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Abstract: In this article, a new methodology is proposed to solve the problem of optimizing a linear function
over an integer efficient set, noted (OI). The great challenges on it were its classification as NP-hard and that
only three methods were introduced in the literature during decades treating this issue. We propose in this study a
generalization of our method [8], wherein all efficient solutions of a multiobjective integer linear program (MOILP)
are achieved. Based upon the well known branch and bound technique and strengthened by efficient tests, the
proposed methodology succeeds to find an optimal solution in a finite number of steps. The main feature is that
it greatly saturates nodes in the tree, thus a large number of feasible solutions can be avoided for optimality or
efficiency purposes. Also, we have chosen Jorge method to perform a comparative study.
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1 Introduction

Whereas the multiobjective integer linear program-
ming problem has received much more attention
than ever (see for instance in a chronological order:
[18],[12], [13], [2], [3], [24], [21], [8], [4], [19], etc.),
the field of optimization over the efficient set of a
MOILP remains vacant and challenging to investigate.
It takes the motivation from practice, where among all
efficient solutions, whose number can be very large,
the decision maker is interested only by one that opti-
mizes a new criterion (generally different from those
considered in the original problem). This problem
with continuous variables has been studied by several
authors. In fact, one of the pioneers in this field is
Philip [22] who studied this problem and suggested
for solving it two procedures. In the first one, he sup-
posed that the function to be optimized is a strictly
positive aggregation of the criteria, where the restric-
tion ”efficient set” is replaced by the ”decision space”
and it becomes an ordinary linear programing prob-
lem. In the second, the optimization is done according
to any linear function and a cutting plane technique is
used to overcome the difficulty of non convexity of
the efficient set and removes uninteresting (efficient)
points. Later, Benson [5], [6], [7], Ecker & Song [11]
and others have also investigated this issue and have
proposed different approaches. Notice that, in this
case, the efficient set has two interesting properties.

First, the efficient set is connected and second the ef-
ficient set contains extreme points of the polyhedron
([20]).

Nevertheless, the integer case, has not received
as much attention as did the continuous case. This
is due in fact, not only for the unknown structure of
the feasible region (non convex) but also due to the
discrete aspect of the decision variables.

Despite its importance in real life applications, a
bibliographical research allowed us to conclude that
only three methods were proposed dealing with this
topic. First by Nguyen andal. [20], who proposed
algorithms for two special cases. In the first case, he
reduced the multi-objective problem to a bi-objective
one and in the other, the function to be optimized
is a non-negative combination of the criteria. Sec-
ond, Abbas &al. [1], introduced for solving (OI)
cutting planes in the decision space based on the
work of Ecker & Song [11] in the continuous case.
Whereas Jorge [11], defined a sequence of progres-
sively more constrained single-objective integer prob-
lems that eliminates unacceptable points. Unlike the
previous methods, Jorge’s one was implemented and
the author shows the obtained results over different
problem instances randomly generated.

In the present study, we propose a branch and
bound based method for problem OI. Based upon ef-
ficient cuts, our approach succeeds to find the optimal
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solution for OI without having to compute all efficient
solutions. Also, our method was implemented using
Matlab2013a and a comparative study is reported with
Jorge’s at the end.

2 Mathematical formulation
Assume thatr ≥ 2 is an integer and thatci, i =
1, · · · , r are row vectors ofRn. Let C be ther × n
matrix formed by the vectorsci; i = 1, · · · , r and let
S be a nonempty, compact polyhedron inR

n. Also,S
is defined by{x ∈ R

n|Ax ≤ b, x ≥ 0}, whereA is an
m× n matrix of integers;b ∈ Z

m andD is the set of
integer solutions inS. Then, the multiple objective in-
teger linear programming problem MOILP, described
as:

(P )

{
Max Zi(x) = cix; i = 1, · · · , r
s.t. x ∈ D = S ∩ Z

n (1)

is considered as the problem of finding the set of all
solutions that are efficient in the sense of the following
definition:

Definition 1. A solutionx ∈ D is known as efficient,
if there does not exist another solutiony ∈ D such
thatCy ≥ Cx with at least one strict inequality. Oth-
erwise,x is not efficient and the vectorCy dominates
the vectorCx.

