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Dept. of Physics and Math.
Campus de Alcalá de Henares
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Abstract: Multiresolution algorithms are used in several applications in order to attain data compression, denoising
or computional time reduction in algorithms dealing with large data. Our objective is to introduce nonlinear
reconstructions in the N-dimensional case and compare their performances when applied with and without error
control algorithms. This paper describes then the N-dimensional multiresolution algorithms with and without error
control strategies in discrete point values as a generalization to N dimensions of the work done in this direction, see
[13], [14], [11], [2], [16]. Some numerical experiments are included to exemplify the utility of these algorithms.
In the results it can be observed that nonlinear stable methods improve their linear counterparts in presence of
discontinuities in the data. Even non-stable nonlinear methods can overcome the instabilities and get better results
than linear ones when used with error control.
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1 Introduction

Multiresolution algorithms have been proved to be
useful tools in several fields such as signal process-
ing, and in particular in image compression and de-
noising. And why have they reached so high popu-
larity? The answer is quite simple: they give fast and
easy to program algorithms and good performances in
relation to other classical approaches such as Fourier
based methods.

Given the data vector fL = (fL1 , . . . , f
L
j , . . .)

where L indicates the resolution level, one can de-
fine a new representation of the original data fL as
the sequence given by {f0, d1, . . . , dL} where fk is
an approximation of fL at resolution k < L and dk+1

represents the details needed to recover fk+1 from fk.
The number of elements in the set {fk, dk+1} is equal
to that of fk+1 and therefore the same fact occurs be-
tween the sets {f0, d1, . . . , dL} and fL. Besides this,
it is immediate to get the decoding for a given coding
algorithm.

Inside the vast variety of multiresolution algo-
rithms, one can differentiate between linear and non-
linear ones. Wavelet decompositions are important
examples of linear algorithms. They are extensively
used for different purposes, for example in signal
analysis ([2], [15]) and in the solution of some par-
tial differential equations, since they lead to the solu-
tion of well-conditioned linear systems of equations
and to computationally fast algorithms. The perfor-

mance of wavelets in the presence of non-smooth data
is limited as it is well known, and this fact comes from
their intrinsic linear nature. Many nonlinear possible
alternatives such as ridgelets, bandelets and curvelets
have been developed, studied, and applied to different
problems in the last years (see for example [22]).

A way of introducing nonlinearity without too
much effort in the pyramidal multiresolution decom-
positions was given by Harten in [13], [14]. In
Harten’s framework, the different discrete resolution
levels are connected by two inter-resolution opera-
tors, named decimation (from the fine scale (k) to the
coarse scale (k−1)) and prediction (just the opposite,
from coarse to fine scale). In turn, these two inter-
scale operators are closely related to another group
of two operators, discretization and reconstruction.
These new operators act between the continuous level
(where a function f , related to the discrete data, lives)
and each discrete resolution level (where fk lives).
The chosen continuous level depends on the applica-
tions that one has in mind. For example to deal with
data coming from an elevation map of a mountainous
region the appropiate continuous level could be the
continuous functions in a given two dimensional rect-
angle. However to work with image processing ap-
plications, one would consider the space of integrable
functions instead as the continuous level. Discretiza-
tion and decimation operators must be linear, but the
reconstruction operator and in turn the prediction op-
erator can be nonlinear, and this fact allows for a wide
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range of witty definitions in order to attain better adap-
tion to the considered data. This adaptability of the
Harten’s algorithms is of tremendous importance in
presence of singularities, permitting to give a data-
dependent and nonlinear treatment of the data and
therefore better results in applications working with
such initial data. Examples of nonlinear decomposi-
tions based on Harten’s multiresolution can be found
for instance in [9], [6], [3], [5].

Different settings can be considered depending
on the chosen continuous level and on the linear dis-
cretization operator that produces the data according
to the real applications that one has in mind. The most
common settings are provided by the sampling oper-
ator (point value setting) and the averaging operator
(cell average setting). In this work the efforts are fo-
cused on developing the N-dimensional theory and the
corresponding fast algorithms for the case of the sam-
pling operator. The other case of cell averages was
already addressed, see [16].

A similar framework for multiresolution was de-
veloped independently by Sweldens (see [19], [20],
[21]).

A fundamental aspect in applying nonlinear mul-
tiresolution decompositions is the matter of stability,
in the sense that is explained next.

