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Abstract:- This study proposes a bi-objective model for capacitated multi-vehicle allocation of customers to 
potential distribution centers (DCs).The optimization objectives are to minimize transit time and total cost 
including opening cost, assumed for opening potential DCs and shipping cost from DCs to the customers where 
considering heterogeneous vehicles lead to a more realistic model and cause more conflicting in the two objectives. 
An evolutionary algorithm named non-dominated sorting genetic algorithm (NSGA-II) is used as the optimization 
tool. To aid the decision maker choosing the best compromise solution from the Pareto front, the fuzzy-based 
mechanism is employed. For ensuring the robustness of the proposed method and giving a practical sense of this 
study, the computational results in some small cases are compared with those obtained by LP-metric method. 
Results show the percentage errors of objective functions compared to the LP-metric method are less than 2%. 
Furthermore, it can be seen that with increasing size of the problems, while the time of problem solving increases 
exponentially by using the LP-metric method, the running time of NSGA-II is more stable, so these show the 
advantages and effectiveness of NSGA-II in reporting the Pareto  optimal solutions in large scale. 
 
Key-Words:- bi-objective optimization; capacitated location-allocation; multi-vehicle; LP-metric; evolutionary 
algorithm; non-dominated sorting genetic algorithm II; 
 
1 Introduction 
In today’s business environment, the competitiveness 
of a firm heavily depends on its ability to handle the 
challenges of reducing cost, increasing customer 
service and improving product quality. In this 
competitive market, customer satisfaction is the most 
important factor for the success of the firm. In this 
regard, the supply chain network among different 
business entities like manufacturers, suppliers and 
distribution centers (DCs) needs to be effective 
enough to handle the changing demand patterns. 
Nowadays, efforts have been made to design and 
develop a more conducive and profitable supply chain 
network. Efficient allocation of customers to DCs 
always plays an important role in developing a 
flawless and reliable supply network.  
     One of the most active topics in manufacturing 
research over the last 10 years has been supply chain 
management (SCM). SCM is the management of 
material and information flows both in and between 
facilities, such as vendors, manufacturing, assembly 

plants and distribution centers [1]. Transportation 
network design is one of the most important fields of 
SCM. It offers great potential to reduce costs. In the 
several decades, there have been many researchers 
reported new models or methods to determine the 
transportation or the logistics activities that can lead 
to the least cost [2]. One of the important factors 
which influences on logistic system is to decide 
regarding the number of distribution centers. 
Geoffrion and Graves (1974) were the first 
researchers studied on two-stage distribution problem 
[3]. Pirkul and Jayaraman (1998) presented a new 
mathematical formulation called PLANWAR to 
locate a number of production plants and warehouses 
and to design distribution network, so that the total 
operating cost can be minimized. They developed an 
approach based on Lagrangian relaxation to solve the 
problem [4]. Hindi et al. (1998) stated a two-stage 
distribution planning problem. They supposed that 
each customer must be served from a single 
distribution center. The authors gave mathematical 
model for the problem and developed a branch and 
bound algorithm to solve the problem [5].Zhou et al. 
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(2003) proposed a mathematical model and an 
efficient solution procedure for the bi-criteria 
allocation problem involving multiple warehouses 
with different capacities [6].Hajiaghaei-Keshteli 
(2011) considered two stages of supply chain network 
including distribution centers (DCs) and customers. 
His proposed model selects some potential places as 
distribution centers in order to supply demands of all 
customers and in order to solve the given problem, 
two algorithms, genetic algorithm and artificial 
immune algorithm, were developed [7]. Chan and 
kumar (2009) discussed a multiple ant colony 
optimization (MACO) approach in an effort to design 
a balanced and efficient supply chain network that 
maintains the best balance of transit time and 
customers service. The focus of their paper is on the 
effective allocation of the customers to the DCs with 
the two-fold objective of minimization of the transit 
time and degree of imbalance of the DCs [8]. Arabzad 
et al. (2015) proposed a multi-objective optimization 
algorithm for solving the new multi-objective 
location-inventory problem (MOLIP) in a 
distribution center (DC) network with the presence of 
different transportation modes and third-party 
logistics (3PL) providers.In their paper, NSGA-II 
algorithm was proposed to perform high-quality 
search using two-parallel neighborhood search 
procedures for creating initial solutions [9]. 

