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Abstract: In this paper we introduce one of the most famous problems in a non commutative ring R. In particular
we are interested in cryptography is mainly encryption based on conjugal classical problem in R. We study the
problem of conjugal over this non commutative ring. The problem as stated is generally impossible to solve. Next,
we describe a new encryption scheme over this ring based on this problem.
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1 Introduction
Ever since the discovery of public-key cryptography
by Diffie and Hellman in the year 1976 see, [5], the
necessity for total privacy of digital data has become
stronger and stronger, especially since the internet
has become an indispensable part of both our pri-
vate and work lives. Naturally, the question for more
and more secure encryption schemes arose in the past
few decades. One way to achieve confidentiality in
applications, such as online banking, electronic vot-
ing, virtual networks etc , are homomorphic and es-
pecially fully homomorphic cryptographic schemes.
Fully homomorphic cryptosystems or privacy homo-
morphisms were introduced by Rivest, Adleman, and
Dertouzous in 1978 see, [6] . In their paper they asked
for a way to allow a third, untrusted party to carry
out extensive computation on encrypted data, with-
out having to decrypt first. Unfortunately, shortly af-
ter its publication, major security as were found in
the original proposed schemes of Rivest and al. The
search for fully homomorphic cryptosystems began.
The aim of homomorphic cryptography is to ensure
privacy of data in communication and storage pro-
cesses, such as the ability to delegate computations
to untrusted parties. If a user could take a problem
defined in one algebraic system and encode it into a
problem in a different algebraic system in a way that
decoding back to the original algebraic system is hard,
then the user could encode expensive computations
and send them to the untrusted party. This untrusted
party then performs the corresponding computation in
the second algebraic system, returning the result to the
user. Upon receiving the result, the user can decode it
into a solution in the original algebraic system, while

the untrusted party learns nothing of which compu-
tation was actually performed. Asked: ”Is there an
encryption function Enc() such that both Enc(x+ y)
and Enc(x.y) are easy to compute from Enc(x) and
Enc(y)?”

Definition 1 A public-key encryption scheme E is a
tuple, (K,E,D) of probabilistic polynomial-time al-
gorithms
(1) The key generation algorithm K takes the secu-
rity parameter k as input and outputs a pair of keys
(pk, sk). I refer to the first of these as the public key
and the second as the private key or secret key. I as-
sume that pk and sk each have length at least k, and
that k can be determined from pk, sk.
(2) The encryption algorithm E takes a public-key pk
and a string m called the message from some under-
lying message space M as input. It produces a cipher
text c from an underlying cipher text space C, denoted
as c = Encpk(m) or simple c = Enc(m), if it is ob-
vious which public key is in use.
(3) The decryption algorithm D takes a private-key
sk and a cipher text c as input, and produces an
output message m. Without loss of generality we
assume that Dec is deterministic, and write this as
m := Decsk(c).

2 Definitions and Notation
Let d be a positive integer and q = pd be a power of a
prime number p ≥ 5. Let Fq a finite field of charac-
teristic p and order q. We define the set Fq[e], e

2 = e
as:

Fq[e] := {α+ βe|(α, β) ∈ Fq × Fq and e2 = e}.

Aziz Boulbot et al.
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 138 Volume 2, 2017



We define on the set Fq[e] the laws some ”+” and
product ”.” by:
LetX = α0+β0e ∈ Fq[e] and Y = α1+β1e ∈ Fq[e]:{

X + Y = (α0 + α1) + (β0 + β1)e
X.Y = (α0α1) + (α0β1 + α1β0 + β0β1)e

We have:(
Fq[e],+, .

)
is a finite unitary commutative

ring.[2, 3]

Definition 2 We define an elliptic curve over the ring
Fq[e], as a curve in P2

(
Fq[e]

)
which is given by the

Weierstrass equation:

Y 2Z = X3 + aXZ2 + bZ3,

where P2
(
Fq[e]

)
is the projective space over Fq[e]

and a, b ∈ Fq[e] such that the discriminant ∆ :=
4a3 + 27b2 is invertible in Fq[e].

