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Introduction
First-order predicate logic represents a formal basis
of mathematics. Furthermore, this logic is used in
investigations on artificial intelligence and some ap-
plied branches of formal logic. In this review, we give
a definition to the concept of a model-theoretic prop-
erty that is adequate to real practice of investigations
in model theory. Based on this definition, we char-
acterize two levels of expressive power of first-order
predicate logic. These results can be regarded as an
approach to the solution of a general question of ex-
pressive power of formulas of first-order logic.

0 Preliminaries
We consider theories in first-order predicate logic with
equality and use general concepts of model theory, al-
gorithm theory, constructive models, and Boolean al-
gebras that can be found in [1], [2], and [3]. Spe-
cial concepts used in this paper can be found in [4].
Generally, incomplete theories are considered. In the
work, the signatures are considered only, which ad-
mit Gödel’s numbering of the formulas. Such a sig-
nature is called enumerable. Normally, the notion of
first-order definability is considered in model theory.
Along with this, there is a thinner concept of first-
order ∃∩∀-definability, that is, presentability via for-
mulas that are equivalent to both an ∃-formula and a

∀-formula in the theory.
The following notations are used: FL(σ) is the

set of all formulas of signature σ, FLk(σ) is the set
of all formulas of signature σ with free variables
x0,. ..,xk−1, SL(σ) is the set of all sentences of sig-
nature σ. By GR, we denote graph theory of sig-
nature σGR ={Γ 2} defined by axioms (∀x)qΓ (x,x),
(∀x)(∀y)[Γ (x,y)↔Γ (y,x)], while GRE is an exten-
sion of GR defined by the extra axioms (∃x,y)Γ (x,y)
and (∃x,y)

[
(x 6=y)& qΓ (x,y)

]
.

A finite signature is called rich, if it contains at
least one n-ary predicate or function symbol for n>2,
or two unary function symbols. For signatures σ1 and
σ2, σ1 is covered by σ2, written σ16σ2, if there is a
mapping λ :σ1→σ2 such that we have for all s∈σ1:
(a) s and λ(s) are symbols of the same type (either
predicates, or functions, or constants); (b) arity of s 6
arity of λ(s) whenever s is either a predicate or func-
tion symbol. The following statement takes place for
an arbitrary finite signature σ:

σ is rich ⇔
{P 2}6σ or {f1,h1}6σ or {g2}6σ.

(0.1)

We denote by σ∞ a fixed maximum large enumer-
able signature. Namely, σ∞ contains countably many
constant symbols, symbols of propositional variables,
and predicate and function symbols of each arity n>
1. We use a fixed Gödel numbering Φk, k∈N, for the
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set of sentences of a fixed signature σ, and Φ∞k , k∈N,
for the set of sentences of the infinite signature σ∞.
Let σ be a signature, and Σ be a subset of SL(σ). De-
note by [Σ]σ a theory of signature σ generated by Σ
as a set of its axioms. By [Σ]?, we denote a theory of a
signature σ′⊆σ generated by the set Σ as a set of its
axioms, where σ′ contains only those symbols from
σ that occur in formulas of the set Σ. Based on the
Post numbering of the family of all computably enu-
merable sets Wn, n∈N, [2], we construct an effective
numbering for the classes of all theories. There are
two versions of indices. If a theory T of signature σ
is defined by the axioms {Φi | i∈Wm}, the number
m is called a computably enumerable index or simply
c.e. index of T . Now, let m∈N. Consider the set
of axioms Σ={Φ∞i | i∈Wm} and construct a theory
T = [Σ]?. The number m is called a weak computably
enumerable index or simply weak c.e. index of T . As
for a finitely axiomatizable theory F , it is defined by
a single axiom Φ. A Gödel number n of this sentence
Φ is said to be a Gödel number or strong index of F .

Theories T and S of signatures τ and σ such that
τ ∩σ=∅ are called first-order ∃∩∀-equivalent or al-
gebraically isomorphic, written as T ≈a S, if there is
a theory H of signature τ ∪σ such that T =H � τ ,
S=H �σ; moreover, σ-symbols are ∃∩∀-definable
in H relative to τ -symbols via an effective scheme
of expressions, while τ -symbols are ∃∩∀-definable
in H relative to σ-symbols via an effective scheme
of expressions. The theories T and S are called first-
order equivalent or isomorphic, written as T ≈S, if
similar relations are satisfied with normal first-order
definability instead of ∃∩∀-definability. It is obvious
that T ≈a S ⇒ T ≈S, for all theories T and S.

We introduce a primitive (technical) version of
the concept of a model-theoretic property. Denote by
C the class of all complete theories of arbitrary enu-
merable signatures. By a property of model type, or
model property for short, we mean an arbitrary class p
of complete theories of enumerable signatures that is
closed under isomorphisms of the form

T0≈T1 ⇒ (T0∈p⇔T1∈p), for all T0,T1∈C.

By a property of algebraic type, or algebraic property
for short, we mean an arbitrary class p of complete
theories of enumerable signatures that is closed under
isomorphisms of the form

T0≈a T1 ⇒ (T0∈p⇔T1∈p), for all T0,T1∈C.

We denote by ML the set of all properties of model
type and by AL the set of all properties of algebraic
type. An inclusion ML⊆AL is obvious. A subset
L⊆ML is called a semantic layer of model proper-
ties, while a subset L⊆AL is called a semantic layer

of algebraic properties. The inclusion ML⊆AL en-
sures that any model semantic layer can be regarded
as an algebraic semantic layer.

Let L be a semantic layer of model-theoretic
properties. For theories T and S, an entry T ≡L S
will denote that there is a computable isomorphism
µ :L(T )→L(S) between the Tarski-Lindenbaum al-
gebras of these theories such that, for any complete
extension T ′ of T and corresponding complete exten-
sion S′ of S, S′=µ(T ′), the theories T ′ and S′ have
identical model-theoretic properties within the layer
L. In the case when T ≡L S holds according to this
definition, we say that T and S are semantically simi-
lar under the semantic layer L.

Let µ :L(T )→L(S) be an isomorphism of the
Tarski-Lindenbaum algebra of a theory T of signa-
ture τ in the Tarski-Lindenbaum algebra of a theory
S of signature σ. We can naturally define a corre-
spondence between the extensions of these theories
(including both complete and incomplete theories) by
the following rules:

(a) T ′⊇T 7→ S′⊇S, by rule S′=µ(T ′),

(b) S′⊇S 7→ T ′⊇T, by rule T ′=µ−1(S′).