 

2 Preliminaries 
 

2.1 Multi-objective optimization problems 
Multi-objective optimizations concerned with 
mathematical optimization problems involving more 
than one objective function to be optimized 
simultaneously. To obtain the optimal solution, there 
will be a set of optimal trade-offs between the 
conflicting objectives, where the set of optimal 
solution is known as Pareto front. A multi-objective 
optimization problem is defined as the maximization 
or the minimization of many objectives subject to 
equality and inequality constraints. The multi-
objective optimization problem can be formulated as 
follows: 

Max. /Min.fi(x), i=1, …,Nobj       (1) 

Subject to constraints: 

                    gj (x) = 0,  j=1,…, M 

hk(x) ≤ 0, k=1,…, K                    (2) 

where fi is the ith objective function, xis the decision 
vector, Nobj is the number of objectives, gj is the jth 
equality constraint and hk is the kth inequality 
constraint. 

 

2.2 Multi-objective evolutionary algorithms 
There are techniques such as weighting methods and 
ε-constraint method which transfer multi-objective 
problems to a single-objective one, using different 
combinations of a weighting vector and constraints. 
Thus, each optimal solution can be assigned to a 
specific combination of weighting vector and 
constraint. Hence, in each run of the algorithm, a 
single solution can be achieved. However, multi-
objective evolutionary algorithms are capable of 
finding almost all candidate solutions (Pareto) in a 
single run. Evolutionary algorithms are based on 
evolutionary computations which can perform 
optimal/near-optimal solutions in all types of 
problems (linear/nonlinear, discrete/continuous, 
convex/ non-convex) using validated experimental 
theories of biological evolution and natural processes, 
particularly through activities of different species of 
animals.  
     A set of solutions resulting from a program run, 
without using any techniques such as the weighting 
approach that are directly related to decision-makers’ 
opinions, is the most important advantage of 
evolutionary algorithms in the field of multi-objective 
optimization. In this paper, we used an evolutionary 
algorithm, NSGA-II, to tackle the problem. In 
contrast to traditional multiple objective programming 
techniques such as goal programming that requires 
the decision maker to arbitrarily determine weighting 
coefficients and/or preferences on multiple criteria 
and consequently produces a dominated solution, the 
proposed algorithms was designed to generate a wide 
range of non-dominated solutions without the 
arbitrary determination of weights. Bandyopadhyay 
and Bhattacharya (2014) solved a tri-objective supply 
chain problem with modified NSGA-II algorithm. 
They have introduced a mutation algorithm which has 
been embedded in the proposed algorithm [10]. 
     In this paper, two-stage supply chain network 
including the distribution centers and the customers, 
are considered. There are potential places which are 
candidate to be as distribution centers, called potential 
DCs, and customers with particular demands. Each of 
the potential DCs can ship to any of the customers. 
The two optimization objectives are to minimize 
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transit time and total cost involving opening cost, 
assumed for opening a potential DC and shipping cost 
per unit from DC to the customers. The proposed 
model selects some potential places as distribution 
centers in order to supply demands of all customers, 
i.e. the model selects some potential DCs in such a 
way that the customer demand can be satisfied at 
minimum DCs’ opening cost and minimum shipping 
cost with minimum transit time. It is assumed that 
distribution centers have unequal capacities and each 
customer must be served from a single distribution 
center.  Also in this paper, considering different types 
of vehicles caused more conflicting in these two 
objectives. We proposed an evolutionary algorithm, 
Non-dominated Sorting Genetic Algorithm (NSGA-
II) to tackle with the problem in this paper. In contrast 
to the traditional multiple objective programming 
techniques such as LP-metric, the proposed 
algorithms was designed to generate a wide range of 
non-dominated solutions without the arbitrary 
determination of weights. 
 

