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Abstract: The objective of the work is to denoise the image and to provide better Peak Signal to Noise Ratio 
(PSNR) with edge preservation by using the hidden Bayesian network constructed from the wavelet 
coefficients. A Bayesian network which is also called as a directed acyclic graph is a graphical model with a set 
of conditional probabilities. Each node in the graph represents a random variable which is used to denote an 
attribute, feature and hypothesis. Bayesian network is constructed to model the priori probability of the original 
image for the image denoising problem, which involves removing white and homogeneous Gaussian noise with 
zero mean and known variance from an image. Two Maximum A Posteriori (MAP) techniques are used such as 
Bivariate Cauchy MAP (BCMAP) and Multivariate Cauchy MAP (MCMAP). From the simulation analysis, it 
is very clear that for various noise levels, the wavelet Bayesian network based on MAP estimation provides 
better PSNR value by preserving edges compared with the existing methods. For Lena image with noise 
variance of 15, the percentage increase in PSNR values are 2.08%, 4.16% and 7.38% for wavelet Bayesian, 
BCMAP and MCMAP compared with Bayesian Least Square Gaussian Scale Mixture (BLS-GSM) and for the 
same, the percentage increase in PSNR are 0.12%, 2.15% and 5.32% compared with Block Matching and 3-D 
filtering (BM3D).   
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1 Introduction 

Visual information transmitted in the form of 
digital images is becoming a major method of 
communication in the modern age, but the image 
obtained after transmission is often corrupted with 
noise. The received image needs processing before 
it can be used in applications. Image denoising is 
nothing but reproducing an image with high quality 
by manipulating the image data. Different noise 
models including additive and multiplicative types 
are used such as Gaussian, salt and pepper, speckle 
and Brownian noise. Therefore, prior knowledge 
about the noise present in the image is needed in 
order to choose the appropriate denoising algorithm. 
The filtering approach has been proved to be the 
best when the image is corrupted with salt and 
pepper noise. It is also known from the literature 
that wavelet based methods are found to be the best 
for denoising the images that are corrupted with 
Gaussian noise. 

 

The primary objective of the work is to 
construct a Bayesian network to model the priori 
probability of the original image for the image 
denoising problem, which removes white and 
homogeneous Gaussian noise with zero mean and 
known variance from an image. Bayesian networks 
[1-4] provide a means of parsimoniously expressing 
joint probability distributions over many interrelated 
hypotheses. These find place in many applications 
like medical sciences, image processing, economics, 
industrial and environmental engineering [5, 6]. A 
Bayesian network [7] consists of a Directed Acyclic 
Graph (DAG) and a set of local distributions. The 
graph and the local distributions together represent a 
joint distribution over the random variables denoted 
by the nodes of the graph.   

In the modern image capturing devices, image 
denoising is particularly a serious problem because 
of the low signal-to noise (SNR). This is due to 
increase in the sensor’s density per unit area of a 
chip. It also increases the capturing device’s 
sensitivity to noise [8]. Most of the denoising 
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algorithms follow Non-Local Means (NLM) 
approach [9, 10] exploiting the self-similarity and 
redundancy in an image.  

A hidden markov model framework for 
statistical signal processing based on wavelet-
domain (HMM’s) is detailed in [11]. It is shown that 
this model paved a way to concisely model the non-
Gaussian statistics of individual wavelet coefficients 
and also to capture statistical dependencies between 
coefficients. A statistical approach to wavelet based 
signal processing is adopted in which the signal and 
its wavelet coefficients are regarded as the random 
realizations from a family or distribution of signals. 
The coefficients have been modelled either as 
jointly Gaussian or as non-Gaussian but 
independent. However, Gaussian models are in 
conflict with the compression property, which 
implies that the wavelet transforms of most signals 
are sparse, resulting in a large number of small 
coefficients and a small number of large 
coefficients. Non-Gaussian models have also been 
formulated, but usually, the coefficients are assumed 
to be statistically independent of each other. The 
HMT model matches both the clustering and 
persistence properties of the wavelet transform.  

In the existing Block Matching and 3-D filtering 
(BM3D) algorithm [10], 3-D groups are formed by 
combining similar 2-D patches that can be 
overlapped. Then by using, collaborative 3-D 
filtering technique, the system does the non-local 
filtering. In this, first the filtered blocks are sent 
back to their original positions, and then the 
weighted average of the estimates of the pixel in 
several different blocks is found out to estimate the 
pixel value.  It is shown that it is better than the 
regular non-local means approach. 