(0.2)

Lemma 0.1. Let µ be an isomorphism between
L(T ) and L(S). The following statements take place:

(a) the mappings T ′ 7→µ(T ′) and S′ 7→µ−1(S′) de-
fined by the rules (0.2) are mutually inverse to
each other,

(b) for any theory T ′⊇T , T ′ is a complete extension
of T ⇔ µ(T ′) is a complete extension of S,

(c) theory T ′ is an f.a. over T ⇔ theory µ(T ′) is an
f.a. over S,

(d) theory T ′ is a c.a. over T ⇔ theory µ(T ′) is a
c.a. over S,

PROOF. Use methods of Boolean algebras. �

1 Cartesian-type interpretations
We use a simplest concept of an interpretation of a
theory T0 in the region U(x) of a theory T1, [5]. We
use some special classes of interpretations, such as ef-
fective, faithful, auto-free, model-bijective, and isos-
tone interpretations, [6]. In this section, we introduce
a technical class of interpretations presenting finitary
methods in first-order logic.

Given a signature σ and a finite sequence of for-
mulas of this signature of either of the following
forms:

(a) κ= 〈ϕm1
1 /ε1,ϕ

m2
2 /ε2,. ..,ϕ

ms
s /εs〉,

(b) κ= 〈ϕm1
1 ,ϕm2

2 ,. ..,ϕms
s 〉,

(1.1)
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where ϕk is a formula with mk free variables,
εk(ȳk, z̄k) is a formula with 2mk free variables such
that Len ȳk = Len z̄k =mk; moreover, (1.1)(b) is just
a simpler notation instead of the common entry
(1.1)(a) in the case when εk(ȳk, z̄k) coincides with
ȳk = z̄k for all k6s.

Starting from a model M of signature σ together
with a tuple κ of any of the forms (1.1)(a,b), we are
going to construct a new model M1 =M〈κ〉 of signa-
ture

σ1 = σ∪{U1,U1
1 ,U

1
2 ,. ..,U

1
s }∪

{Km1+1
1 ,. ..,Kms+1

s }
(1.2)

as follows. As the universe, we take

|M1|= |M|∪A1∪A2∪ .. .∪As,

where all specified parts are pairwise disjoint sets. On
the set |M|, all symbols of signature σ are defined
exactly as they were defined in M; in the remain-
der, they are defined trivially; predicate U(x) distin-
guishes |M|; predicate Uk(x) distinguishes Ak; the
other predicates are defined by specific rules depend-
ing on the case. In the case (1.1)(b), each predicate
Kk in (1.2) should be defined so that it would rep-
resent a one-to-one correspondence between the set
of tuples {ā |M |=ϕk(ā)} and the set Ak =Uk(M1).
Turn to the most common case (1.1)(a). Denote by
Equiv(εk,ϕk) a sentence stating that εk is an equiva-
lence relation on the set of tuples distinguished by the
formula ϕk(x̄) in M. In this case, (mk+1)-ary pred-
icate Kk should be defined so that it would represent
a one-to-one correspondence between the quotient set
{ā |M |=ϕk(ā)}/ε′k and the set Uk(M1), where

ε′k(ȳ, z̄) =εk(ȳ, z̄)∨ qEquiv(εk,ϕk). (1.3)

The aim of replacement of εk by ε′k using
Equiv(εk,ϕk) is to provide total definiteness of the
operation of an extension M〈κ〉 independently of
whether the formulas εk represent equivalence rela-
tions in corresponding domains or not. In the case
(1.1)(a), M〈κ〉 is said to be a Cartesian-quotient ex-
tension of M, while in the case (1.1)(b), the model
M〈κ〉 is said to be a Cartesian extension of M by a
sequence of formulas κ.

Expand the operation of an extension (initially de-
fined for models) on theories. Given a theory T and
a tuple κ of the form (1.1). Using a fixed signature
(1.2) for extensions of models, we define a new the-
ory T ′=T 〈κ〉 as follows

T ′= Th(K), K={M〈κ〉 |M∈Mod(T )}.

In the case (1.1)(a) it is called a Cartesian-quotient ex-
tension, while in the case (1.1)(b) it is called a Carte-
sian extension of T by a sequence κ.

Normally, we consider passages T 7→T 〈κ〉 for
which the sequence (1.1) satisfies the following tech-
nical condition:

ϕk(x̄k) and εk(ȳk, z̄k) are ∃∩∀-presentable,
for all k6s.

(1.4)

Denote by κD(σ) and κC(σ) the sets of tuples
of formulas of signature σ of the forms, respectively,
(1.1)(a) and (1.1)(b), while κD and κC are unions
of these sets for all possible (enumerable) signatures
σ. We denote by κC∃∩∀ the set of all tuples (1.1)(b)
satisfying (1.4). Furthermore, κD ε

∃∩∀ is the set of all
tuples (1.1)(a) satisfying (1.4).

In theory T 〈κ〉, the region U(x) represents a
model of theory T . Particularly, the transformation
T 7→T 〈κ〉 defines a natural interpretation IT,κ of T
in T 〈κ〉. It is called a special Cartesian-quotient in-
terpretation. Similar definition applies to the other
case of the tuple κ; thereby, the concepts of a spe-
cial Cartesian interpretation is also defined. Con-
sidering theories up to an algebraic isomorphism, we
may use simpler term Cartesian-quotient or, respec-
tively, Cartesian interpretation.

Lemma 1.1. Given a theory T of an enumerable
signature σ and a sequence of formulas κ∈κD(σ).
Special Cartesian-quotient interpretation IT,κ :T�
T 〈κ〉 is effective, faithful, auto-free, model-bijective,
and isostone. In particular, interpretation IT,κ de-
termines a computable isomorphism µT,κ :L(T )→
L(T 〈κ〉) between the Tarski-Lindenbaum algebras.

The following statement is established based on
first-order combinatorial properties of Cartesian ex-
tensions of theories:

Lemma 1.2. The following relation defined on
the class of all theories

T∼'aS⇔dfn

(∃κ′κ′′∈κC∃∩∀)
[
T 〈κ′〉≈a S〈κ′′〉

] (1.5)

is reflexive, symmetric, and transitive (i.e., it is an
equivalence relation).

Further properties of Cartesian-type extensions
of theories and Cartesian-type interpretations can be
found in [6] and [4].