Notation 3 Let a, b ∈ Fq[e]. If the discriminant ∆ =
4a3+27b2 is invertible in Fq[e], we denote the elliptic
curve over Fq[e] by Ea,b

(
Fq[e]

)
, and we write:[1]

Ea,b

(
Fq [e]

)
=

{
[X : Y : Z] ∈ P

2

(
Fq [e]

)/
Y

2
Z = X

3
+aXZ

2
+bZ

3

}

3 The Ring R

In this section, Ea,b

(
Fq[e]

)
is an elliptic curve over

Fq[e], P is a point of order n and G is the group gen-
erated by P . We consider the set:

R = {
(
x tP
0 y

)
|x, y, t ∈ {0, ..., n− 1}}

Let X =

(
x tP
0 y

)
and Y =

(
z rP
0 w

)
are

two elements inR, on which two binary operations are
defined, called addition (+) and start (∗) and denoted
by:

X + Y =

(
x+ z (t+ r)P

0 y + w

)

X ∗ Y =

(
xz (tw + xr)P
0 yw

)

Lemma 4 (R,+, ∗) is a non commutative ring with

identity 1R =

(
1 [0 : 1 : 0]
0 1

)
.

Proof: (R,+, ∗) is called a non commutative ring
with respect to these operations, if the following prop-
erties hold:
◦ Associative laws: ∀X,Y, Z ∈ R,

(X + Y ) + Z = X + (Y + Z)

(X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z)

◦ Commutative law: ∀X,Y ∈ R,

X + Y = Y +X

◦ A non commutative law: ∃X,Y ∈ R such that

X ∗ Y 6= Y ∗X

◦ Distributive laws: ∀X,Y, Z ∈ R,

(X + Y ) ∗ Z = X ∗ Z + Y ∗ Z

Z ∗ (X + Y ) = Z ∗X + Z ∗ Y

◦ Additive identity: ∀X ∈ R,

X + 0R = 0R +X = X

where 0R =

(
0 [0 : 1 : 0]
0 0

)
is called the addi-

tive identity element of R.

◦ Start identity: ∀X ∈ R,X ∗ 1R = 1R ∗X = X , 1R
is called the start identity element of R.

◦ Additive inverses: ∀X ∈ R, X+(−X) = 0R ; −X
is called the additive inverse of X .

ut

Lemma 5 Let X =

(
x Q
0 y

)
∈ R.

X is invertible if only if x ∧ n = 1 and y ∧ n = 1, in
this case we have :

X−1∗ =

(
x−1 −x−1y−1Q
0 y−1

)

Proof: Let Y =

(
z R
0 w

)
the inverse of X , we

have:
X ∗ Y = Y ∗X = 1R

So,

X ∗ Y =

(
xz xR+ wQ
0 yw

)
=

(
1 [0 : 1 : 0]
0 1

)
and

Y ∗X =

(
xz yR+ zQ
0 yw

)
=

(
1 [0 : 1 : 0]
0 1

)
,
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thus

xz = 1[n]
yw = 1[n]

xR+ wQ = [0 : 1 : 0]
yR+ zQ = [0 : 1 : 0]

Therefore, X is invertible if only if x ∧ n = 1 and
y ∧ n = 1, in this case we have:

R = −x−1wQ = −y−1zQ = −x−1y−1Q

so,

X−1∗ =

(
x−1 −x−1y−1Q
0 y−1

)
Lemma 6 Let k be a strictly positive integer. Then if

X =

(
x Q
0 y

)
is any element of R. The k-power

of X can be given by Xk =

(
xk αkQ
0 yk

)
, where

αk =
∑

i+j=k−1 x
iyj

Proof: Using a proof is by induction on k.
For k = 1 : we have α1 = 1.
Let k ≥ 1. Assume that, αk =

∑
i+j=k−1 x

iyj and
proof that: αk+1 =

∑
i+j=k x

iyj , we have:

Xk+1 =

(
xk αkQ
0 yk

)
∗
(
x Q
0 y

)
so,

Xk+1 =

(
xk+1 xkQ+ yαkQ

0 yk+1

)
Thus,

αk+1 = xk+yαk = xk+y
∑

i+j=k−1
xiyj =

∑
i+j=k

xiyj

We conclude that, ∀k ≥ 1;αk =
∑

i+j=k−1 x
iyj ut

4 Cryptographic Protocols
This section describes some, public-key encryption,
and key establishment schemes. Surveys the state-
of-the-art in algorithms for solving conjugal classical
problem inR, whose intractability is necessary for the
security of R cryptographic schemes.

