝑛𝑛3

𝑏𝑏𝑛𝑛3
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) − 12

𝑎𝑎𝑛𝑛2

𝑏𝑏𝑛𝑛2

+ 8
𝜇𝜇𝜇𝜇𝑛𝑛2

𝑏𝑏𝑛𝑛2
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) + 6

𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

+ 12
𝜇𝜇𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) �

+
𝑥𝑥2

𝑏𝑏𝑛𝑛2
�7
𝑎𝑎𝑛𝑛2

𝑏𝑏𝑛𝑛2
+ 4

𝜇𝜇2𝑎𝑎𝑛𝑛2

𝑏𝑏𝑛𝑛2

− 8
𝜇𝜇𝜇𝜇𝑛𝑛2

𝑏𝑏𝑛𝑛2
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) − 4

𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

− 16
𝜇𝜇2𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

− 16
𝜇𝜇𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) �

+
𝑥𝑥
𝑏𝑏𝑛𝑛3
�(1 + 12𝜇𝜇2)

𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

+ 2𝜇𝜇(3 + 4𝜇𝜇2)
𝑒𝑒𝜇𝜇 (−𝑎𝑎𝑛𝑛𝑥𝑥)
𝑒𝑒𝜇𝜇 (𝑎𝑎𝑛𝑛𝑥𝑥) � 

                    ≤
1
𝑏𝑏𝑛𝑛

{𝑥𝑥4 + (8𝜇𝜇3 + 12𝜇𝜇2 + 24𝜇𝜇 + 3)𝑥𝑥3

+ (8𝜇𝜇3 + 12𝜇𝜇2 + 24𝜇𝜇 + 3)𝑥𝑥2

+ (8𝜇𝜇3 + 12𝜇𝜇2 + 24𝜇𝜇 + 3)𝑥𝑥} 

=
1
𝑏𝑏𝑛𝑛
𝑥𝑥4 +

1
𝑏𝑏𝑛𝑛

(8𝜇𝜇3 + 12𝜇𝜇2 + 24𝜇𝜇 + 3)

× (𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥) 

then the proofs are completed. 

 

Proof of Theorem 3.2 

Using (20),  

|𝑅𝑅𝑛𝑛∗ (𝑓𝑓; 𝑥𝑥) − 𝑓𝑓(𝑥𝑥)|
≤ 2(1 + 𝛿𝛿2)(1 + 𝑥𝑥2)𝛺𝛺(𝑓𝑓; 𝛿𝛿)

× �1 + 𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)2; 𝑥𝑥)

+
1
𝛿𝛿

[𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)2;𝑥𝑥)]1
2�

+
1
𝛿𝛿 �

[𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)2; 𝑥𝑥)]1
2�

× [𝑅𝑅𝑛𝑛∗ ((𝑡𝑡 − 𝑥𝑥)4;𝑥𝑥)]1
2� �� 

By using (22) and (23) and choosing 𝛿𝛿𝑛𝑛 = 1
�𝑏𝑏𝑛𝑛

 for 

sufficiently large n’s, we obtain the proof of the 
theorem. 

Remark. It is remarkable to say that by choosing 
𝜇𝜇 = 0 and  𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛 = 𝑛𝑛 our operators turn into the 
operators given by Szász in [7]. If it is chosen only 
𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛 = 𝑛𝑛 then it will be the operators defined by 
Sucu in [8]. On the other hand, by selecting 𝜇𝜇 = 0 
then the operators turn into the operator given by 
Ispir and Atakut in [5]. 
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