The image of an efficient solution in the criterion
space is called commonlynon-dominatedsolution or
Pareto optimalsolution. LetXE denotes the set of all
efficient solutions of program(P).

Basically, the set of efficient solutions of (MOILP)
can be very sizable and the task to choose one that fit
the decision preferences is very difficult. This evolves
finding a most preferred efficient point according to
the mathematical programming problem:

(OI)

{
Max ϕ(x)
s.t. x ∈ XE

(2)

whereϕ : R
n −→ R is a continuous linear function.

ϕ is not necessarily a combination of the MOILP’s
criteria and can be any linear function.

Let us consider the following linear programming
problem at stagel, l ≥ 0 of the proposed method:

(OIl)

{
Max ϕ(x)
s.t. x ∈ Sl

(3)

We denote byxopt the best efficient solution of OI
found till stepl andϕopt its corresponding criterion

value. S0 = S, andSl+1 is obtained fromSl by
adding efficient cuts described below. To do so, let
x∗l be the first integer solution obtained through solv-
ing (OIl) by using, eventually, the branching process
well known in branch and bound method.
Throughout the present paper, we will use the follow-
ing notations:
◦ By Bl (Nl), we mean the set index of basic (respec-

tively non basic) variables ofx∗l ;

◦ Let c̄ij be thejth component of the reduced cost vec-
tor ci for eachi = 1, · · · , r at the latest simplex
tableau;

◦ Using the concept of cuts is overriding in our
methodology to solve OI. To do so, two types of
cuts are built. In fact, to constructcut of type I,
we define the setHl as

Hl =
{
j ∈ Nl|∃i = 1, · · · , r; c̄ij > 0

}
∪

{
j ∈ Nl|c̄

i
j = 0 ∀i = 1, · · · , r

}

and the efficient cut
∑

j∈Hl

xj ≥ 1

has the property of removing non efficient solutions
without having to enumerate them. In the other
hand,cut of type II is constructed according to the
following inequality

ϕ(x) ≥ ϕopt

to allow removing uninteresting points regarding
optimality.

◦ We define the following two sets at nodel of type I
(at an integer solution):

S1
l+1 =



x ∈ Sl|

∑

j∈Hl

xj ≥ 1





◦ Also, the following set is considered at nodel of
type II (at non integer solution):

S2
l+1 = {x ∈ Sl|ϕ(x) ≥ ϕopt}

◦ Sl+1 = S1
l+1

∪ S2
l+1

◦ Effl is the set of potentially efficient solutions of
MOILP obtained until stepl. All solutions inEffl
are feasible integer such as none of them dominates
the others in the criterion space. The setEffl is
updated, testing each time an integer solutionx∗l
is reached, whetherZ(x∗l ) is dominated or not. If
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Z(x∗l ) is not dominated by any vectorZ(x), x ∈
Effl−1, thenEffl = Effl−1 ∪ {x∗l } and remov-
ing also solutions fromEffl−1 whose criterion vec-
tor is dominated byZ(x∗l ) or byZ(y), yl solution of
P (x∗l ).

So, we have to test the efficiency of the solutions via
two options. The first one consists of considering the
setEffl initially empty set and at each stepl is up-
dated. The second one concerns the resolution of the
following mixed-integer program as it is reported in
([1], [17] and [20]):

Given a pointx∗l ∈ D, let (Px∗

l
) denotes the

linear program:

(Px∗

l
)





Max ets
s.t. Cx = Is+ Cx∗l ,
Ax ≤ b, x ∈ D, s ≥ 0

(4)

wheree is a vector column of ones andI is an identity
matrix (r× r).
x∗l is efficient if and only if (Px∗

l
) has a maximum

value of zero. Otherwise (the maximum value of (Px∗

l
)

is finite nonzero), the obtained solution is efficient. In
this manner, obviously the first option is prior to the
second to avoid solving at each step program (Px∗

l ).