The multiresolution representation
{f0, d1, . . . , dL} of the initial data is well adapted to
compression procedures, since many of the details dk
are zero or close to zero. This multi-scale representa-
tion is then processed (truncation or quantization for
instance) and the final result of this step is a modified
multi-scale representation {f̂0, d̂1, d̂2, . . . , d̂L} which
is close to the original one, i.e. such that (in some
norm)

||f̂0 − f0|| ≤ ε0 ||d̂k − dk|| ≤ εk 1 ≤ k ≤ L,

where the truncation parameters ε0, ε1, . . . , εL are
chosen according to some criteria specified by the
user, depending for example on the application.

After decoding the processed representation, and
recovering an approximation f̂L to the original data
fL, one would desire some kind of stability, i.e.

||f̂L − fL|| ≤ σ(ε0, ε1, . . . , εL), (1)

where σ(·, . . . , ·) verifies

lim
εl→0, 0≤l≤L

σ(ε0, ε1, . . . , εL) = 0.

It is well known that linear multiresolution
schemes are stable, and that one can easily derive
stability bounds in these cases (see [7] for example).
However this fact is unfortunately not true in general

for the nonlinear schemes. Many results in this sense
have been obtained in the last two decades, see for ex-
ample [12], [17], [18], [8]. In whatever case the sta-
bility for nonlinear multiresolution algorithms is nor-
mally very difficult to prove, and not always possi-
ble to obtain. In fact there are important and well
known nonlinear schemes which are not stable at all
([3]). The good news are that stability can always be
attained by using the error control algorithms intro-
duced by Harten ([14], [2],[1]). A closely related con-
cept named synchronization deserves also to be men-
tion (see [10]). These algorithms implement a modi-
fied decoding algorithm which is able to keep track of
the total cumulative error, and therefore it is possible
to obtain explicit error bounds dependent only on the
specific truncation or quantization parameters chosen
by the user.

The algorithms presented in this paper concern
the point value setting, so completing the work al-
ready done for the cell averages [16]. Both contri-
butions could be considered as much a generaliza-
tion of Harten’s error control algorithms in 1D for
their respective setting as a particularization to the
N-dimensional case in a rectangle of the completely
general case studied by Harten ([13], [14]). The rel-
evance of dealing with the details of each dimension
are let clear in the 2D, and 3D cases in [2], [4], where
also some important applications are given. The prin-
cipal aim of this paper is to provide a detailed anal-
ysis of the N-dimensional multiresolution algorithms
in the framework of point values, with and without er-
ror control. The applications range from one devoted
to compression and reconstruction of contour maps in
two dimensions representing the topography of moun-
tainous terrains, where cliffs could be found to another
having to do with the treatment of a temperature field
in a cylindrical pipe in a heat exchanger which occu-
pies a lot of memory inside a finite elements calcula-
tion.

The paper is organized as follows: in Section 2 N-
dimensional multiresolution algorithms in point val-
ues without error control are presented. In Section
3 multiresolution transformations using error control
strategies are then introduced. In Section 4 an interest-
ing numerical experiment is presented. Finally, Sec-
tion 5 contains the conclusions.

2 N-dimensional multiresolution al-
gorithms without error control in
the point values setting

For a more detailed description on Harten’s frame-
work for multiresolution read [9]. Here only the as-
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pects of the multiresolution framework that are rele-
vant to the rest of the paper are described.

Let it be considered a mesh in [0, 1]N given by:

Xk = {xki1 , x
k
i2 , . . . , x

k
iN
}Jki1,...,iN=0, Jk = 2kJ0,

J0 integer, hk =
1

J02k
,

xkis = ishk, s = 1, . . . , N,

and the point values discretization operator given by

Dk :

 C([0, 1]N ) → V k,

f 7→ fk = (fki1,...,in)
JN
k
i1,...,iN=0,

(2)
where fki1,...,iN , 0 ≤ is ≤ Jk, s = 1, . . . , N, is de-
fined by

fki1,...,iN := f(xki1 , . . . , x
k
iN
), (3)

C([0, 1]N ) is the space of continuous functions in
[0, 1]N and V k is the space of real sequences with di-
mension (Jk + 1)N related to the resolution of Xk.
A reconstruction operator Rk associated to this dis-
cretization is any right inverse of Dk, which means
that for all fk ∈ V k,Rkfk ∈ C([0, 1]N ) and

fki1,...,iN = (Rkfk)(xi1 , . . . , xiN ). (4)