3 Description of model  
In this paper, a location-allocation model for multi-
vehicle single product in two-stage supply chain 
network is developed. This model includes 
distribution centers (DCs) and customers with respect 
to two conflicting objectives consist of minimizing 
total transit time and total cost. The total cost here, 
involves opening cost, assumed for opening potential 
DCs and shipping cost from DCs to the customers. 
The proposed model selects some potential places as 
distribution centers in order to supply demands of all 
customers. It is assumed that distribution centers have 
unequal capacities and each customer must be served 
from a single distribution center. Considering 
heterogeneous vehicles lead to a more realistic model 
and cause more conflicting in the two objectives of 
the proposed problem, since a fast vehicle (because of 
high technology or having low capacity) has more 
cost and a vehicle with low cost can lead to higher 
transit time. Let us denote I as a set of nodes 
representing m customers, J as a set of nodes 
representing p potential distribution centers, V as  a 
vehicle type number for transferring process so that it 
is assumed that there are sufficient numbers of each 
type of vehicle, and E as a set of edges representing a 
connection between customers and DCs. di denotes 
the demand of customer i, fj the fixed cost for opening 

a potential DC at site j, qv the capacity of type of 
vehicle v, v ∊V, and the associated capacity qj for such 
DC; dij the distance between DC j and customer i;  cij

v 

is the cost of assigning customer i to DC located at 
site j with type of vehicle v, tij

v is the transit time 
between customer i to DC located at site j with type 
of vehicle v. All parameters introduced above are 
assumed to be non-negative. The binary variable yj is 
1 if a DC is located at site j and 0 otherwise. 
Similarly, binary variable xij

v is equal to 1 if customer 
i is served by the DC located at site j with type of 
vehicle v∊V and 0 otherwise. The bi-objective 
capacitated multi-vehicle allocation of customers to 
distribution centers problem can be formulated as the 
following binary integer programming: 

1 1 1 1 1 V p m v v p
v j i i ij ij ij j j jmin z d d c x f y= = = == ∑ ∑ ∑ +∑

(3)         

2 1 1 1 V p m v v
v j i ij ijmin z t x= = == ∑ ∑ ∑           (4)                       

 Subject to: 

1 1 1,  1, ,      V p v
v j ijx i m= =∑ ∑ = = …           (5)                              

1 1  , 1,  ,   V m v
v i i ij j jd x q y j p= =∑ ∑ ≤ = …   (6)                   

1 1  , 1,  ,    m p v
i j i ij vd x q v V= =∑ ∑ ≤ = …      (7)                       

{ },  0,1 , 1, ,  ,  1, ,  , 1, ,  
v

x y i m j p v Vij j ∀ = … ∀ = … ∀ = …∈ (8)  
The first objective function Eq. (3) minimizes the 
total cost of opening distribution centers and 
assigning customers to such distribution centers, 
while the second objective function Eq. (4) minimizes 
total transit time between distribution centers and 
customers allocated to them. Constraints Eq. (5) 
guarantee that each customer is served by exactly one 
DC and also guarantee that each customer’s demand 
on each edge between a customer and a DC is 
transferred by a vehicle type and exactly one of it, and 
capacity constraints Eq. (6) ensure that the total 
demand assigned to a DC cannot exceed its capacity. 
The constraints Eq. (7) ensure that the total demand 
transferred by a vehicle cannot exceed its capacity. In 
this paper, capacity constraints of DCs have been 
relaxed considering penalty function. In general, a 
penalty function approach is as follows. Given an 
optimization problem: 