2 Scheme of finitary and infinitary
semantic layers

DEFINITION 2.A. We introduce the following nota-
tions for particular semantic layers that are relevant in
this direction:

(A) ASL = the set of model-theoretic properties
p∈AL preserved by any special Cartesian interpreta-
tion IT,ξ :T�T 〈ξ〉 for an arbitrary computably ax-
iomatizable theory T of an enumerable signature σ
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Fig. 1. A scheme of semantic layers of model-theoretic properties

and an arbitrary finite tuple ξ= 〈ϕ1,...,ϕs〉 of sen-
tences of signature σ satisfying (1.4).

(B) MSL = ASL∩ML.
(C) ACL = the set of model-theoretic properties

p∈AL preserved by any special Cartesian interpreta-
tion IT,ξ :T�T 〈ξ〉 for an arbitrary computably ax-
iomatizable theory T of an enumerable signature σ
and an arbitrary tuple ξ= 〈ϕm1

1 ,. ..,ϕms
s 〉 of formulas

of signature σ satisfying (1.4).
(D) MCL = ACL∩ML.
(E) ADL = the set of model-theoretic proper-

ties p∈AL preserved by any special Cartesian-
quotient interpretation IT,ξ :T�T 〈ξ〉 for an arbi-
trary computably axiomatizable theory T of an enu-
merable signature σ and an arbitrary tuple ξ=
〈ϕm1

1 /ε1,. ..,ϕ
ms
s /εs〉 of formulas of signature σ sat-

isfying (1.4).
(F) MDL = ADL∩ML.
Layer ACL is said to be the (algebraic) Cartesian

semantic layer; it plays the role of a working release
of the finitary semantic layer. By MCL we denote
its model version called the model Cartesian layer.
Layer ADL is said to be the (algebraic) Cartesian-
quotient semantic layer; it plays the role of a max-
imalistic release of the finitary semantic layer. By
MDL, we denote its model version called the model-
type Cartesian-quotient layer.

Fig. 1 presents a scheme of inclusions between
the semantic layers and corresponding similarity re-
lations relevant for first-order combinatorics. Arrows
point out relatively stronger similarity relations and
relatively wider semantic layers of model-theoretical
properties. Two relations ≈ and ≈a in the top are re-
lations of isomorphism of theories, where ≈ means a

model isomorphism or simply isomorphism, while ≈a
means an algebraic isomorphism or ∃∩∀-presentable
equivalence between theories, cf. Preliminaries. Al-
though ≈ and ≈a are not similarity relations, they are
included in the scheme for the sake of completeness.
The entries≡c,≡ac, etc., are short forms for semantic
similarity relations≡MCL,≡ACL with semantic layers
MCL, ACL, etc., that were defined above. The inclu-
sions MDL⊆MCL and ADL⊆ACL are also valid al-
though they are not presented in the scheme in Fig. 1.

The layer MQL consists of the model-theoretic
properties preserved by all interpretations in the class
IQuasi ∪ ICartes between computably axiomatizable
theories, where IQuasi is the set of all quasiexact in-
terpretations, while ICartes is the set of all Cartesian
interpretations. The layer MQL is supported by a reg-
ular version of the universal construction of finitely
axiomatizable theories, [7]. The Hanf layer HL is an
empty set ∅. Corresponding semantic similarity re-
lation ≡∅, alternatively ≡h, is called Hanf’s isomor-
phism because William Hanf was the first investiga-
tor who studied such relations between theories just
in relation to the problem of expressive possibilities
of first-order logic.

3 A definition to the concept of a
model-theoretic property

We are going to discuss approaches to the problem
of classification of complete theories modulo coinci-
dence of their model-theoretic properties. Two com-
plete theories are said to be equivalent if their real
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model-theoretic properties are identical:

T1
MT' T2 ⇔dfn

(∀ real model-theoretic property p)[
T1∈p⇔T2∈p

]
.

(3.1)

Accordingly, any classes of complete theories closed
under MT' are said to be real model-theoretic properties.
Thus, to define the concept of a real model-theoretic
property it is necessary to find available dependencies
(called reasoning) between complete theories of the
following form

T1'x T2 ⇒ T1
MT' T2, (3.2)

that have significance in the practice of working in
model theory.

Two most important reasoning (for complete the-
ories) are:

(a) T ≈aS ⇒ T
MT'S,

(b) T 〈κ〉=S ⇒ T
MT'S, for any κ∈κC∃∩∀.

(3.3)

General significance of the reasoning (3.3)(a) is
obvious. Nevertheless, lots of researchers follow the
naive approach considering any classes of complete
theories, even if they are not closed under isomor-
phisms of theories. To avoid this common irregular
situation, we will assume (by default) that any consid-
ered class of complete theories first should be closed
under algebraic isomorphisms of theories by the rule

p 7→ p∗= [p]≈a =

{T ∈C | (∃T ′∈p)[T ≈a T ′ ]}.
(3.4)

This correction rule is said to be a normalization pre-
stage of the definition we are going to introduce.

Now, we give a generic definition to the concept
of a model-theoretic property.

DEFINITION 3.A. [GENERIC DEFINITION OF A

MODEL-THEORETIC PROPERTY].
Initially, we have to point out a set of relations of

reasoning of the form (for complete theories)

'(i)
x , i∈ I (3.5)

that we intend to accept as a basis of the definition.
The relation MT', cf. (3.1), will be presented by the re-
lation '∗x obtained by the operation of closure of the
system of relations (3.5) up to an equivalence rela-
tion. Accordingly, the class of all real model-theoretic
properties will be presented by the following expres-
sion:

AreaL ={p⊆C | p is closed under '∗x}. (3.6)

To check up, whether a set p⊆C is a model-
theoretic property, first, a normalization pre-stage p 7→
p∗ should be performed; then, the condition p∗∈
AreaL is to be checked. If the result is positive, we
qualify p as a real model-theoretic property; more-
over, a specifying term ”p is a model-theoretic prop-
erty up to closure under isomorphisms” may be used.
Otherwise, if the test p∗∈AreaL fails, p is qualified as
a class that is not a real model-theoretic property.

End of the definition.
Notice that, an inverse dependence of the set of

real model-theoretic properties on the accepted set
of reasoning '(i)

x , i∈ I takes place. Indeed, let the
pointed out set defines an equivalence relation '∗x
playing the role of the relation MT', thus, defining the
layer AreaL. Assume that, as the base for a new defini-
tion, some larger set of reasoning '(i)

x , i∈ I , I ⊇ I ,
is taken. It is obvious that the inclusion'∗x⊆'x must
take place; i.e., each class of the new equivalence 'x
consists of a number of classes of the initial equiva-
lence '∗x. Thereby, we have AreaL ⊆AreaL because
AreaL consists of the sets of complete theories closed
under equivalence 'x having larger classes in com-
parison with those of the initial equivalence '∗x.