Plenty of denoising methods [12] exist, 
originating from various disciplines such as 
probability theory, statistics, and partial differential 
equations, linear and nonlinear filtering, spectral and 
multi resolution analysis. All these methods rely on 
some explicit or implicit assumptions about the true 
(noise free) signal in order to separate it properly 
from the random noise. In particular, the transform-
domain denoising methods typically assume that the 
true signal can be well approximated by a linear 
combination of few basis elements. That is, the 
signal is sparsely represented in the transform 
domain. Hence, by preserving the few high-
magnitude transform coefficients that convey 
mostly the true-signal energy and discarding the rest 
which are mainly due to noise, the true signal can be 

effectively estimated. The multi resolution 
transforms can achieve good sparsity for spatially 
localized details, such as edges and singularities. 

The image modelling and estimation algorithm 
in [13] is a novel approach to non-local adaptive 
nonparametric filtering. It can be adapted to various 
noise models such as additive colored noise, non-
Gaussian noise, etc., by modifying the calculation of 
coefficients variances in the basic and Wiener parts 
of the algorithm. It is a patch-based Wiener filter 
that exhibits the patch redundancy for image 
denoising. It utilizes both the shape wise characters 
and its perceived brightness to the human eye for 
the similar patches to estimate the different filter 
parameters. This method is comparable with 
nonlocal sparse model [14] and BM3D [10], even 
outperforming them in many cases where images 
exhibit higher levels of redundancy. NLM is a 
zeroth order kernel regression method, with a very 
specific choice of kernel. The existing is extended to 
higher orders of regression in order to approximate 
the image data locally by a polynomial or other 
localized basis of a given order. This provides better 
denoising in texture regions because of these extra 
degrees of freedom. Compared to the zeroth order 
method, higher order NLM shows better denoising 
in texture regions. Images captured by modern 
cameras are invariably corrupted by noise [12].  
This denoising approach does not require parameter 
tuning and is practical, with the added benefit of a 
clean statistical motivation and analytical 
formulation. In a more practical setting where 
signal-dependent noise is observed, the clustering 
step needs to take into account color information as 
well. The noise in each cluster can be then assumed 
to be homogeneous, and the proposed filter can be 
independently applied in each cluster. 

The Bayesian Least Square method based 
Gaussian Scale Mixture (BLS-GSM) given in [15] 
considers the distribution of wavelet coefficients in 
a 3×3 region, along with the center coefficient and it 
models this in the same orientation as a GSM. After 
the wavelet coefficient distribution, the center of the 
neighborhood system is found out using least square 
method based on Bayesian. In [16], an adaptive 
model which can make the Gaussian Scale Mixtures 
suitable for the image content called as Mixture 
GSM (MGSM) is detailed. Its working is similar to 
that of the BM3D algorithm. 

The performance of the proposed is compared 
with that of other approaches like Block Matching 
3D (BM3D), Bayes Least Square- Gaussian Scale 

Bhanumathi V., Lavanya S.
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 266 Volume 2, 2017



Mixture (BLS-GSM) and Wavelet Bayesian 
Network (WBN) and the demonstration yields a 
better Peak-Signal-to-Noise Ratio (PSNR) as well as 
better perceptual quality on the textured areas of an 
image. The proposed work is based on [17], which 
utilizes a hidden directed graph to model the prior 
probability of an image. The problems stated in this 
paper for the construction are as follows, 

1) The coefficient and wavelet patch 
association problem, which involves 
associating subband coefficients with a 
wavelet patch. 

 2)  The graph selection problem, i.e., 
determining the type of graph to construct.  

 To solve the above said problems, the heuristic 
procedure which is followed in the existing method 
is utilized. Assume that the wavelet patch is a matrix 
of m × m random variables. Let the size of a 
subband be N × N and let m divide N. The subband 
is partitioned into (N/m)2 rectangular blocks, each of 
which contains m × m coefficients. Then, the 
coefficient at location (i, j) in each block is assigned 
as a realization of the random variable at location (i, 
j) in the wavelet patch. Thus, each random variable 
has (N/m)2 sampled observations. For the second 
problem, the computational cost of a graph structure 
is analyzed for which the Maximum A Posteriori 
(MAP) solution can be derived efficiently by the 
standard Belief Propagation (BP) algorithm.  

The standard implementation of the message 
passing algorithm in BP on m × m cliques runs in 
O(N2km×mT ), where N2 is the number of coefficients 
in a subband, k is the number of labels for each 
coefficient, and T is the number of iterations. 
Basically, computing each message takes O(km×m) 
time and there are O(N2) messages per iteration.  