Min f(X)                              (9) 
                 s.t.X  A 
                 X  B 

where X is a vector of decision variables, the 
constraints “X A” are relatively easy to satisfy, and 
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the constraints “X B” are relatively difficult to 
satisfy, the problem can be reformulated as: 

minf(X) + p(d(X,B))          (10) 
                s.t.    X  A 

where d(X, B) is a metric function describing the 
distance of the solution vector X from the region B, 
and p(0) is a monotonically non-decreasing penalty 
function such that p(0) = 0. Furthermore, any optimal 
solution of Eq. (10) will provide an upper bound on 
the optimum for Eq. (9), and this bound will in 
general be tighter than that obtained by simply 
optimizingf(X) over A.     
     In this paper, the objective functions are as 
follows: 

min  = z1 + δ1 . Vi          (11) 
                 min  = z2 + δ2 . Vi 

where δ1.Vi and δ2.Vi are penalty functions. δ1and δ2 
are two positive coefficients where usually are 
considered greater than max (z1) and max (z2), 
respectively. Also, Vi represents relatively violation 
value of capacity constraints related to DCs Eq. (6): 
Vi= (∑v=1

V∑i=1
m dixij

v - qjyj) / qjyj  if   ∑v=1
V ∑i=1

m di 
xij

v>qjyj j=1, …, p      and also 

Vi = 0      if   ∑v=1
V ∑i=1

mdixij
v ≤ qjyj  j=1, …, p (12)         

Besides fulfilling other constraints (Eq. (5) and Eq. 
(7)), the solutions with Vi= 0 are feasible and 
otherwise the solutions are infeasible. 
 
4 Solution approach 
In this paper, MATLAB platform, along with an 
evolutionary algorithm, NSGA-II is used as the 
optimization tool in extracting the solution of the bi-
objective capacitated multi-vehicle allocation of 
customers to distribution centers problem.In order to 
test the validity of the proposed algorithm, the LP-
metric method is used. In this section, the LP-metric 
and NSGA-II approachare described to solve the 
problem. 

 
4.1 LP-metric method 
In this approach, the decision maker must define the 
reference point z to attain. Then, a distance metric 
between the referenced point and the feasible region 
of the objective space is minimized. The aspiration 
levels of the reference point are introduced into the 
formulation of the problem, transforming it into a 
mono-objective problem. For instance, the objective 
function can be defined as a weighted norm that 
minimizes the deviation from the reference point. 

Using the LP-metric, the problem can be formulated 
in the following way: 

MOP (λ, z) = min (∑j=1
nλj| fj(x)-zj|p) 1/p 

s.t.  x∊S                                         (13) 
where 1 ≤p≤ ∞, λj is the weight of jth objective 
function andz is the reference point[11;12]. 

4.2 Non-dominated sorting genetic algorithm 
(NSGA-II) 
GA is a type of evolutionary algorithm in which a 
population set of solutions (chromosomes) move 
toward a better set. The evolution usually starts from 
a random population in the first generation (iteration). 
In each generation, the fitness of all chromosomes in 
the population is evaluated. Chromosomes are then 
stochastically selected from the current population 
(based on their fitness), and modified using the GA 
operators (crossover and mutation) to perform a new 
population. The new population is then used in the 
next iteration of the algorithm. Commonly, the 
algorithm process stops in the maximum number of 
generations. By increasing the number of objectives 
in different optimization problems, applications of the 
multi-objective GA (MOGA) have been widely 
developed from concepts borrowed from the single-
objective GA (SOGA). Srinivas and Deb (1994) used 
the non-dominated sorting concept on the GA 
(NSGA) [13]. Then, NSGA-II, which is proposed by 
Deb et al. (2002), is one of the most efficient and 
famous multi-objective evolutionary algorithms [14]. 
Steps of the NSGA-II are as follows: 
In the first step, a set of random solutions 
(chromosomes) with a uniform distribution are 
produced. The first generation is aN×D dimensions 
matrix, in which N and D are identified as the number 
of chromosomes (solutions) and decision variables 
(genes), respectively. There are dominated and non-
dominated solutions in the population that create 
different Pareto. In the second step, chromosomes are 
classified into the aforementioned Pareto using Eq. 
(14): 
dIj = ∑m=1