The following (pragmatic) variant of the defini-
tion is accepted as preferable:

Reference Block P -version of Def. 3.A (3.7)
As a set of reasoning, we accept the relation

(3.3)(a) together with a series of relations (3.3)(b)
for all κ∈κC∃∩∀. The relation ≈a on the class of
all complete theories defined by expression (1.5) in
Lemma 1.2 is the closure of this system of relations.
Thus, within this approach, relation MT' coincides with
≈a. Accordingly, in view of the scheme of seman-
tic layers in Fig. 1, we obtain the following chain of
inclusions:

AreaL = ACL⊆ASL⊆AL. (3.8)

By default, we also suppose that, to check Definition
3.A for a set p⊆C, a normalization transformation
(3.4) should be performed initially.

End Ref

An important statement concerning different ver-
sions of Definition 3.A.

Lemma 3.1. Suppose that a variant α of defini-
tion of a real model-theoretic property is given with
reasoning consisting of the relation (3.3)(a) and a se-
ries of relations (3.3)(b) for all κ∈κC∃∩∀ together
with a definite set of additional relations of the form
(3.2). Then, the following chain of inclusions takes
place:

AideaLα⊆AreaLα⊆ACL⊆ASL⊆AL, (3.9)
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where the ideal semantic layer AideaLα corresponds
to the potential possibility of an extension of the ac-
cepted system of reasoning α with some new rules of
the form (3.2) that can appear and could be accepted
in the future within the system α.

PROOF. From the principle of inverse dependence
we mentioned earlier. �

The following systems of reasoning to the defini-
tion of the concept of a real model-theoretic property
are possible. Let an arbitrary set p⊆C be given. At
the naive approach, any set of complete theories is
considered as a model-theoretic property; the primi-
tive approach, cf. Preliminaries, requires that p should
be closed under isomorphisms of theories; the prag-
matic approach, cf. (3.7), requires that p is closed
under isomorphisms, Cartesian extensions, and back
transitions in the operation of Cartesian extensions
of theories; at last, the maximalistic approach re-
quires that p is closed under isomorphisms, Cartesian-
quotient extensions, and back transitions in the opera-
tion of Cartesian-quotient extensions of theories, i.e.,
the reasoning T 〈κ〉=S ⇒ T

MT'S, for all κ∈κD ε
∃∩∀,

is accepted that is wider in comparisons with (3.3)(b).

We list a few comparison statements characteriz-
ing different approaches. Main results concerning ex-
pressive possibilities of first-order logic are obtained
based on the operation of Cartesian extensions of the-
ories generating the reasoning (3.3)(b); thus, addi-
tion of reasoning with Cartesian-quotient extensions
of theories would be superfluous since it leads to rela-
tively smaller semantic layer of model-theoretic prop-
erties in view of the principle of inverse dependence.
It is also of importance that the operation of Carte-
sian extensions of theories is more adequate to gen-
eral model theory whereas Cartesian-quotient exten-
sions have a more algebraic accent. As for the max-
imalistic approach, its motivation is an idea to reach
a maximum fundamental significance based on the
Cartesian-quotient extensions of theories representing
the class of all finitary first-order methods even de-
spite definite decreasing of the semantic layer of con-
trolled model-theoretic properties.

Notice that, some other approaches to the defini-
tion of the concept of a real model-theoretic property
are possible which can be based on other principles
different from those accepted within the scheme we
have described. For comparison of our approach with
the other potentially possible ones, some discussion is
required concerning advantages and lacks of each of
the alternative approaches.

4 Signature reduction procedures
jointly with the universal construc-
tion

The works of L. Kalmar [8], R.L Vaught [9, Sec.4],
and W.Hanf [10] represent earlier signature reduction
methods between first-order theories. In this section,
we describe three possible type of signature reduction
procedures based on a collection of special transfor-
mations between theories. We call them elementary
transformations or stages. Actually, these transforma-
tions represent known in the common practice signa-
ture reduction methods. Full scheme of interaction be-
tween the elementary stages is shown in Fig. 2. There
are three entries and a single exit in the scheme.

Now, we turn to the further details.
4.1 Finite-to-finite signature reduction proce-

dure. A theory of an arbitrary finite signature is trans-
formed into a theory of any pre-specified finite rich
signature. This type of transformation is realized via
an Entry1 in the scheme in Fig. 2.

First, we formulate the main statement in a com-
pact form:

Theorem 4.1. [Finite-to-finite signature reduction
statement: a compact form] Given two finite rich sig-
natures σ1 and σ2. Effectively in their Godel num-
bers, it is possible to construct a sequence of formu-
las κ= 〈ϕm1

1 ,...,ϕms
s 〉 of signature σ1 satisfying (1.4)

and a sentence ψ of signature σ2 together with an al-
gebraic isomorphism PC(σ1)〈κ〉≈a PC(σ2)[ψ].

Now, we give an extended form of the same state-
ment. By σFinRich, we denote the set of all finite rich
signatures, TSφ denotes the set of all theories of arbi-
trary finite signatures, while ICartesφ denotes the set
of all Cartesian interpretations between the theories of
finite signatures.

Theorem 4.2. [Finite-to-finite signature reduction
procedure: a common form] It is possible to deter-
mine a finite-to-finite signature reduction procedure,
also called a finite signature transformation. It is pre-
sented by a mapping of the form

Redu : TSφ×σFinRich → TSφ× ICartesφ

satisfying all demands specified in the following state-
ment:

Let T be a theory of a finite signature τ and σ be
an arbitrary finite rich signature. Applying the map-
ping Redu we obtain

Redu(T,σ) = (S,I),

where S is a theory of signature σ, while I is an inter-
pretation of T in S, such that the following assertions
are satisfied:

Reference Block (4.1)
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Fig. 2. Signature reduction procedures and the universal construction

(a) I is an ∃∩∀-presentable Cartesian interpreta-
tion of theories (thereby, the interpretation I
defines a computable isomorphism µ :L(T )→
L(S) preserving model-theoretic properties of
the semantic layer ACL ),

(b) T is c.a. ⇔ S is c.a.; in the case when T is a c.a.
theory, c.e. indices of both S and I are found
effectively in a pair of parameters consisting of
a c.e. index of the input theory T and a Gödel
number of the target finite rich signature σ,

(c) T is f.a. ⇔ S is f.a.; in the case when T is a f.a.
theory, both a Gödel number of S and a c.e. index
of I are found effectively in a pair of parameters
consisting of Gödel numbers of the input theory
T and the target finite rich signature σ.
End Ref

A SKETCH OF PROOF to Theorem 4.1. For the
sake of simplicity, we prove the following more com-
mon statement:

(∃κ∈κC∀∩∃ effectively in σ1 and σ2)(
∀f.a. theory T ⊇PC(σ1)

)(
∃f.a. theory S⊇PC(σ2)

)[
T 〈κ〉≈a S

]
.