The joint probability of a spanning tree G = (V, 
E) can be formulated by the dependency structure in 
G as follows. Let f (vi |ui ) be the probability 
function associated with arc ui → vi, where ui, v j ∈ 
V, and let u be the root of the tree with probability f 
(u). The remainder of the paper comprise of the 
following. Second section gives an explanation of 
the construction of wavelet Bayesian networks. The 
third section details about the proposed 
methodology for image denoising based on MAP 
estimation. The fourth section analyzes the results. 
The fifth section concludes the proposed work.  

 

2 Construction of Wavelet Bayesian 
Networks 

Bayesian networks represent uncertainty using 
probabilities. Assigning a probability to an event 
gives an indication of how strongly we believe that 
the event will occur. The networks are used to 
compare information about a situation and make 
inferences. A network can provide information 
about the possible consequences of a situation, but 
can also provide information about the likely causes. 
An example of the Bayesian network is shown in 
Fig.1. 

 A Bayesian network, denoted as B = (V, E, P), 
comprises a set of random variables and their 
conditional dependencies represented by a directed 
acyclic graph in which the nodes represent the 
elements in V. V represents the vertex set, E 
represents the edge set and P represents the 
probability model. Each edge element in E takes the 
form of a directed arc x → y, where x and y ∈ V. The 
likelihood p(y | x) ∈ P of an edge x → y ∈ E is the 
conditional probability of observing y given that x 
exists.    

 

Figure. 1. Bayesian network - an example 

One of the most important features is the 
fact that they provide an elegant mathematical 
structure for modeling complicated relationships 
among random variables while keeping a relatively 
simple visualization of these relationships. Initially, 
wavelet decomposition of an image F yields three 
images of wavelet coefficients with horizontal, 
vertical, and diagonal orientations respectively, and 
one approximate image of F. Let Wh

j F(u, v),Wv
j 

F(u, v)and Wd
j F(u, v) denote, respectively, the 

horizontal, vertical, and diagonal images of the 
wavelet coefficients at scale 2j ; and let Aj F(u, v) 
represent the approximated image at the same scale. 
If the undecimated DWT is decomposed J times, the 
wavelet coefficients Wh

j F, Wv
jF, and Wd

jF are 
obtained with j = 1, . . . , J and the coarsest 
approximate image AJ F.  
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To construct a WBN, the subbands are grouped 
with the same orientation together to obtain a 
horizontal-group, a vertical-group, and a diagonal-
group of wavelet coefficients. Then, we construct a 
Bayesian network B for each group. Let Bh = (V h, 
Eh, Ph ), Bv = (V v , Ev , Pv ), and Bh = (Vd , Ed , Pd ) 
denote the Bayesian networks constructed from the 
horizontal-group, vertical-group, and diagonal-
group of wavelet coefficients respectively. The 
WBN B = (V, E, P) is derived from Bh, Bv, and Bd by 

V = V h ∪ V v ∪ V d    (1) 
E = Eh ∪ Ev ∪ Ed    (2) 
P = Ph ∪ Pv ∪ Pd    (3) 

There are two types of arcs in a Bayesian 
network Bu: 1) The inter-scale parent-child arc, 
which connects a node with its coarser-scale parent; 
and 2) the intra-scale sibling arc, which connects 
two nodes of the same scale. To obtain the 
probability inference, the probability function on 
each arc should be modelled. Then, the joint 
probability of the parent-child arc in Eu

o is modelled 
as 

௢݂
௨൫ݔหݔ௣൯ ൌ ܰ൫0;     (4)	௣ଶ൯ݔ2߱

In order to obtain much better denoising and to 
preserve the texture the Bivariate Cauchy (BC) 
MAP and Multivariate Cauchy (MC) MAP 
estimation is introduced in the proposed work. It is 
seen that the MC distribution shown in [18, 19] is 
giving proven results in capturing the inter-channel 
dependencies by restoring the pure coefficients. It is 
also shown that it is possible with the help of a 
closed-form shrinkage function. 

 

3. Proposed MAP Estimation for 
Image Denoising 

The input image is decomposed by using 
the wavelet decomposition and the corresponding 
horizontal vertical, diagonal, and approximation 
component are obtained. To construct the graph, a 
matrix of random variables is created from wavelet 
coefficients.  A wavelet patch is formed from the 
coefficients. Each subband consists of variable 
nodes of specified length. Each random variable in 
the wavelet patch is associated with the variable 
node in the graph. Edge set represents the arcs that 
are used to connect the nodes.  

