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Abstract: Connectivity is a vital metric to explore fault tolerance and reliability of network structure based on a
graph model. There are many kinds of connectivity to measure the fault tolerance and reliability of networks, such
as classic connectivity, super connectivity, extraconnectivity. In this paper we focus on the number of components
of graph which is called component connectivity. Let G = (V, E) be a connected graph. A r-component cut of G
is a set of vertices whose deletion results in a graph with at least r components. r-component connectivity cκr(G)
of G is the size of the smallest r-component cut. The r-component edge connectivity cλr(G) can be defined
similarly. In this paper, we determine the r-component edge connectivity of hypercubes and folded hypercubes:(1)
cλ2(Qn) = λ(Qn) = n for n ≥ 2. (2) cλ3(Qn) = 2n − 1 for n ≥ 2. (3) cλ4(Qn) = 3n − 2 for n ≥ 2. (4)
cλ2(FQn) = n + 1 for n ≥ 3. (5) cλ3(FQn) = 2n + 1 for n ≥ 3. (6) cλ4(FQn) = 3n + 1 for n ≥ 3.
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1 Introduction

A network is often modeled by a graph G =
(V, E) with the vertices representing nodes such as
processors or stations, and the edges representing
links between the nodes. One fundamental consid-
eration in the design of networks is reliability [2, 9].
Let G = (V, E) be a connected graph, NG(v) the
neighbors of a vertex v in G (simply N(v)), E(v) the
edges incident to v. Moreover, for S ⊂ V , G[S] is
the subgraph induced by S, NG(S) = ∪v∈SN(v) −
S,NG[S] = NG(S) ∪ S, and G− S denotes the sub-
graph of G induced by the vertex set of V \ S. If
u, v ∈ V , d(u, v) denotes the length of a shortest
(u, v)-path. For X, Y ⊂ V , denote by [X, Y ] the
set of edges of G with one end in X and the other
in Y . For graph-theoretical terminology and notation
not defined here we follow [1]. All graphs considered
in this paper are simple, finite and undirected.

A r-component cut of G is a set of vertices whose
deletion results in a graph with at least r components.
r-component connectivity cκr(G) of G is the size
of the smallest r-component cut. The r-component
edge connectivity cλr(G) can be defined correspond-
ingly. We can see that cκr+1(G) ≥ cκr(G) for each
positive integer r. The connectivity κ(G) is the 2-
component connectivity cκ2(G). The r-component
(edge) connectivity was introduced in [3] and [11] in-
dependently. Fábrega and Fiol introduced extracon-
nectivity in [5]. Let F ⊆ V be a vertex set, F is

called extra-cut, if G − F is not connected and each
component of G − F has more than k vertices. The
extraconnectivity κk(G) is the cardinality of the min-
imum extra-cuts.

The hypercube Qn = (V, E) with |V | = 2n

and |E| = n2n−1. Every vertex can be represent
by an n-bit binary string. Two vertices are adja-
cent if and only if their binary string representation
differs in only one bit position. The n-dimensional
folded hypercube FQn is proposed by El-Amawy
and Latifi [4]. FQn is obtained from Qn by adding
2n−1 edges, called complementary edges, each of
them is between vertices x = (x1, · · · , xn) and
x = (x1, · · · , xn), where xi = 1 − xi. Obvi-
ously, FQn is obtained from Qn by adding a perfect
matching M where M = {(x, x) : x ∈ V (Qn)}.
Because Qn can be expressed as Q0

n−1 ¯ Q1
n−1,
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where Q0
n−1 and Q1

n−1 are two n − 1-dimensional
hypercubes with the prefix 0 and 1 of each vertex,
respectively. Furthermore, Qn can be viewed as
G(Q0

n−1, Q
1
n−1,M0), where M0 = {(0u, 1u) : 0u ∈

V (Q0
n−1), 1u ∈ V (Q1

n−1)}. Similarly, FQn can be
viewed as G(Q0

n−1, Q
1
n−1,M0 + M), where M0 =

{(0u, 1u) : 0u ∈ V (Q0
n−1), 1u ∈ V (Q1

n−1)} and
M = {(0u, 1u) : 0u ∈ V (Q0

n−1), 1u∈ V (Q1
n−1)}.

FQn is (n + 1)-regular and (n + 1)-connected.
Moreover, FQn is a Cayley graph. It has diameter
dn/2e, about a half of the diameter of Qn [4]. Thus,
the folded hypercube FQn is an enhancement on the
hypercube Qn.