(4.2)

Then, Theorem 4.1 is a particular case of the statement
(4.2) with T = PC(σ1).

We start to prove (4.2). Given two finite rich sig-
natures σ1 and σ2 together with a finitely axiomatiz-
able theory T of signature σ1. Our purpose is to de-
scribe a procedure of reduction of the theory T to a
theory of the pre-specified finite rich signature σ2.

Based on the property (0.1), we organize a signa-
ture reduction procedure consisting of two parts. In
the first part, a reduction to any of three following
”minimal” finite rich signatures

ρ′={P 2}, ρ′′={f1,h1}, ρ′′′={g2} (4.3)

is performed, while in the second part, a routine pas-
sage from either ρ′ or ρ′′ or ρ′′′ to the demanded finite
rich signature σ2 is performed depending on which of
the cases ρ′6σ2 or ρ′′6σ2 or ρ′′′6σ2 takes place.

For the finite-to-finite case of reduction, we use a
natural set of transformations of theories consisting of
five elementary transformations acting along the pas-
sage 1-x-e in Fig. 2. Their short specifications are de-
scribed below:

finsig-to-fP — a transformation from a theory of
a finite signature to a theory of a finite pure predicate
signature with predicates of arity >1. An n-ary func-
tion f(x1,...,xn) is replaced by a (n+1)-ary predi-
cate presenting graphic of the function; a constant c
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is replaced by a unary predicate distinguishing an ele-
ment presenting the constant. Additionally, we should
replace each nulary predicate by a unary one. This
transformation defines an algebraic isomorphism of
theories.

fP-to-Graph — a transformation from a theory
of a finite pure predicate signature with predicates of
arity >1 to an extension of special graph theory GRE
of signature {Γ 2}, cf. Stage FG in Theorem 5.10.1 in
[7]. This transformation is a Cartesian extension of a
theory, thus, it defines a Cartesian interpretation.

Graph-to-2u — a transformation from a theory
of signature {Γ 2} which is an extension of special
graph theory GRE to a theory of signature with two
unary functions; cf. Case 2 in Lemma 5.10.1 in [7].
This transformation is a Cartesian extension of a the-
ory, thus, it defines a Cartesian interpretation.

Graph-to-1b — a transformation from a theory
of signature {Γ 2} which is an extension of a special
graph theory GRE to a theory of signature with one
binary function; cf. Case 1 in Lemma 5.10.1 in [7].
This transformation is a Cartesian extension of a the-
ory, thus, it defines a Cartesian interpretation.

Enrich — a transformation from a theory of a sig-
nature matching one of the three cases (4.3) of a min-
imal finite rich signature to a theory of a given finite
rich signature; cf. StageGL in Table 5.8.1 in [7]. This
transformation is an isomorphism of theories (notice
that, a problem to assign values to constants possi-
ble in the target signature σ2 is regularly solvable be-
cause the extension of Graph theory GRE preceding
the stage Enrich has at least one distinguished ele-
ment).

Fig. 2 represents a scheme of successive actions
of the elementary transformations. We use circled dig-
its and letters to point out some intermediate points in
order to explain different variants of traversal through
the scheme. Entry1 of the scheme requires, as an in-
put, a theory of a finite signature and yields an output
theory of the demanded finite rich signature σ2. We
define Redu as a composition of transformations of
theories along the passage 1-x-e in the scheme shown
in Fig. 2. Each elementary stage is a Cartesian ∃∩∀-
presentable interpretation. Thereby, the full passage
that is a composition of these separate stages is also
an a Cartesian ∃∩∀-presentable interpretation.

Theorem 4.1 is proved. �
Theorem 4.2 is easily deduced from Theorem 4.1

by applying elementary methods of c.e. Boolean al-
gebras together with the properties of correspondence
(0.2) considered in Lemma 0.1. �

Give a complementary statement.
Lemma 4.3. Finite-to-finite signature reduction

procedure we have described in Theorem 4.1 and The-
orem 4.2 represents a particular case of the operation

of a Cartesian extension of a theory.
Moreover, interpretation I involved in the exten-

sion have the following properties:
(a) I preserves all model-theoretic properties

within the layer ACL,
(b) I preserves all model-theoretic properties

within the real layer AreaL,
(c) in general case, the finite-to-finite signa-

ture reduction procedure does not preserve, both
locally and globally, model-theoretic properties
of ∃∀-axiomatizability, ∀-axiomatizability, and ∃-
axiomatizability; i.e., in some cases, these properties
are not preserved by the procedure Redu.

PROOF. Immediately, from proofs of Theorem
4.1 and Theorem 4.2. �

4.2 Infinite-to-finite signature reduction proce-
dure. A theory of an arbitrary enumerable signature
is transformed into a theory of any pre-specified finite
rich signature. This type of signature reduction proce-
dure is defined via an Entry2 in Fig. 2. It is realized
by the stages acting along the passage 2-u-e including
those listed in Subsection 4.1 together with two addi-
tional transformations whose short specifications are
presented below:

anysig-to-iP — a transformation from a theory
of an arbitrary enumerable signature (either finite or
infinite) into a theory of an infinite pure predicate sig-
nature with predicates of arity >1; it is analogous to
stage finsig-to-fP, but with addition a countable set
of new trivially defined (dummy) predicates. A thin
point is that, if an input theory is c.a. and is given by
its weak c.e. index, the output theory is presented by
a normal c.e. index. This transformation defines an
algebraic isomorphism of theories.

iP-to-Graph — a transformation from a theory of
an infinite pure predicate signature with predicates of
arity >1 to an extension of graph theory GRE of sig-
nature {Γ 2} (main stage of the infinite-to-finite signa-
ture reduction procedure); cf. Stage IG in Theorem
5.9.1 in [7]. This transformation defines a quasiexact
interpretation of theories.

We note an effective version of the infinite-to-
finite signature reduction procedure:

Theorem 4.3. Given a c.a. theory T and a fi-
nite rich signature σ2. Effectively in a weak c.e. in-
dex of T , one can construct a c.a. theory S of sig-
nature σ2 together with a quasiexact interpretation
I :T�S; in particular, the interpretation I defines
a computable isomorphism µ :L(T )→L(S) preserv-
ing model-theoretic properties of the infinitary seman-
tic layer MQL.