M(fm
Ij+1m-fm

Ij-1m)/ (fm
Max- fm

Min)                 (14)                                                     
where: dIj = crowding distance of jth solution; M = 
number of objectives; fm

Ij+1mand fm
Ij-1m= values of mth 

objective for (j – 1)th and (j + 1)th  solution ; fm
Max= 

maximum value of mth objective function among 
solutions of the current population; and fm

Min = 
minimum value of  mth objective function among 
solutions of the current population.In the 
aforementioned equation, index Ij denotes the jth 
solution in the sorted list and (j - 1) and (j + 1) are the 
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two nearest neighboring solutions on both sides of Ij. 
The algorithm then searches mostly near points 
(solutions) with more value of dIj .This process will 
cause the more uniform distribution of the resulting 
Pareto and a vast range of selections for the decision 
makers. The Pareto is then ranked from the best to the 
worst solutions, in which the comparison criterion is 
the distance from ideal Pareto front with the assumed 
location. In the third step, the selection operator 
which is the crowded tournament is considered. It is 
used to select appropriate chromosomes (which are 
called parents) from the previous generation. The 
crowded tournament operator compares different 
solutions using two criteria: (1) a non-dominated rank 
and (2) a crowding distance in the population. In this 
process, if a solution dominates the others, it will be 
selected as the parent. Otherwise, the solution with 
the higher value of crowding distance will be selected 
as the winner. The crowding distance is an important 
concept proposed by Deb et al.(2002) in his algorithm 
NSGA-II. It serves for getting an estimate of the 
density of solutions surrounding a particular solution 
in the population. Deb and Agrawal (1995) developed 
a simulated binary recombination (crossover) 
operator, called the SBX operator, to combine two 
chromosomes and create two new chromosomes 
(children) [15]. This operator is similar to one-point 
cut crossover in the binary data. The probability 
distribution is calculated as: 
P(βi) = 0.5 (ηc+1)βi

ηc,   if  βi≤ 1,  and otherwiseP(βi) 
= 0.5 (ηc+1)βi

1/ηc+2                                              (15) 
βi= (2ui )1/ ηc+1 , if ui≤ 0.05,   
and otherwise βi= (1/2(1-ui))1/ ηc+1                                  (16)                                                                                    
In which: P(βi) = crossover probability; βi = 
difference between the objective functions of parents 
and children; ηc = a constant which shows the 
difference between the objective functions of parents 
and children (a large value of ηc gives a higher 
probability for creating near-parent solutions); and ui 
= a random value in [0, 1]. The above mentioned 
difference between parents and children is calculated 
with Eq. (17) and the children’s values are produced 
by Eq. (18)[16]: 
βi=│x1

child – x2
child/ x1

parent– x2
parent│                              

(17)                                                               
x1

child= 0.5[(1+ βi)x1
parent+(1- βi) x2

parent]                     
(18)                                         
x2

child= 0.5[(1- βi)x1
parent+ (1+ βi) x2

parent] 
where x1

child , x2
child  = value of the first and second 

child’s chromosomes and x1
parent 1 , x2

parent = value of 
the first and second parent chromosomes, 

respectively.The other GA operator is mutation. A 
polynomial mutation operator that was proposed by 
Deb and Goyal (1996) has been used in this paper: 
μi =(2ri)1/( ηm+1)-1, if ri<0.5 , and  
μi =1-[2(1-ri)1/( ηm+1)], if ri≥ 0.5                         (19) 
in which μi = mutation value; ri= a random value in 
[0, 1]; and ηm = distribution constant of mutation. The 
μ parameter is added to the parent gene value, as 
follows: 
xchild= xparent+ μ                                                  (20)                                                                                          

A new generation which is a combination of the 
parents’ and children’s chromosomes is then 
produced. In the new generation, different 
chromosomes are ranked and chromosomes of the 
first rank are selected for the next generation. If the 
number of these chromosomes is less than the 
population size, chromosomes with a lower rank will 
be added to fulfill the new generation. Figure 1 
showsthe NSGA-II procedure. 
 