The fault tolerance analysis of hypercubes and
folded hypercubes has recently attracted the attention
of many researchers [6, 7, 10],[12]-[18],[20, 21]. In
[8], Hsu et al. determined the r-component connec-
tivity of the hypercube Qn for r = 2, 3, · · · , n + 1.
In [19], Zhao et al. determined the r-component con-
nectivity of the hypercube Qn for r = n + 2, n +
3, · · · , 2n− 4. In this paper, we obtain that:

(1) cλ2(Qn) = λ(Qn) = n for n ≥ 2.
(2) cλ3(Qn) = 2n− 1 for n ≥ 2.
(3) cλ4(Qn) = 3n− 2 for n ≥ 2.
(4) cλ2(FQn) = n + 1 for n ≥ 3.
(5) cλ3(FQn) = 2n + 1 for n ≥ 3.
(6) cλ4(FQn) = 3n + 1 for n ≥ 3.

2 Component connectivity of hyper-
cubes and folded hypercubes

For the sake of convenience, we denote the vertex
whose ith coordinate of the binary string representa-
tion different from v’s by vi. Similarly, vij is the ver-
tex whose n-bit binary string which differs in the jth
position with vi. Clearly, vii = v.

Lemma 2.1. [18] Any two vertices of Qn have exactly
two common neighbors for n ≥ 3 if they have any.

Lemma 2.2. [17] Any two vertices of FQn have ex-
actly two common neighbors for n ≥ 4 if they have.

Corollary 2.3. For any two vertices x, y ∈
V (Qn)(n ≥ 3) or V (FQn)(n ≥ 4),

(1) if d(x, y) = 2, then they have exactly two com-
mon neighbors;

(2) if d(x, y) 6= 2, then they do not have common
neighbors.

Lemma 2.4. Let x and y be any two vertices of
V (Qn)(n ≥ 3) such that have two common neigh-
bors.

(1) If x ∈ V (Q0
n−1), y ∈ V (Q1

n−1), then the one
common neighbor is in Q0

n−1, and the other one is in
Q1

n−1.
(2) If x, y ∈ V (Q0

n−1) or V (Q1
n−1), then the two

common neighbors are in Q0
n−1 or Q1

n−1.

Proof. (1) Let x = 0u and y = 1ui. Then x, y have
two common neighbors 1u, 0ui. According to Lemma
2.1, the result holds.

(2) Let x = 0u and y = 0v. Since they have two
common neighbors, we assume that they are 0ui, 0uj .
And 0uij has two neighbors 0ui, 0uj . According to
Lemma 2.1, y = 0v = 0uij .

Analogue to Lemma 2.4, we have

Lemma 2.5. For any two vertices x, y ∈
V (FQn)(n ≥ 4), FQn = G(Q0

n−1, Q
1
n−1,M0+M),

and x and y have two common neighbors.
(1) If x ∈ V (Q0

n−1), y ∈ V (Q1
n−1), then one of

the common neighbors is in Q0
n−1, and the other one

is in Q1
n−1.

(2) If x, y ∈ V (Q0
n−1) or V (Q1

n−1), then both of
the common neighbors are in Q0

n−1 or Q1
n−1.

Theorem 2.6. cλ2(Qn) = λ(Qn) = n for n ≥ 2.

Theorem 2.7. cλ3(Qn) = 2n− 1 for n ≥ 2.

Proof. Take an edge e = uv, then |E(u) ∪ E(v)| =
2n−1. And Qn−E(u)−E(v) has at least 3 connected
components. That is cλ3(Qn) ≤ 2n− 1.

Next we will show that cλ3(Qn) ≥ 2n − 1 by
induction. It is easy to check it is true for n = 2, 3, 4.
So we suppose n ≥ 5 and assume it is true for all
k < n. We will prove that is true for k = n.

Let F ⊆ E(Qn) with |F | ≤ 2n− 2, and Qn − F
has at least 3 components. Now since Qn = Q0

n−1 ¯
Q1

n−1, we have |E(Q0
n−1)∩F | ≤ n−1 or |E(Q1

n−1)∩
F | ≤ n − 1, say, |E(Q0

n−1) ∩ F | ≤ n − 1. Since
λ(Qn−1) = n− 1, we have two cases.

Case 1. Q0
n−1 − F is not connected.

Then |E(Q0
n−1)∩F | = n− 1 and Q0

n−1−F has
only two components.
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If Q1
n−1 − F is not connected, then |E(Q1

n−1) ∩
F | = n−1. That is [Q0

n−1, Q
1
n−1]∩F = ∅. But each

vertex of Q1
n−1−F is connected to one component of

Q0
n−1−F . Hence Qn−F has only two components,

a contradiction.
Note that |[Q0

n−1, Q
1
n−1]| = 2n−1 > n − 1(n ≥

5). If Q1
n−1 − F is connected, then Q1

n−1 − F is con-
nected to one component of Q0

n−1−F . Hence Qn−F
has only two components, a contradiction.