3 Methodology

The proposed algorithm generates the optimal solu-
tion of OI without having to enumerateXE (recall that
XE is the efficient set of (P)). Based on branch and
bound technique, the method is reinforced by efficient
cuts and additional saturating tests allowing a smart
search for the optimal solution. We start by solving
the program(OIl) defined by program 3 using the
simplex method at stepl of the algorithm (eventually
dual simplex method). Then, to catch how the criteria
vectors move from basis to basis,r lines are added to
the basic simplex tableau and reduced costs are cal-
culated in respect of the corresponding basis. If the
obtained solution is non integer, then we still impos-
ing integrity restrictions on the original variables of
the program till getting integer ones. Once an integer
solutionx∗l is achieved, new cuts are established and
added to the current simplex tableau which allow re-
duce the search area considerably (containing non ef-
ficient and non interesting solutions for (OI)). We con-
sider henceforth two types of nodes, those relative to
branching process (type 1) and others to efficient cuts
(type2). So, a node of type 2 is pruned if no improve-
ment of the criteria can be done along the remaining
domain or if an efficient solution is reached at a stage
l. A node of type 1 is fathomed ifϕopt the best value
of ϕ obtained till stagel is greater than or equal to

value ofϕ at that node, even the corresponding solu-
tion is non integer or the domain becomes infeasible.

The algorithm is summarized as follows:

Step1 (initialization): Initialize the program index
l = 0 and the optimal value of the objective function
ϕopt = −∞ to which it corresponds no optimal solu-
tion yet (xopt unknown at the beginning),Effl the set
of potentially efficient solutions of (P ), Eff0 = ∅.
Step2 (main step): While there is no saturated node in
the tree search, solve (OIl) using simplex or dual sim-
plex method, it depends on the sign of the right hand
side of the program. Go toStep3.1.
Step3 (tests):

3.1 Feasibility test: If (OI l) is infeasible, then stop
and the nodel is saturated, else, letx∗l be the
solution, ifϕopt ≥ ϕ(x∗l ), the nodel is fathomed
else, go tostep3.2;

3.2 Integrity test: If x∗l is integer, updateEffl and
go tostep3.3, else go tostep4;

3.3 efficiency test:If x∗l is not kept withinEffl, x∗l
is not efficient and go tostep5, else, solve (Px∗

l
).

If x∗l is efficient then update eventuallyϕopt =
ϕ(x∗l ) andxopt = x∗l ; the nodel is pruned since
no improvement ofϕ further, else, letyl be the
solution of (Px∗

l
), update if necessaryϕopt, xopt

and the setEffl as well, go tostep5.

Step4 (branching): Choose one coordinatexj of x∗l
such thatxj = αj , with αj a fractional number. Then,
split the program (OIl) into two sub programs, by
adding the constraintsxj ≤ ⌊αj⌋ to obtain (OIl1),
xj ≥ ⌊αj⌋ + 1 and constructS2

l+1
to obtain (OIl2)

such thatl1 > l + 1, l2 > l + 1 and l1 6= l2, go to
step2. In fact, since the tree is treated according to the
principle depth first, we add the cutϕ(x) ≥ ϕopt in
the second branchl2.
Step5 (efficient cut): Construct the setHl. If Hl = ∅;
the nodel is fathomed since no efficient solution ex-
ists afterward, otherwise, construct setS1

l+1
(adding

efficient cut), go tostep2.

4 Theoretical results
In order to justify the different steps of the proposed
algorithm, the following results are established. We
denote byDl the setDl = Sl ∩ Z

n.

Theorem 2. Suppose thatHl 6= ∅ at the current in-
teger solutionx∗l . If x 6= x∗l is an optimal solution of
program OI in domainSl, thenx ∈ Sl+1.
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Proof: Let x 6= x∗l be an integer solution in domain
Sl such thatx /∈ Sl+1, thenx /∈ S1

l+1
∨ x /∈ S2

l+1
.

◦ if x /∈ S1
l+1

, thenx ∈

{
x ∈ Sl|

∑
j∈Nl\Hl

xj ≥ 1

}
.