4.3 Best compromise solution 
Once the Pareto optimal set is obtained, it is possible 
to choose one solution from all solutions that satisfy 
different goals to someextends [18]. Due to the 
imprecise nature of the decision maker’s (DM) 
judgment, it is natural to assume that the DM may 
have fuzzy or imprecisenature goals of each objective 
function [19]. Hence, the membership functions are 
introduced to represent the goals of each objective 
function; each membership function is defined by the 
experiences and intuitive knowledge of the decision 
maker. In this study, a simple linear membership 
function is considered for each of the objective 
functions[20]. The membership function is defined as 
follows: 
Mi = 1                                        if         Fi ≥ Fi

max 
Mi = (Fi

max - Fi)/ (Fi
max - Fi

min)   if         Fi
min< Fi<Fi

max 
Mi = 0                                        if     Fi ≤ Fi

min       (21) 
where Fi

min and Fi
max are the minimum and the 

maximum value of the ith objective function among 
all non-dominated solutions, respectively. The 
membership function M is varied between 0 and 1, 
where M= 0 indicates the incompatibility of the 
solution with the set, while M= 1 means full 
compatibility. For each non-dominated solution k, the 
normalized membership function Mk is calculated as 
Mk = ∑i=1 

NobjMi
k/ ∑k=1

m∑i=1
NobjMi

k                          (22) 
Where m is the number of non-dominated solutions 
and Nobj is the number of objective functions. The 
function Mk can be considered as a membership 
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function of non-dominated solutions in a fuzzy set, 
where the solution having the maximum membership 
in the fuzzy set is considered as the best compromise 
solution. 
 
4.4 Adaptation of NSGA-II in the proposed 
model 
In this paper, NSGA-IIis coded in MATLAB software 
and tested on a Core 2 Duo/2.66 GHz processor. 
Eight numerical cases in small scale and eight 
numerical cases in large scaleare provided to 
demonstrate the   

 
Fig. 1. Schematic of the NSGA-II procedure [17] 

application of this method.To obtain the best 
Crossover probability and Mutation probability, an 
auto tuning approach is used. First some numbers for 
example 10 numbers in the range 0.55 to 0.85 are 
selected randomly for crossover probability and then 
by observing the best answer, we tried the next 
random number could be close to the crossover 
probability of the best answer. Exactly the same 
procedure in the range 0 to 0.45 is repeated for 
mutation probability.These initial ranges are 
considered according to both existing literature in the 
field of NSGA-II and some tentative running of 
NSGA-II program. This process is performed by an 
external NSGA-II program for auto tuning 
parameters. As shown in Figure2, crossover 
probability equals Pc= 0.73, mutation probability 
equals Pm= 0.37.These two parameters are tuned in 
10th iteration approximately. It means that if we 
consider 10 random numbers in each range in each 
iteration, these parameters are tuned with considering 
100 times running of algorithm.In this paper, Initial 
population size npop is assumed50 and 150 for small 
and large scales, respectively.  
     As shown in Figure 3, to illustrate the performance 
of the used procedure to optimize the proposed 
model, problem1 in small scale is considered. To 
check the quality of solutions obtained by the NSGA-
II, four evaluation metrics including: (1) number of 
Pareto solutions (NOS), (2) maximum spread or 

diversity metric [21], (3) mean ideal distance (MID) 
metric [22] and (4) time of running have been used. 
Diversity and MID metrics are formulated as follows: 

Diversity=√ ∑j=1
m (maxnfn

j – minnfn
j) 2                       (23) 