Case 2. Q0
n−1 − F is connected.

If Q1
n−1 − F is connected, then we are done. We

assume that Q1
n−1−F is not connected. And Q1

n−1−
F has at most one isolated vertex since |F | ≤ 2n− 2.

If Q1
n−1 − F has at least 3 components, from the

inductive hypothesis, then |E(Q1
n−1) ∩ F | ≥ 2n− 3.

Hence at most one of components of Q1
n−1 − F is

not connected to Q0
n−1 − F , Qn − F has at most two

components, a contradiction.
Therefore we assume that Q1

n−1−F has only two
components. But 2n−1−(2n−2) > 0(n ≥ 5), Qn−F
has at most two components, a contradiction.

Theorem 2.8. cλ4(Qn) = 3n− 2 for n ≥ 2.

Proof. Take a path P3 = uvw. Then |E(u) ∪ E(v) ∪
E(w)| = 3n−2. And Qn−E(u)−E(v)−E(w) has
at least 4 connected components. That is cλ4(Qn) ≤
3n− 2.

Next we will show that cλ4(Qn) ≥ 3n − 2 by
induction. It is easy to check it is true for n = 2, 3, 4.
So we suppose n ≥ 5 and assume this is true for all
k < n. We will prove that is true for k = n.

Let F ⊆ E(Qn) with |F | ≤ 3n − 3, and
Qn − F has at least 4 components. Now since
Qn = Q0

n−1 ¯ Q1
n−1, we have |E(Q0

n−1) ∩ F | ≤
[3n/2] − 2 or |E(Q1

n−1) ∩ F | ≤ [3n/2] − 2, say,
|E(Q0

n−1) ∩ F | ≤ [3n/2] − 2. Since cλ3(Qn−1) =
2n− 3 > [3n/2]− 2(n ≥ 5), Q0

n−1 − F has at most
two components.

Case 1. Q0
n−1 − F is connected.

If Q1
n−1 − F has at least 4 components, then

cλ4(Qn−1) ≥ 3n − 5 by the inductive hypothe-
sis. We need delete at most two edges again. Since
each vertex of Q1

n−1 has a neighbor in Q0
n−1 and

|[Q0
n−1, Q

1
n−1]| = 2n−1 > 2(n ≥ 5), Qn − F has

at most 3 components, a contradiction.
Suppose Q1

n−1−F has at most 3 components. Be-
cause of |[Q0

n−1, Q
1
n−1]| = 2n−1− (3n− 3) > 0(n ≥

5), Qn−F has at most 3 components, a contradiction.
Case 2. Q0

n−1 − F has only two connected com-
ponents.

Then |E(Q0
n−1) ∩ F | ≥ λ(Qn−1) = n − 1 and

|E(Q1
n−1) ∩ F | ≤ 2n − 2. Note that cλ3(Qn−1) =

2n− 3.

If Q1
n−1 − F has at least 3 components, then

|E(Q1
n−1) ∩ F | ≥ 2n − 3 and |E(Q0

n−1) ∩ F | ≤ n.
But |[Q0

n−1, Q
1
n−1] ∩ F | ≤ 1 and 2n−1 > 1(n ≥ 5),

Qn−F has at most two components, a contradiction.
Hence Q1

n−1−F has at most two components. We
have |[Q0

n−1, Q
1
n−1]| > 3n − 3(n ≥ 5), and Qn − F

has at most 3 components, a contradiction.

And because the hypercube Qn is the subgraph of
the folded hypercube FQn, we can apply the similar
method to FQn. Hence we have the following theo-
rem.

Theorem 2.9. (1) cλ2(FQn) = λ(FQn) = n+1 for
n ≥ 3.

(2) cλ3(FQn) = 2n + 1 for n ≥ 3.
(3) cλ4(FQn) = 3n + 1 for n ≥ 3.

3 Conclusions

The component connectivity is a generalization of
classical connectivity of graphs. The hypercube net-
work Qn has proved to be one of the most popular in-
terconnection networks since it has a simple structure
and has many good properties. The folded cube FQn

is a variant of Qn. We determined the r-component
(edge) connectivity of Qn and FQn for r = 2, 3, 4.
Future research on this topic would compute the com-
ponent connectivity of different topologies.
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