4.1 Public-key encryption
Definition 7 A public-key encryption scheme consists
of four algorithms:
1) A domain parameter generation algorithm that
generates a set D of domain parameters.
2) A key generation algorithm that takes as input a
set D of domain parameters and generates key pairs

(K, d).
3) An encryption algorithm that takes as input a set
of domain parameters D, a public key K, a plain text
message m, and produces a cipher text c.
4) A decryption algorithm that takes as input the do-
main parameters D, a private key d, a cipher text c,
and either rejects c as invalid or produces a plain text
m. The decryption algorithm always accepts (D, d, c)
and outputs m if c was indeed generated by the en-
cryption algorithm on input (D,Q,m). [4]

4.2 Description of Cryptosystem Based on R

The purpose of a key establishment protocol is to pro-
vide two or more entities communicating over an open
network with a shared secret key. The key may then
be used in a symmetric-key protocol to achieve some
cryptographic goal such as confidentiality or data in-
tegrity. A key transport protocol is a key establish-
ment protocol where one entity creates the secret key
and securely transfers it to the others. We will con-
sider two-party key agreement protocols derived from
the basic Diffie-Hellman protocol. Alice and Bob
chooses a ring R and a secret key: K. The secret
key consists of an invertible element in R. To encrypt
a message m in R, Alice calculate

c = eK(m) = K ∗m ∗K−1∗.

To decrypt a cipher text c, Bob calculate

m = dK(c) = K−1∗ ∗ c ∗K.

Cryptosystem Based on R:
◦ Space of lights: L = R

◦ Space of quantified: C = R

◦ Space of keys: R∗

◦ Function of encryption:∀K ∈ R∗

eK : L → C
m 7→ K ∗m ∗K−1∗

◦ Function of decryption:∀K ∈ R∗

dK : C → L
c 7→ K−1∗ ∗ c ∗K

We have: dKoeK(m) = m.

Definition 8 A public-key encryption scheme E =
(K,E,D) is homomorphic if for all k and all (pk, sk)
output from k, it is possible to define groups M,C so
that:
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1) The plain text space M , and all cipher texts output
by Encpk are elements of C.
2) For any m1,m2 ∈ M and c1, c2 ∈ C with
m1 = Decsk(c1) and m2 = Decsk(c2) it holds that:
Decsk(c1 ∗ c2) = m1 ∗m2

A fully homomorphic encryption scheme can be de-
fined as a tuple of three algorithmsE = (K,E,D) for
which the message space is a ring (R,+, .) and the ci-
pher text space is also a ring (R′,+, .) such that for all
messages m1,m2 ∈ R, and all outputs (pk, sk) ∈ K,
we have:
◦ m1 + m2 = Decsk(Encpk(m1, pk) + Encpk(m2, pk), sk)

◦ m1.m2 = Decsk(Encpk(m1, pk).Encpk(m2, pk), sk)

If E is a symmetric fully homomorphic encryp-
tion scheme, we will have a single key for encryption
and decryption, so the role of pk will be played by sk.
A scheme is supposed to be some what homomorphic
if it permits only a limited number of additions and
multiplications.
The scheme is constructed using the non commuta-
tive ring (R,+, ∗). The secret key consists of a start
invertible element K ∈ R. To encrypt a message
m ∈ R, the cipher text eK(m) is an element c ∈ R
such that: c = eK(m). To decrypt a cipher text c, we
compute: m = dk(c). This cryptosystem is a fully
homomorphic encryption scheme because we have:
◦ eK(m1)+eK(m2) = K ∗m1 ∗K−1∗ +K ∗m2 ∗K−1∗ = eK(m1 +m2)

◦ eK(m1) ∗ eK(m2) = K ∗m1 ∗K−1∗ ∗K ∗m2 ∗K−1∗ = eK(m1.m2)

4.3 Security
The development of quantum computation casts seri-
ous threats to the securities of most existing public-
key cryptosystems. The cryptography based on this
ringR is one of the alternatives that have potential ad-
vantages in resisting quantum attacks. In this paper,
the state of the art of cryptography based on R is sur-
veyed, and then a new cryptographic problemconju-
gate adjoining problem related to R rings is proposed.
Based on this problem, we design a new encryption
scheme. This scheme is efficient and provably se-
cure in the random oracle model. Further, we present
the comparison between new signatures schemes and
RSA-based ones. The signing process of the R rings-
based schemes is more efficient than that of RSA-
based ones, while the verifying process of theR rings-
based ones is observably slow. Hence, R rings-based
signatures are suitable for scenarios where the sign-
ing process has to be as quick as possible but delays
are permitted in the verifying process, for example,
in off-line e-cash systems. The capability of R rings
cryptosystems to resist currently known quantum at-
tacks is also discussed from the perspective of hidden
subgroup problems.

5 Conclusion
The results explained in the previous sections show
that the methode in cryption and decryption on new
Ring R based on the conjugacy search problem for a
noncommutative Ring . This cryptosystem is a fully
homomorphic encryption scheme.
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