MID= ∑i=1
nCi/n                                                  (24) 

where in Eq. (23), m is the number of objectives, n is 
the number of Pareto solutions and in Eq. (24), n is 
the number of Pareto solutions and Ci is the distance 
of ith Pareto solution from ideal point((0,0) in bi-
objective minimization).  
     Figure 4 shows MID metrics for problem 2 in 
small scale. For better display, MID axis is considered 
under Logarithmic scale. As shown in Figure 4, in the 
first iterations, there are more infeasible solutions and 
they cause adding large penalty functions to objective 
values, but during the process of algorithm, the 
infeasible solutions because of great objective values 
are discarded and objective values are more real and 
then convergence process goes smoothly.Also, to 
view the output of the decision variables, one Pareto 
member of problem 6 in small scale is given in the 
appendix.Tables 1 and 2show the computational 
results of NSGA-II for some small and large scale 
problems with two iteration numbers 200 and 500. 
Figure 5 shows the comparison of optimal Pareto 
front ofproblem 1 in small scale in200th and 1000th 
iteration numbers. For more validation of the 
proposed method, some small cases are solved with 
LP-metric by Lingo 13.0.Table 3, shows the results of 
LP-metric method for problem 2,4 and 5 in small 
scale with p=1, 2 and 3. The weights of objectives are 
assumed identical. In table 4the best solution of 
Pareto front (best compromise solution according to 
section 4.3) are shown for these small scale cases.  

 
Fig.4.MID metric for problem 8 in small scale 
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Fig.5. Comparison of Pareto fronts of problem 1 in small scale by 

NSGA-II (200th and 1000th iteration) 
     Results show the average of percentage errors of 
objective functions compared to the LP-metric 
method are 1.05% and 0.05%, respectively. 
Furthermore, it can be seen that with increasing size 
of the problems, while the time of problemsolving 
increases exponentiallyby using the LP-metric 
method, the running time of NSGA-II is more stable. 

Table3.Computational results of LP-metric method for some 
small scalecases 

Some problems 
in small cases p 

First 
objective 

Second 
objective 

Problem 2 
1 58740 1.894 
2 59791 1.879 
3 59791 1.879 

Problem 4 
1 297399.63 1.850 
2 299489.48 1.825 
3 302801.48 1.817 

Problem 5 
1 237972.92 1.439 
2 252391.48 1.390 
3 252391.48 1.390 

 
5 Conclusion 
In this paper, a bi-objective optimization model for 
capacitated multi-vehicle allocation of customers to 
distribution centers is proposed. The optimization 
objectives are to minimize transit time and total cost 
including opening cost, assumed for opening a 
potential DC and shipping cost per unit from DC to 
the customers. Considering different types of vehicles 
leads to a more realistic model and causes more 
conflicting in these two objectives.An evolutionary 
algorithm named non-dominated sorting genetic 
algorithm (NSGA-II) is presented as the optimization 
tool to solve the model. The crowding distance 
technique is used to ensure the best distribution of the 
non-dominated solutions.For ensuring the robustness 
of the proposed method, the computational results in 
some small cases are compared with those obtained 
by LP-metric method. Results show the percentage 
errors of objective functions compared to the LP-

metric method are less than 2%. Furthermore, it can 
be seen that the time of problem solving increases 
exponentially by using the LP-metric method, so 
these show the advantages and effectiveness of 
NSGA-II in reporting the Pareto optimal solutions in 
large scale.Future research may use other multi-
objective meta-heuristic algorithms for validation and 
comparison with NSGA-II. Additionally, may be 
modeled location allocation for non-deterministic 
condition, such as stochastic demand. Furthermore, 
given the successful application of a NSGA-II to the 
bi-objective warehouse allocation problem, the used 
algorithm can be modified to obtain non-dominated 
solutions for warehouse allocation problems with 
more than two objectives. 
 