 

There are two types of arcs-interscale arcs and 
intrascale arcs. The interscale arcs connect the 
vertices of different scales. The intrascale arcs 
connect the vertices of same scales. Recovering the 
Maximum A Posteriori (MAP) configuration of 
random variables in a graphical model is an 
important problem. The flow chart shown in Fig. 2 
shows the detailed step by step procedure for the 
implementation of the proposed work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 2. Flow Chart showing the construction of WBN 
based on MAP estimation 

After the construction of the wavelet 
coefficients, Bivariate Cauchy MAP (BCMAP) and 
then Multivariate Cauchy MAP (MCMAP) 
distributions are applied. The Bishrink Filter is a 
MAP filter that takes into account the interscale 
dependency of the wavelet coefficients considering 
the bivariate probability density function. This 
estimator requires prior knowledge of the noise 
variance and of the marginal variance of the noise-
free image for each wavelet coefficient. To estimate 
the noise variance from the noisy wavelet 
coefficients, a robust median estimator from the 
finest scale wavelet coefficients obtained by 
applying the Bayes theorem is used.  To make this 
estimation, σ2y represents the marginal variance of 
noisy observations y1 and y2. For the estimating the 
marginal variance of noisy observations, the local 
standard deviation of the useful component of the 
parent coefficients σ2 in a given subband is 
interpolated by repeating each line and column.  

Input image 

Apply the wavelet decomposition 

Obtain the wavelet coefficients 

Construct the Bayesian network 
from the wavelet coefficients 

Obtain the probability density function 
from the wavelet coefficients 

Perform BCMAP / MCMAP 
estimation 
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The main drawback of Bishrink filter is that 
when the value of the estimation of the noise 
standard deviation is higher then, the performance 
of  is poorer. Another very important parameter of 
the bishrink filter is the local estimation of the 
marginal variance of the noise-free image σn. The 
sensitivity of the estimation w1 is a decreasing 
function of σn resulting in a reduction in the 
precision of the estimation on the use of the bishrink 
filter. It is noted that the bishrink filter treats the 
edges very well, the estimation of the textured 
regions must be corrected and the worst treatment 
corresponds to the homogeneous regions. The 
denoising quality of pixels with slightly different σ 
will be very different in the homogeneous regions. 
The sensitivity increases with the increasing of σn. 
So, the degradation of the homogeneous and 
textured zones of the noise-free image is amplified 
by an increase in the noise standard deviation. 
Secondly, the local variance of a pixel gives some 
information about the frequency content of the 
region to which the considered pixel belongs. If the 
pixels of a given region have low local variances 
then the considered region contains low frequencies 
and vice versa. The probability density function of 
the MC distribution given in [19(17)] is utilized and 
it is as follows, 

௑ܲሺܺ; ∑ሻ ൌ
୻ቀ

೙శభ
మ
ቁ

୻ቀ
భ
మ
ቁగబ.ఱ|ஊ|బ.ఱඃଵା௑೅ஊషభ௑ඇ

೙శభ
మ

  (5) 

 

In the above equation, the term ‘n’ denotes 
dimensionality of the distribution (number channels) 
and ‘∑’ is used to represent the covariance matrix. 

MC MAP estimation is to find the parameter 
values in a probabilistic model that best explain the 
data. The likelihood gives an explanation of the data 
in terms of the parameters. In a more comprehensive 
Bayesian approach, the goal is to characterize the 
full posterior distribution and not to simply find the 
mode of this distribution. The following are the 
steps for the proposed denoising algorithm based on 
MAP estimation.  

 

Steps for WBN Denoising Algorithm with MAP 
Estimation 

1) Calculate the wavelet transform of the noisy 
image and obtain the horizontal, vertical, and 
diagonal subbands. 

2) Create the Vertex Set V: For each subband 
create the variable nodes for the wavelet 
coefficients according to the wavelet patch. 

3) Create the Edge Set E: The inter scale and 
intra scale components are created to connect 
the nodes. 

4) Create the WBN by connecting the vertices 
through the edges. 

5) Reconstruct the denoised image from the 
wavelet coefficients. 

6) Obtain the pixel value and calculate the 
probability density function. 

7) Perform the BCMAP and MCMAP estimation 
using bayes theorem.  

 

4. Results and Discussion 

The main goal of this paper is to improve the 
PSNR value and also to maintain the texture of the 
input images. The input image is shown in Fig.3. 
For decomposing the original input image into 
different sub bands, DWT is applied. Then the 
process of interpolation is carried out for the high 
frequency subbands and input image. With the help 
of inverse DWT (IDWT), the subbands are 
combined to form a denoised image.  