PROOF. Stage iP-to-Graph preserves layer MQL
included in the layer ACL, cf. Fig. 1, that is preserved
by the other stages in the passage 2-u-e in Fig. 2. �

4.3 Transformation of theories for the universal
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construction. A c.a. theory of an arbitrary enumerable
signature given by its weak c.e. index is transformed
into a f.a. theory of any pre-specified finite rich sig-
nature yielding its Godel number. This type of trans-
formation is defined via an Entry3 in Fig. 2. It is
realized by the stages acting along the passage 3-w-e
including those listed in Subsection 4.1 and Subsec-
tion 4.2 together with the following additional trans-
formation:

CA-to-FA — a transformation from a computably
axiomatizable theory of signature {Γ 2} extending
graph theory GRE into a finitely axiomatizable theory
of a finite pure predicate signature (main stage of the
universal construction); cf. Stage GF in Table 5.8.1
and Theorem 6.1.1 in [7]. An input theory is given by
its c.e. index, while the output theory is presented by
its Godel number. A standard release of this transfor-
mation defines a quasiexact interpretation of theories,
thus, preserving the layer MQL. Notice that, there are
simplified versions of the stage CA-to-FA preserving
some proper sublayers of MQL.

We formulate the universal construction designed
from the stage CA-to-FA:

Theorem 4.4. Given a c.a. theory T and a
finite rich signature σ2. Effectively in a weak c.e.
index of T , one can construct a f.a. theory F of
signature σ2 together with a quasiexact interpreta-
tion I :T�S; in particular, the interpretation I de-
fines a computable isomorphism µ :T→F preserving
the infinitary semantic layer MQL of model-theoretic
properties (having a simplified version of the stage
CA-to-FA, the layer of controlled properties will be
smaller ).

PROOF. Stages iP-to-Graph and CA-to-FA pre-
serve layer MQL included in layer ACL, cf. Fig. 1, that
is preserved by the other stages in the passage 1-w-e
in Fig. 2. �

REMARK 4.5. The works [11] and [4] describe
a comparison method for semantic layer that is based
on a representative list of model-theoretic properties.
Applying this method, we can check that the power
of the infinite-to-finite signature reduction procedure
coincides with that of the universal construction, cf.
Theorem 4.3 vs. Theorem 4.4. Any version of the uni-
versal construction can be considered as an advanced
release of the infinite-to-finite signature reduction pro-
cedure. Thus, it would be unreal to expect that the
former one can be more powerful in comparison with
the latter one. This observation gives an informal sub-
stantiation to the fact that the power of an available
standard version of the universal construction, [7], is
actually maximum possible.

We should note that simple versions of the uni-
versal construction could also be useful. Indeed, high
complexity of the universal construction represents a

certain psychological barrier while studying results
obtained on the base of this construction. The fact
of availability of a mini-version of the universal con-
struction that is more accessible for studying could re-
duce this barrier. Hereafter, we suppose that a fixed
release of the universal construction is accepted, de-
noted by U, that can control the following sublayer

MQL⊆MQL (4.4)

of the infinitary layer MQL. An example of a mini-
version of the universal construction that is more sim-
ple in studying can be found in [12].

REMARK 4.6. Statement of Remark 4.5 estab-
lishes a close connection between the main stage of
the infinite-to-finite signature reduction procedure and
that of a standard release of the universal construction.
This gives a good possibility to introduce a clear (un-
derstandable) definition to the concept of a quasiex-
act interpretation. First, we have to design a proof
to the stage iP-to-Graph describing in detail proper-
ties of the involved interpretation I ensuring preser-
vation of model-theoretic properties in infinitary se-
mantic layer. After that, we have to extract a com-
mon description of the interpretation I such that it
would be appropriate to both stages iP-to-Graph and
CA-to-FA.

5 Virtual isomorphisms between the
undecidable predicate calculi

The concept of a virtual extension of a theory can be
found in [4] and [13]. We present the following state-
ment:

Theorem 5.1. Let σ1 and σ2 be arbitrary fi-
nite rich signatures. There are sequences κ1 and
κ2 of formulas of the form (1.1)(b) in appropriate
signatures satisfying (1.4) such that PC(σ1)〈κ1〉≈a
PC(σ2)〈κ2〉.

By using presentation of invertible multi-dimen-
sional quotient interpretations via Cartesian-quotient
extensions of theories, Lemma 6.8(a) in [6], we ob-
tain that the main result of the work [14] represents a
weak version of Theorem 5.1 with κ1,κ2∈κD and
≈ instead of ≈a.

By applying Theorem 5.1, we can establish the
following fact:

Corollary 5.2. Let σ1 and σ2 be finite
rich signatures. There exists a computable iso-
morphism µ:L(PC(σ1))→L(PC(σ2)) that preserves
model-theoretic properties from the semantic layer
ACL (thereby, µ preserves all available model-
theoretic properties). Moreover, µ preserves glob-
ally the following general-model properties: decid-
ability, computable axiomatizability, to be a theory of
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a given degree of unsolvability, finite axiomatizability,
and Πn-axiomatizability, for any fixed n>2.

The part stating preservation globally of Πn-
axiomatizability, n>2, gives the positive answer to
an open question asked by V. L. Selivanov in 2007.

6 Semantic types of theories and op-
erations on them

From the point of view of a semantic layer L, any
computably axiomatizable theory T can be character-
ized by a 3-tuple

(
L(T ),γ,ξ

)
, where

(
L(T ),γ

)
is its

Tarski-Lindenbaum algebra with a Gödel numbering,
while ξ is a mapping from the Stone space St(L(T ))
into the power-set P(L)={K|K⊆L} which is de-
fined as follows: for any T ′ in St(L(T )) that is
a complete extension of T , we put ξ(T ′)={p∈L |
T ′ has the property p}. As a matter of fact, so defined
3-tuple =L(T ) = (L(T ),γ,ξ) represents a full abstract
exposition of T in terms of the semantic layer L. We
call this tuple generalized Tarski-Lindenbaum algebra
of the theory T under the semantic layer L.

Generalizing the situation, we introduce a special
class of objects to present isomorphism types of the
generalized Tarski-Lindenbaum algebras under a se-
mantic layerL of model-theoretic properties. Namely,
consider an arbitrary 3-tuple of the form B=(B,ν,ξ),
where (B,ν) is a c.e. Boolean algebra, while ξ is a
mapping from Stone space St(B) into the power-set
P(L). So defined 3-tuple (B,ν,ξ) is called an abstract
semantic L-type, or simply a semantic type.