The sequences {Dk} and {Rk} define a multires-
olution transform and the prediction operator P kk−1 :=
Dk+1Rk : V k → V k+1, defines a subdivision
scheme. If Rk is a nonlinear reconstruction operator,
the corresponding subdivision scheme is also nonlin-
ear. The decimation operator Dk−1

k : V k → V k−1 is
always linear and in our case reads

fk−1i1,...,iN
= (Dk−1

k fk)i1,...,iN = fk2i1,...,2iN . (5)

We also need to define the error, which is given by

ekj1,...,jN := fkj1,...,jN − (P kk−1f
k−1)j1,...,jN . (6)

It is easy to prove that the error belongs to the null
space of the decimation operator Dk−1

k and thus

ek2i1,...,2iN = 0, (7)

what in practice implies that the only errors necessary
to recover are the impair ones.

We are now in possession of all the needed in-
gredients to give the expression of the encoding and
decoding multiresolution algorithms. First let us de-
note,

J : = {(j1, . . . , jN ) : js ∈ {2is, 2is + 1},
s = 1, . . . , N},

J ′ : = J\{j1 = 2i1, . . . , jN = 2iN}.

Then, the algorithms take the following form

Algorithm 1 µ(fL) =MfL (Encoding)

for k = L, . . . , 1
for i1, . . . , iN = 0, . . . , Jk−1

fk−1i1,...,iN
= fk2i1,...,2iN

for (j1, . . . , jN ) ∈ J ′

ekj1,...,jN = fkj1,...,jN − (P kk−1f
k−1)j1,...,jN

end
end

end

Algorithm 2 fL =M−1µ(fL) (Decoding)

for k = 1, . . . , L
for i1, . . . , iN = 0, . . . , Jk−1

for (j1, . . . , jN ) ∈ J ′

fkj1,...,jN = (P kk−1f
k−1)j1,...,jN + ekj1,...,jN

end
fk2i1,...,2iN = fk−1i1,...,iN

end
end

In order to have control of the error after the pro-
cess of compression a modified decoding algorithm is
introduced in the next section.

3 Multiresolution based compres-
sion transforms with error control
strategies

Multiresolution representations lead naturally to data-
compression algorithms. The simplest one is obtained
by setting to zero all scale coefficients which fall be-
low a prescribed tolerance. Let us denote

êki = tr(eki ; εk) =
{

0 |eki | ≤ εk,

eki otherwise,

and refer to this operation as truncation. This type of
data compression is used primarily to reduce the “di-
mensionality” of the data. A different strategy, which
is used to reduce the digital representation of the data
is quantization, which can be modeled by

êki = qu(eki ; εk) = 2εk · round

[
eki
2εk

]
,
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where round [·] denotes the integer obtained by
rounding. Observe that if
|eki | < εk ⇒ qu(eki ; εk) = 0, and that in both cases

|eki − êki | ≤ εk.

In what follows we present a N-dimensional ex-
tension of the one dimensional algorithms in [13],[9].
The decoding algorithm remains equal to Algorithm
2, while the encoding algorithm is modified to keep
track of the total cumulative error. Thus, one ensures
that the new algorithms are stable in the sense of ex-
pression (1).

Denoted by pr the compression process (trunca-
tion or quantization), and by ẽkj1,...,jN = fkj1,...,jn −
(P kk−1f̂

k−1)j1,...,jN an auxiliary term.
It is sufficient to define the following error control

algorithm.

Algorithm 3 (Modified encoding for point values)

for k = L, . . . , 1
for i1, . . . , iN = 0, . . . , Jk−1

fk−1i1,...,iN
= fk2i1,...,2iN

end
end
Set f̂0 = f0

for k = 1, . . . , L
for i1, . . . , iN = 0, . . . , Jk−1

for (j1, . . . , jN ) ∈ J ′

êkj1,...,jN = pr(ẽkj1,...,jN , εk)

f̂kj1,...,jN = (P kk−1f̂
k−1)j1,...,jN + êkj1,...,jN

end
f̂k2i1,...,2iN = f̂k−1i1,...,iN

end
end

4 Numerical experiments

In order to apply the multiresolution algorithms in
higher dimensions an experiment with the splitted
paraboloid has been carried out.The function repre-
senting the cutted paraboloid is given by

f : [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]→ R,

f(x) =

 x21 + x22 + x23 + x24 if x1 ≥ 1
2 ,

x21 + x22 + x23 + x24 +D else,
(8)

where D is the size of the discontinuity. The
larger D, the more abrupt the discontinuity is. The
values taken for D are 10 and 100.