Therefore, the coordinates ofx check the following
inequalities:

∑
j∈Hl

xj < 1 and
∑

j∈Nl\ Hl

xj ≥ 1. It

follows thatxj = 0 for all j ∈ Hl, andxj ≥ 1 for
at least one indexj ∈ Nl\ Hl. Using the simplex
table inx∗l , the following equality is supported by
all criterioni ∈ {1, · · · , r}:

cix = cix∗l +
∑
j∈Nl

ĉijxj

⇒ cix = cix∗l +
∑
j∈Hl

ĉijxj +
∑

j∈Nl\Hl

ĉijxj

⇒ cix = cix∗l +
∑

j∈Nl\Hl

ĉijxj

Thus,cix ≤ cix∗l for all criterion i ∈ {1, · · · , r},
with cix < cix∗l for at least one criterion sincêcij ≤
0 for all j ∈ Nl\Hl.

We conclude that solutionx is not efficient and then,
all efficient integer solutions belong to domainS1

l+1
,

...(*).

◦ If x /∈ S2
l+1

, x is not optimal, contradiction, ...(**).

From (*) and (**), we conclude thatx ∈ Sl+1. ⊓⊔

Theorem 3. Letx∗l be the current integer solution of
program (OIl), then ifx∗l is efficient for program(P ),
then it is an optimal solution of program OI overDl.

Proof: Suppose thatx∗l is not optimal for program OI.
Then,∃x ∈ Dl, x 6= x∗l such thatϕ(x) > ϕopt from
Theorem 2. However,x∗l being efficient, which means
thatϕopt ≥ ϕ(x∗l ). Thusϕ(x) ≥ ϕ(x∗l ). In the other
hand, at the current simplex tableau, the expression of
ϕ can be written as:

ϕ(x) = ϕ(x∗l ) +
∑
j∈Nl

ϕ̂jxj

⇒ ϕ(x∗l ) +
∑
j∈Nl

ϕ̂jxj > ϕ(x∗l )

⇒
∑
j∈Nl

ϕ̂jxj > 0

which contradicts the fact that̂ϕj ≤ 0, ∀j ∈ Nl.
⊓⊔

Proposition 4. If Hl = ∅, then∀x ∈ Dl+1 , x is not
efficient.

Proof: Hl = ∅, then∀i ∈ {1, · · · , r}, ∀j ∈ Nl, we
haveĉij ≤ 0 and∃i0 ∈ {1, · · · , r} such that̂ci0j < 0
∀j ∈ Nl. So,x∗l dominates all pointsx, x 6= x∗l of
domainDl. ⊓⊔

Proposition 5. If ϕopt ≥ ϕ(x∗l ), then 6 ∃x ∈ Dl such
thatϕ(x) > ϕopt.

Proof: It is obvious that all solutionsx for which
ϕ(x) < ϕopt are not interesting even efficient, since
the existence of an efficient solution giving already the
best value ofϕ. ⊓⊔

Theorem 6. The algorithm terminates in a finite num-
ber of iterations and returns the optimal solution of
program OI.

Proof: The setS of feasible solutions of program(P )
being compact, it contains a finite number of integer
solutions. At each stepl of the algorithm, if an integer
solutionx∗l is reached, we proceed to eliminate it as
well as a subset of integer non interesting solutions by
taking into account Theorem 2above (adding cuts). In
the other hand, four saturating tests are used without
loss of the optimal solution of OI. First, when the set
Hl is empty the corresponding solutionx∗l is an ideal
point and the current node can be pruned since no cri-
terion can be improved. Secondly, if at a stagel, the
current integer solutionx∗l is efficient, the correspond-
ing node is fathomed sincex∗l is optimal for OI over
Dl. Third, if ϕopt (value of the best efficient solution
found for OI) is greater than that of the optimal so-
lution overDl, the nodel also is fathomed. Finally,
the trivial case when the reduced domain becomes in-
feasible. Hence, the algorithm converges toward an
optimal solution for OI in finite number of steps.⊓⊔

5 Illustrative example
Let us consider the following problem of optimizing a
linear function over an integer efficient set, treated by
Jesus M. Jorge in [17]:

(OI)

{
Max − x1 − 2x2
x ∈ XE

(5)

whereXE is the efficient set of the following pro-
gram:

(P )





Max x1 − 2x2
Max − x1 + 4x2
s.t. − 2x1 + x2 ≤ 0

x1 ≤ 3
x2 ≤ 2

x1, x2 ≥ 0, integers

(6)