Let B1 = (B1,ν1,ξ1) and B2 = (B2,ν2,ξ2) be two
abstract semantic types under a semantic layer L.
The types B1 and B1 are called computably isomor-
phic or equivalent, written B1≡LB2, if there is a
computable isomorphism µ : (B1,ν1)→ (B2,ν2) such
that for any ultrafilter F1∈St(B1) and correspond-
ing ultrafilter F2∈St(B2), F2 =µ(F1), the equality
ξ1(F1) = ξ2(F2) takes place.

Let T be a theory and L be a semantic
layer. Consider generalized Tarski-Lindenbaum alge-
bra (L(T ),γ,ξ) of T under the semantic layer L. If
B is a semantic type satisfying (L(T ),γ,ξ)≡LB, we
say that T has the semantic type B under L, or that
the semantic type B is presented (realized) in T un-
der L. By =L(T ), we denote the semantic type of a the-
ory T under the full semantic layer AL, while =LL(T )
stands for the semantic type of T under a semantic
layer L⊆AL.

One can see that the concept of a semantic type
together with the equivalence relation for such objects
are in exact correspondence with the relation of se-
mantic similarity of theories under a semantic layer.
Namely, the following statement takes place:

Lemma 6.1. Let T and S be theories of enumer-
able signatures and L be a semantic layer. Then, the
following assertions are equivalent:

(a) T and S are semantically similar under L,
(b) =L(T )≡L =L(S).
PROOF. Immediately, from definitions. �
Let B be an abstract semantic type. The type B

is said to be finitely axiomatizable or F-type, if B is
realized in a finitely axiomatizable theory; B is com-
putably axiomatizable or E-type, if B is realized in a
computably axiomatizable theory.

Lemma 6.2. Any E-type under the layer MQL⊆
MQL, cf. (4.4), is an F-type under MQL.

Given a semantic layer L⊆AL. Let a seman-
tic type B be presented in computably axiomatizable
theory with a c.e. index n. In such case, the num-
ber n is called an E-index of this type B, symboli-
cally B=E {n}. Similarly, if a type B is presented in
finitely axiomatizable theory defined by a Gödel num-
ber n, the number n is called an F-index of this type
B, symbolically B=F {n}.

Define the operation of a direct product of two
semantic types.

Let two semantic types T1 = (B1,ν1,h1) and
T2 = (B2,ν2,h2) be given under a layer L. Define
some new semantic type

T= (B,ν,h)=(B1,ν1,h1)⊗(B2,ν2,h2) =T1⊗T2

under the layer L as follows. We put (B,ν)=
(B1,ν1)⊗(B2,ν2), while the assignment function h is
determined by the rule

h(F)=

{
h1(F), if F∈St(B1),
h2(F), if F∈St(B2).

So defined operation T1⊗T2 is called direct product
of semantic types T1 and T2, while the function h is
called direct product of functions h1 and h2, using for
this entry h=h1⊗h2.

Now, we introduce a natural operation of the di-
rect product of a sequence of semantic types. Let
Bn= (Bn,νn,ξn), n∈N, be a sequence of semantic
types under a semantic layer L, and P be a complete
theory of an enumerable signature that is used as an
additional parameter in the operation.

Define a new semantic type

(B,ν,ξ)=
⊗[P ]

n∈NBn=
⊗[P ]

n∈N
(
Bn,νn,ξn

)
as follows. We put (B,ν)=

⊗
n∈N(Bn,νn), while the

assignment operation ξ is determined by the following
rule

ξ(F)=

{
ξn(F), if F∈St(Bn), n∈N,
prop(P ), if F= F̂=Filter{−1i | i∈N},
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where prop(P ) is the set of model-theoretic proper-
ties associated with the complete theory P . The idea
of the assignment function in the operation

⊗
for a

sequence of semantic types is based on the following
algebraic relation for the Boolean algebras

St(
⊗

i∈NBi) =
⋃
i∈NSt(Bi)∪{F̂}.

7 Generalized Tarski-Lindenbaum
algebra of undecidable predicate
calculi

Now, we turn to principal statements characterizing
the globalization structure of first-order predicate cal-
culus of a finite rich signature under finitary and in-
finitary semantic layers in the form of some explicit
formulas.

Remember notations introduced in this article:
• AL is the layer consisting of all model-theoretic

properties of both model and algebraic types, cf.
Preliminaries,

• ACL is the Cartesian semantic layer playing the
role of a working release of the finitary semantic
layer, cf. Section 2,

• MQL is the model quasiexact layer alternatively
called the infinitary semantic layer cf. Section 2,

• MQL is a fixed sublayer of MQL supported by an
accepted release of the universal construction as
it was established in (4.4),

• PC(σ) is the predicate calculus of signature σ
considered as a first-order theory (defined by an
empty set of axioms),

• (L(PC(σ)),γ,ξ) is the generalized Tarski-
Lindenbaum algebra of predicate calculus
PC(σ); where γ is a fixed Gödel numbering
of the set of sentences of signature σ, while
ξ : St(PC(σ))→P(AL) is the mapping assign-
ing model-theoretic properties to complete
extensions of the theory PC(σ),

• F {n} is the finitely axiomatizable semantic type
with an index n,

• E {n} is the computably axiomatizable semantic
type with an index n,

• The concept of an f -dense theory: a theory P of
a finite signature σ is said to be f -dense under a
semantic layer D if the following properties are
satisfied: (a) theory P is complete and decidable,
(b) for any Φ∈SL(σ) satisfying P `Φ, a sen-
tence Ψ ∈SL(σ) and a computable isomorphism
µ can be found, satisfying the following proper-
ties: P ` qΨ , `Ψ→Φ, and =L([Ψ ]σ)≡D =L(GRE)

by means of µ; moreover, both a Gödel number
of Ψ and an index of the isomorphism µ are found
effectively from a Gödel number of the sentence
Φ,

• The concept of an inf-dense theory is a general-
ization of the concept of an f -dense theory with
using computably axiomatizable theories instead
of finitely axiomatizable ones (details do not mat-
ter in this work).

We formulate the principal statement of the paper.
Theorem 7.1. [GLOBALIZATION THEOREM FOR

FIRST-ORDER LOGIC] Let σ be a finite rich signature,
and

=L
(
PC(σ)

)
=
(
L(PC(σ)),γ,ξ

)
be the semantic type of the predicate calculus of sig-
nature σ. LetL andK be semantic layers s.t. L⊆ACL
andK⊆MQL, P be an f-dense theory under the layer
L, and R be an inf-dense theory under the layer K.
An extra demand K⊆L is also accepted in Part (C)
involving both layers L and K.