 

Figure. 3. Original input image of size 256x256 
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Figure. 4. Images obtained after Wavelet Decomposition 

  

Figure 5 : Output Image of WBN from MCMAP 

Estimate (σ =10, PSNR value  38.92) 

Figure 6 : Output Image of WBN from MCMAP 

Estimate (σ =15, PSNR value  36.63) 
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The approximation of the image, the vertical 
horizontal and diagonal components of the image is 
thus obtained after the wavelet decomposition and it 
is shown in Fig.4. The output image of the wavelet 
Bayesian network from the MCMAP estimate for 
different values of noise variance are found using 
the MATLAB simulation software. The output for 
the noise variance of 10 is shown in Fig.5 and for 
the noise variance of 15 is shown in Fig. 6. The 
corresponding PSNR values are noted down. 

It is observed from the above Figures 5 and 
6 that there is an improvement in the PSNR values 
of the output image for the different noise vaiances 
and also the texture regions are recovered by the 
proposed MAP estimation. 

Table 1 consists of the PSNR values for two 
different images for the noise variances of 10, 15, 
20, 25 and 30 for the existing and proposed image 
denoising methods. 

 

Table 1 Comparison of PSNR values for different noise levels 

 
Image 

Noise 
Variance  

(σ) 

PSNR  

BLS-GSM [16] BM3D [10] WBN [17] BCMAP MCMAP 

Lena 
(256x256) 

10 
15 
20 
25 
30 

35.91 
34.11 
33.12 
32.01 
31.32 

36.59 
34.78 
33.81 
32.60 
31.92 

36.63 
34.82 
33.94 
32.75 
31.98 

37.31 
35.53 
34.23 
33.61 
32.52 

38.92 
36.63 
35.01 
34.21 
33.36 

Cameraman 
(256x256) 

10 
15 
20 
25 
30 

33.12 
31.01 
29.96 
29.01 
27.93 

33.94 
31.28 
30.05 
29.81 
28.26 

34.01 
31.63 
30.21 
29.97 
28.81 

35.45 
32.71 
31.51 
30.86 
30.21 

36.91 
33.80 
32.12 
31.59 
30.79 

 

 

It is estimated from the Table.1 that there is a 
significant improvement in PSNR values for the 
proposed BCMAP and MCMAP estimation in 
compared with the existing BLS-GSM, BM3D and 
Wavelet Bayesian for the two different images. 
Compared to the proposed BCMAP, MCMAP 
performs much better in terms of PSNR value and 
text preservation. For example, it is noted that for 
Lena image with noise variance of 15, the 
percentage increase in PSNR values are 2.08%, 
4.16% and 7.38% for wavelet Bayesian, and the 
proposed BCMAP and MCMAP in comparison with 
BLS-GSM and for the same, PSNR values are 
0.12%, 2.15% and 5.32% for wavelet Bayesian, 
BCMAP and MCMAP in comparison with BM3D.  
For Cameraman image, for the same noise variance 
of 15, with BLS-GSM, the increase in percentage of 
PSNR values are 1.99%, 5.48% and 8.99% and with 
BM3D, the increase of PSNR  values are 1.11%, 
4.57% and 8.05% respectively.   
 
 
 
 
 

Table 2. Average PSNR improvement of MCMAP in 
comparison with BCMAP 

Noise 
Variance 

(σ) 

PSNR improvement (%)  
Average 

(%) 
Lena 

(256x256) 
Cameraman 
(256x256) 

10 
15 
20 
25 
30 

4.30 
3.09 
2.28 
1.79 
2.58 

4.11 
3.33 
1.93 
2.36 
1.91 

4.21 
3.21 
2.11 
2.07 
2.25 

 

The above Table.2 shows the PSNR 
improvement of the proposed MCMAP estimate in 
comparison with the proposed BCMAP estimate for 
the Lena and Cameraman images. It is evident that 
the MCMAP technique preserves the textures and 
gives an improved PSNR value compared to the 
BCMAP technique.  
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5. Conclusion 

A constructive data-adaptive procedure that 
derives a directive acyclic graph structure from the 
wavelet coefficients based on MAP estimation is 
proposed. The graph is then used to model the prior 
probability of the original image for denoising 
purposes. From the experimental analysis it is clear 
that for various noise levels, the wavelet Bayesian 
network based on MCMAP estimation provides 
better PSNR values when compared to other 
methods. The proposed method is very efficient and 
reduces the computational cost. It recovers the 
texture element. As a future work it has been 
decided to construct the Curvelet Bayesian Network 
to suppress Gaussian noise and provide better PSNR 
values than the present proposed method. 
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