The present experiment is implemented in a uni-
form 65 × 65 × 65 × 65 grid X . The data F :=
(f(x))x ∈ X are compressed after descending two
multiresolution levels and later reconstructed obtain-
ing an approximation F̃ to the original data.The re-
sults of measuring the errors ||F − F̃ ||s, s = 1, 2,∞
of this second experiment are presented in Tables 1, 2,
3, 4.

Algorithm EC
Method Lagrange ENO PPH

Com. (%) 94.31 94.31 97.39

||F − F̃ ||1 0 0 3.00 · 10−5
||F − F̃ ||2 0 0 2.92 · 10−8
||F − F̃ ||∞ 0 0 9.77 · 10−4
CPU time 80.59 181.56 94.31

Table 1: Norms of errors in compression and recon-
struction processes with error control strategies for the
splitted paraboloid in equation (8) with size of the dis-
continuity D = 10 for Lagrange, ENO and PPH re-
constructions. Multiresolution levels L = 2.

Algorithm Without EC
Method Lagrange ENO PPH

Com. (%) 94.31 94.31 97.39

||F − F̃ ||1 2.45 · 10−7 2.45 · 10−7 3.00 · 10−5
||F − F̃ ||2 1.53 · 10−7 1.53 · 10−7 2.93 · 10−8
||F − F̃ ||∞ 0.63 0.63 4.85 · 10−3
CPU time 75.27 176.17 89.92

Table 2: Norms of errors in compression and recon-
struction processes without error control strategies for
the splitted paraboloid in equation (8) with size of the
discontinuity D = 10 for Lagrange, ENO and PPH
reconstructions. Multiresolution levels L = 2.

In Tables 1 and 2 it can be immediately appre-
ciated the better behavior of the nonlinear methods
with respect to the linear ones in presence of discon-
tinuities, i.e, nonlinear stable reconstructions improve
the performance of their linear counterparts in these
cases. It can be also observed that error control al-
gorithms apart of allowing to keep track of the cumu-
lative error, they get better compression rates and do
not increase the time cost too much, under 5% approx-
imately in these experiments.
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Algorithm EC
Method Lagrange ENO PPH

Com.(%) 94.31 94.31 97.39

||F − F̃ ||1 0 0 3.00 · 10−5
||F − F̃ ||2 0 0 2.93 · 10−8
||F − F̃ ||∞ 0 0 9.77 · 10−4
CPU time 74.36 167.69 84.30

Table 3: Norms of errors in compression and recon-
struction processes with error control strategies for the
splitted paraboloid in equation (8) with size of the dis-
continuity D = 100 for Lagrange, ENO and PPH re-
constructions. Multiresolution levels L = 2.

Algorithm Without EC
Method Lagrange ENO PPH

Com. (%) 94.31 94.31 97.39

||F − F̃ ||1 2.45 · 10−6 2.45 · 10−6 3.01 · 10−5
||F − F̃ ||2 1.53 · 10−5 1.53 · 10−5 2.94 · 10−8
||F − F̃ ||∞ 6.25 6.25 4.88 · 10−3
CPU time 70.81 163.00 83.14

Table 4: Norms of errors in compression and recon-
struction processes without error control strategies for
the splitted paraboloid in equation (8) with size of the
discontinuity D = 100 for Lagrange, ENO and PPH
reconstructions. Multiresolution levels L = 2.

In Table 3 and 4 it can be seen that increasing the
size of the discontinuity affects much more the linear
Lagrange method and the nonstable nonlinear ENO
method than the stable nonlinear method PPH. All the
other previous comments are consistent also with this
new experiment.

5 Conclusion
N-dimensional multiresolution algorithms for the
point values discretization with and without error con-
trol strategies have been presented. While classical al-
gorithms fixed the number of coefficients to be stored,
error control algorithms allow to specify the quality in
the reconstructed data. Apart of keeping track of the
reconstruction error, these error control algorithms al-
low the application of nonlinear schemes that are not
stable when applied directly without these strategies.
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