The following assertions take place:
(A) [FINITARY GLOBALIZATION] The following

presentation takes place:

=L(PC(σ))≡LBACL
fin =dfn

⊗[P ]

n∈NF {n}, (7.1)

(B) [INFINITARY GLOBALIZATION] The following
presentation takes place:

=L(PC(σ))≡KBMQL

inf =dfn
⊗[R]

n∈NE {n}, (7.2)

(C) [INTERFERENCE] Any computably axiomatiz-
able semantic type under L is finitely axiomatizable
under K. Moreover, there are total computable func-
tions q(n) and v(n,t), such that q is a permutation
of the set N, and the following similarity relations are
held for all n∈N :

E {n}≡K F {q(n)}; moreover, the function
(λt)v(n,t) presents an isomorphism
corresponding to this similarity relation.

(7.3)

Thereby, for an arbitrary f-dense under K theory S
(that must automatically be inf-dense under K ), the
following similarity relation is satisfied⊗[S]

n∈NE {n}≡K
⊗[S]

n∈NF {q(n)}, (7.4)

such that corresponding Hanf’s isomorphism µ maps
member E {n} onto member F {q(n)} for all n∈N,
while a particular ultrafilter in the left-hand side of
(7.4) is mapped onto a particular ultrafilter in the
right-hand side,
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(D) [FINITARY ADD/OMIT MEMBERS] Given an
arbitrary F-type B′ under the layer L and an inte-
ger k0>0. We have

BACL
fin =

⊗[P ]

n<ωF {n}≡L
B′⊗

⊗[P ]

k06m<ω
F {m};

(7.5)

more precisely: having omitted a few product mem-
bers and attached an extra member in the sequence
involved in the operation (7.1), it is possible to de-
fine a computable isomorphism µ between the latter
semantic type and the changed one, such that, a par-
ticular ultrafilter from the left-hand side of (7.5) is
linked by µ with that available in the right-hand side
of (7.5),

(E) [INFINITARY ADD/OMIT MEMBERS] Given an
arbitrary E-type B′′ under the layerK and an integer
k0>0. We have

BMQL

inf =
⊗[R]

n<ωE {n}≡K
B′′⊗

⊗[R]

k06m<ω
E {m};

(7.6)

more precisely: having omitted a few product mem-
bers and attached an extra member in the sequence
involved in the operation (7.2), it is possible to de-
fine a computable isomorphism µ between the latter
semantic type and the changed one, such that a par-
ticular ultrafilter from the left-hand side of (7.6) is
linked by µ with that available in the right-hand side
of (7.6),

(F) [EFFECTIVENESS] Transformations presented
in the parts of this theorem are realized effectively in
Gödel’s numbers and/or c.e. indices of the objects
involved in the construction. We can effectively find
Gödel numbers and/or c.e. indices of all further ob-
jects appeared in the construction, such as c.e. index
of a function, Gödel number or c.e. index of a se-
mantic type, c.e. index of a computable sequence of
semantic types, etc.

8 Main applications of the Global-
ization Theorem

We show that the localized statements are immediate
consequences of the globalization formulas.

Theorem 8.1. Statement presenting the finite-
to-finite signature reduction procedure, cf. Theorem
4.1 and Theorem 4.2, is an immediate consequence of
Globalization Theorem 7.1 (A).

Theorem 8.2. An accepted version of the univer-
sal construction controlling the layer (4.4), cf. The-
orem 4.4, is an immediate consequence of Globaliza-
tion Theorem 7.1(C).

One more important application of Globalization
Theorem.

The pseudo-indecomposability property was in-
troduced due to Hanf [15], who considered this con-
cept for the class of pure Boolean algebras. As an im-
portant application of the globalization formulas, we
are going to study a version of this property expanded
on the class of semantic types.

A semantic type B under a semantic layer L is
said to be pseudo-indecomposable, if for any b∈B,
either B[b] or B[−b] is equivalent to B. A type B
is said to be effectively pseudo-indecomposable if it is
pseudo-indecomposable and, effectively in the Godel
number of an element a∈|B|, one can solve which
of the two types B[b] or B[−b] is isomorphic to B;
moreover, it is possible to get an index of correspond-
ing isomorphism.

Theorem 8.3. Let σ be a finite rich signature and

B∗==L
(
PC(σ)

)
=
(
L(PC(σ)),γ,ξ

)
be the generalized Tarski-Lindenbaum algebra of the
predicate calculus of signature σ under the layer AL.
Then, B∗ is effectively pseudo-indecomposable under
any semantic layer L⊆ACL.

PROOF. Immediately from the decomposition
(7.1) in Theorem 7.1. �

Conclusion
William Hanf in [16] has solved the known problem
of Alfred Tarski about the isomorphism type of the
Tarski-Lindenbaum algebra of predicate calculus of
a finite rich signature. Historical background of the
Tarski problem is discussed in the works [17], [16],
[18], [19], [14], [20], and [7]. Results of this review
solve a generalized Tarski problem characterizing the
Tarski-Lindenbaum algebra of any predicate calcu-
lus of a finite rich signature with the description of
model-theoretic properties of complete extensions of
the predicate calculus. As an immediate consequence,
we can obtain most of the currently available results
on expressive power of first-order logic. A new ex-
tended and advanced edition of the book [7] is pre-
pared to publication that includes both the new results
based on the two levels of expressiveness of first-order
logic and a new clearer definition to the concept of a
quasiexact interpretation (by the scheme presented in
Remark 4.6) together with an advanced exposition of
the universal construction

Cartesian extensions and finite-to-finite signature
reduction procedures are examples of methods of fini-
tary first-order combinatorics, while infinite-to-finite
signature reduction procedures and an available ver-
sion of the universal construction of finitely axiomati-
zable theories are examples of methods of infinitary
first-order combinatorics. From this point of view,
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methods and results of [16] and [21] correspond to the
infinitary level of expressiveness of first-order logic.
On the other hand, methods and results of [18], [19],
[14], and [22] correspond to the finitary level of ex-
pressiveness of this logic. These two groups of works
are based on different approaches, and both deserve
to be studied independently, possibly, supplemented
by their comparison and benchmarking.

Summing up, it is possible to say that the def-
inition of the concept of a model-theoretic property
together with its application to the globalization for-
mulas can be regarded as an attempt to solve the gen-
eral question of expressive power of formulas of first-
order logic. The results can be of interest in pure logic
and model theory as well as in applied logic and some
branches of computer science.
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