Step1: Setϕopt = −∞ andl = 0. After solving the
program (OI0), the optimal solution thus obtained
is x∗0 = (0, 0) which is not efficient, but the optimal
solution obtained from solving (Px∗0) which is (3, 1)
is efficient. Updateϕopt = −5 andxopt = (3, 1).
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H0 = {1, 2} 6= ∅.

x1 x2 bi
x3 −2 1 0
x4 1 0 3
x5 0 1 2

−ϕ −1 −2 0
−c1 1 −2 0
−c2 −1 4 0

Apply the efficient cutx1 + x2 ≥ 1 and use
the dual simplex technique to obtain the following
tableau:

x6 x2 bi
x3 −2 3 2
x4 1 −1 2
x5 0 1 2
x1 −1 1 1

−ϕ −1 −1 −1
−c1 1 −3 1
−c2 −1 5 −1

Solutionx∗1 = (1, 0) is obtained but it is not efficient
(test of efficiency) and the obtained integer solution
from solving (Px∗1), (3, 1) is efficient.H1 = {6, 2} 6=
∅, apply the efficient cutx2+x6 ≥ 1 and dual simplex
technique :

x7 x3 bi
x6 −3

5
−1

5

1

5

x4
1

5

2

5

13

5

x5
2

5
−1

5

6

5

x1 −1

5
−2

5

2

5

x2 −2

5

1

5

4

5

−ϕ −1 0 −2
−c1 −3

5

4

5
−6

5

−c2 7

5
−6

5

14

5

The optimal solutionx∗2 = (2
5
, 4
5
), we use branch

and bound technique:x1 ≤ 0 or x1 ≥ 1:

◦ Forx1 ≤ 0, program(OI) becomes infeasible;

◦ For x1 ≥ 0, the optimal solution foundx∗3 =

(1, 1/2) is non integer:

x8 x3 bi
x6 −1

2
−1

2

1

2

x4 1 0 2
x5 −1

2

1

2

3

2

x1 −1 0 1
x2

1

2
−1

2

1

2

x3 −5

2

1

2

3

2

−ϕ 0 −1 −2
−c1 2 −1 0
−c2 −3 2 1

Two sub-programs are created (branching process):
For x2 ≤ 0, the following tableau is obtained:

x7 x9 bi
x6 −1 −1 1
x4 1 2 1
x5 0 −1 2
x1 −1 −2 2
x2 0 1 0
x3 −2 −5 4
x8 −1 −2 1

−ϕ −1 0 −2
−c1 1 4 2
−c2 −1 −6 −2

The optimal solution isx∗4 = (2, 0) which is inte-
ger and efficient (efficiency test), thusϕopt = −2,
xopt = (2, 0). Forx2 ≥ 1, we have:

x9 x8 bi
x6 −1 −1 1
x4 0 1 2
x5 1 0 1
x1 0 −1 1
x2 −1 0 1
x3 1 −2 1
x7 2 −1 1

−ϕ −2 −1 −3
−c1 −2 1 −1
−c2 4 −1 3

The optimal solution isx∗5 = (1, 1) and this node
is fathomed becauseϕopt = −2, ϕ(x∗5) = −3 then
ϕopt > ϕ(x∗5). Hence, the optimal solution for(OI)
is: xopt = (2, 0) andϕopt = −2.

6 Computational results and com-
parative study

The proposed method has been coded using MATLAB
R2013a and run on a personal computer with 2.7 GHz
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Core(TM) i7 CPU and 4GB of memory. We should
notice that all subroutines were programed and no op-
timization packages were used. Furthermore, to test
the efficiency of our algorithm, the method described
in [16] (Jorge’s method) was also programed using the
same environment in order to compare performances
of both of them.
To do so, we have chosen the third class of test
problems provided by Gokhan Kirlik & Serpil Sayin
in //home.ku.edu.tr/ ˜ moolibrary/ . These
test problems are the general multiobjective integer
linear programming (MOILP) withm constraints,
m ∈ {10, 15, 20}, n variables,n = 2m andr objec-
tive functions ,r ∈ {3, 4, 5}. Whereas the coefficients
of functionϕ are generated randomly in [-100,100].