Appendix 
One Pareto member for problem 6 in small scale in 200th 
iteration by NSGA-II approachis as follows (where number 
of customers =14, number of DCs =6, types of vehicles = 
3): 
Number of Pareto front Members = 3 
For 1st element of Pareto front, depot vector is: 
y =1     1     1     1     1     1 
For 1st element of Pareto front, Allocation matrix is: 

X= DC1 DC2 DC3 DC4 DC5 DC6 Types of 
vehicles 

customer1 0 0 0 0 0 1 3 
customer2 0 0 1 0 0 0 3 
customer3 0 0 0 1 0 0 3 
customer4 0 0 0 1 0 0 2 
customer5 0 0 0 0 1 0 2 
customer6 0 1 0 0 0 0 3 
customer7 1 0 0 0 0 0 1 
customer8 0 1 0 0 0 0 3 
customer9 0 0 0 1 0 0 1 

customer10 0 0 1 0 0 0 3 
customer11 0 0 0 0 1 0 2 
customer12 0 0 0 0 1 0 2 
customer13 0 0 1 0 0 0 

0 
2 

customer14 1 0 0 0 0 1 
For 1st element of Pareto front, objective values are: 
Final objective values:Total Cost = 3.1670e+005 
Transit Time = 2.8700 
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Fig.2. Auto tuning parameters (Crossover Probability, Mutation 

Probability) 
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Fig.3. Pareto front of problem 1 in small scale by NSGA-II  

a) 3rd and b) 100th  iteration with npop=200 

Table1.Computational results of NSGA-II for small scale cases 

Problems 

Number  
of 

customers 

Number 
of 

depots 

Types  
of 

Vehicles 

NSGA-II with 200 iterations 
npop=50 

NSGA-II with 500 iterations 
npop=50 

NOS Diversity Time (min) NOS Diversity Time 
(min) 

problem 1 21 7 3 6 9754 2.65 9 9948 5.85 
problem 2 8 3 2 3 6350 2.36 7 7660 5.25 
problem 3 15 3 2 4 4614 2.54 4 3713 5.79 
problem 4 10 4 2 4 1792 2.40 3 3272 5.53 
problem 5 12 5 2 2 2045 2.50 4 6572 5.76 
problem 6 14 6 3 3 3250 2.68 4 7910 5.98 
problem 7 20 5 2 2 3800 2.52 3 3809 5.53 
problem 8 26 4 2 6 8155 2.45 5 9543.9 5.80 
Average - - - 3.75 4970 2.51 4.875 6553.49 5.69 

Table2.Computational results of NSGA-II for large scale cases 

problems 

Number 
 of 

customers 

Number 
of  

depots 

Types  
of 

Vehicles 

NSGA-II with 200 iterations 
npop=150 

NSGA-II with 500 iterations 
npop=150 

NOS diversity Time (min) NOS diversity Time 
(min) 

problem 1 32 7 3 6 7987 19.45 5 8984 41.44 
problem 2 40 11 3 5 1954 19.52 6 4778 43.12 
problem 3 24 6 2 4 5955 18.85 5 6389 45.32 
problem 4 70 9 3 6 6533 20.66 6 8348 49.24 
problem 5 62 9 3 3 1706 18.60 5 1986 50.02 
problem 6 80 7 3 2 3786 20.68 5 4961 46.53 
problem 7 68 11 3 4 1825 19.79 4 1950 41.58 
problem 8 60 10 3 6 2519 18.68 6 3792 39.98 
Average - - - 4.5 4033.12 19.53 5.25 5148.5 44.65 

Table4.Comparison of NSGA-II and LP-metirc method for solving some small scale cases 

Some problems 
in small cases 

Number 
of 

variables 

LP-metric method Best compromise solution by 
NSGA-II (500 iterations) 

Error of NSGA-II 

First 
objective 

Second 
objective 

Time 
(min) 

First 
objective 

Second 
objective 

Time 
(min) 

First 
objective 

Second 
objective 

Problem 2 51 58740.00 1.894 5.25 59147.00 1.882 8.65 0.69% 0% 
Problem 4 84 297399.63 1.850 5.53 300419.52 1.850 14.08 1.01% 0% 
Problem 5 125 237972.92 1.439 5.76 241403.43 1.441 21.37 1.44% 0.14% 
Average - 198037.52 1.73 5.51 200323.32 1.72 14.70 1.05% 0.05% 
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