Instances OCM Method JORGE Method
ILP r-3 n-20 m-10 ins-1 0.81 2.11
ILP r-3 n-20 m-10 ins-2 0.48 2.883
ILP r-3 n-20 m-10 ins-3 0.60 5.47
ILP r-3 n-20 m-10 ins-4 1.79 8.10
ILP r-3 n-20 m-10 ins-5 0.46 2.62
ILP r-4 n-20 m-10 ins-1 0.153 1.02
ILP r-4 n-20 m-10 ins-2 4.39 0.10
ILP r-4 n-20 m-10 ins-3 0.11 0.27
ILP r-4 n-20 m-10 ins-4 9.50 0.43
ILP r-4 n-20 m-10 ins-5 5.09 4.55
ILP r-5 n-20 m-10 ins-1 5.00 6.00
ILP r-5 n-20 m-10 ins-2 0.221 0.505
ILP r-5 n-20 m-10 ins-3 2.93 0.36
ILP r-5 n-20 m-10 ins-4 0.14 0.22
ILP r-5 n-20 m-10 ins-5 0.98 5.12
ILP r-3 n-30 m-15 ins-1 22.71 616.24
ILP r-3 n-30 m-15 ins-2 3.20 9.79
ILP r-3 n-30 m-15 ins-3 10.99 92.20
ILP r-3 n-30 m-15 ins-4 20.32 215.00
ILP r-3 n-30 m-15 ins-5 2.33 17.291
ILP r-4 n-30 m-15 ins-1 0.78 4.02
ILP r-4 n-30 m-15 ins-2 6.65 4.67
ILP r-4 n-30 m-15 ins-3 0.70 53.80
ILP r-4 n-30 m-15 ins-4 17.75 553.40
ILP r-4 n-30 m-15 ins-5 0.72 33.36
ILP r-5 n-30 m-15 ins-1 0.54 21.06
ILP r-5 n-30 m-15 ins-2 1.36 100.84
ILP r-5 n-30 m-15 ins-3 4.13 302.95
ILP r-5 n-30 m-15 ins-4 0.99 1.77
ILP r-5 n-30 m-15 ins-5 18.64 306.00
ILP r-3 n-40 m-20 ins-1 8.59 161.21
ILP r-3 n-40 m-20 ins-2 37.83 413.45
ILP r-4 n-40 m-20 ins-1 84.221 900.35
ILP r-4 n-40 m-20 ins-2 9.40 1760.81
ILP r-5 n-40 m-20 ins-1 9.78 48.91
ILP r-5 n-40 m-20 ins-2 1.78 230.25

Table 1: CPU time (seconds)

As both methods have different architectures, we
have chosen the CPU time elapsed in seconds to be
the only metric to compare their performances. Table

Figure 1: Histogram

1 summarizes the results obtained from experiencing
them on several identical instances.

We can see that Jorge method outperforms our
method on only 4 instances (7, 9, 13 and 22) of the
36 considered instances with minimum CPU devia-
tion 0, 07s and a maximum CPU deviation4, 29s.
However, our method is better on the remaining 32
instances with minimal CPU deviation0, 08s and a
maximum CPU deviation equal to1751, 41s. Further-
more, CPU time of our method is much more attrac-
tive than Jorges one. Also, our method has the ad-
vantage to be applied to problems with real objective
functions coefficients while Jorge method can only be
applied for integer objective functions coefficients as
described by the author.

For a better display, the execution time for both
method was represented by an histogram as a per-
centage Jorge/OCM %. The average is taken for each
triplet (r, n, m).

7 Conclusion

In this paper, we proposed a branch and bound based
method to optimize a linear function over the efficient
set of a MOILP problem. Two types of cuts are used,
the cuts of type 1 devoted to avoid the search in ar-
eas not containing efficient solutions and those of type
2 that delete domains not containing optimal solu-
tion. Reading the results of the experimentation shows
that the proposed method outperforms 89 percent the
Jorge’s method, moreover, it has the advantage that
it can be applied even if the coefficients of objective
functions are real. Another advantage resides in the
fact that our method can be extended to other global
optimization problems with nonlinear objective func-
tions, particularly for problems dealing with hyper-
bolic functions [9].
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