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Abstract: - The purpose of this study is to incorporate the cost of raw material into the classical production 
model with planned shortages. A mathematical model is developed to account for the cost of producing and 
holding the finished product, the administrative and backorder costs of shortages, as well as the cost of 
acquiring and holding the raw materials used in the production process. Explicit expressions for the optimal 
production and planned shortage quantities are derived from the mathematical model. Moreover, a proof of the 
uniqueness of the optimal solution is provided. Numerical examples are presented to analyze the sensitivity of 
the optimal solution relative to changes in the parameters of the model. 
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1 Introduction 
The economic production quantity (EPQ) model 
examines the inventory problem of determining the 
optimal quantity to be produced in order to meet the 
demand for a certain item. This classical model, 
which dates back to the early 20th century [1], 
imposes several simplifying assumptions. Over the 
past hundred years, the classical EPQ model has 
been extensively researched by relaxing the imposed 
assumptions and incorporating real life factors into 
this model. Factors considered include: shortages, 
time value of money, credit facilities, deteriorating 
items, quality, and raw material used in the 
production process.  

The classical EPQ model considers the case 
where the demand for a certain item is met by 
producing the item. The model assumes that the 
production rate α and the demand rate β are 
constant and known with α > β. The cost 
components are the setup cost K, the holding cost 
per item produced per unit time hp, and the 
production cost per unit Cp. For a given production 
quantity Y, the total cost per unit time function is 
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The optimal quantity to be produced Y*, the 
minimizer of the TCU, is given by  
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One of the assumptions of the classical EPQ 
model is that shortages are not allowed. However, 
an extension of the model that allows for planned 
shortages can be found in most books on inventory 
models; for instance, see [2]. 

The various costs associated with raw material 
used to produce the finished items are not reflected 
in the classical model. Recently, considerable 
research work has been dedicated to incorporate the 
costs of raw material into the EPQ model. Salameh 
and El-Kassar incorporated the cost of raw material 
used in the production process into the classical 
EPQ model [3]. Several papers extended Salameh 
and El-Kassar model in various directions. For 
instance, a number of papers studied the effect of 
quality of raw material on the EPQ model [4], [5], 
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[6], [7] and [8]. In another direction, the effect of 
raw material on the EPQ model was considered in 
the context of supply chain [9], [10], [11] and [12]. 

The purpose of this paper is to extend the 
classical EPQ model to incorporate the costs of raw 
material into the EPQ model with planned 
shortages. For simplicity, and without loss of 
generality, we consider the case where a single type 
of raw material is used in the production process 
and each unit of the finished product requires one 
single unit of a raw material. The rest of this paper 
is structured as follows. The mathematical model is 
accounting for the cost of producing and holding the 
finished product, the administrative and backorder 
costs of shortages, as well as the cost of acquiring 
and holding the raw materials used in the production 
process is developed in section 2. Explicit 
expressions for the optimal production and planned 
shortage quantities are derived in section 3. A proof 
of the uniqueness of the optimal solution is also 
provided in section 3. Numerical examples that 
analyse the sensitivity of the optimal solution 
relative to changes in the parameters of the model 
are presented in section 4. The paper is concluded in 
section 5. 
 
 
2 The Mathematical Model 
The following notation is used throughout the rest of 
this paper: 
 
Y Order size of raw material 
S Size of planned shortage 
Z maximum inventory level 
α Production rate 
β Demand rate 
Tp  Length of the production period 
T  Length of the inventory cycle 
T1  time to fulfil the backorder of size S 
T2  time to build the maximum inventory level 
Z 
T3  time to deplete the maximum inventory 
T4  time to build a backorder of size S 
Cr  Cost per item raw material 
Cp  production cost  
Cb  Administrative cost per item short 
Cs  Cost per item short per unit time  
C0  ordering cost of raw materials 
C1 setup cost for production 
i inventory holding cost rate 
hr  holding cost of raw materials  
hp  holding cost due to production  
 

The raw materials acquired from a supplier are 
processed into a finished product at a production 
rate α. Let Y be the order size of the raw material, an 
unknown to be determined and let Cr be the cost per 
unit of raw material. The raw materials are stored 
and processed at a rate α until it is depleted at the 
end of the production period. The length of the 
production period is  

Tp = Y/α.      (3) 
The inventory level for raw materials is shown in 

figure 1. During the production period, the finished 
product is produced at a rate α and consumed at the 
demand rate β.  

To determine the optimal production quantity Y* 
and the optimal shortage quantity S*, we first 
calculate the total cost per cycle function and then 
the total cost per unit time function. The cost 
components per inventory cycle consists of:  

i- ordering, purchasing and holding costs of raw 
materials; 

ii- setup cost of production; 
iii- production and holding costs of finished 

product; 
iv- shortage and backorder costs. 
 
 

 
 

At the start of the production period and until 
time T1, the excess amount of the finished product is 
used to fulfil the S units of backorders at a rate of 
α−β.  Hence,  
T1 = S/(α−β).       (4) 

After such time and until the end of the 
production period, the excess amount of the finished 
product is used to accumulate inventory of the 
finished product at a rate of α−β. This occurs during 
a time period of T2, where Tp = T1+T2. Using (4), we 
have  
T2 = Tp − T1 = Y/α − S/(α−β).    (5) 
At the end of this period, a maximum inventory 
level Z is reached. Then,  
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This maximum level will be used to meet the 
demand at a rate β until time T3 when the inventory 
level of the finished product reaches zero. Hence,  
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Throughout the remainder of the inventory cycle, 
a planned shortage of size S is built up at the 
demand rate β until time T4, where 

.4 β
=

ST       (8) 

The inventory level for the finished product is 
shown in figure 2. Note that the length of the 
inventory cycle is T = T1 + T2 + T3 + T4; that is, 

 .
β

=
YT     

     (9) 
The ordering cost of raw materials is C0 and the 
purchasing cost is CrY. The raw materials holding 
cost is the holding cost per unit of material per unit 
time, hr, multiply by the average on hand inventory 
of raw materials times the cycle length. From figure 
2, we have 
 Holding Cost of Raw Material = 

α
=

22
1 2YhT

T
T

Yh r
p

r .   (10) 

Note that, the holding cost per unit of material per 
unit time, hr, is the product of the inventory holding 
cost rate i and the unit purchasing cost Cr. That is,  

.rr iCh =     
     (11) 

 
The cost of producing the Y units of the finished 
product is the sum of the setup is C1 and the 
production cost is CpY. The holding cost per unit of 
the finished product is the sum of hr and hp, where 
hp = iCp. This is due to the fact that a single unit of 
the finished product incur both the cost of 
production as well as the cost of raw material.  Thus 
the finished product holding cost is the average 
inventory of on hand finished product times the 
inventory cycle length times the holding cost per 
unit of a finished product per unit time. From (5)-
(7), we have  
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The shortage cost has two components. The first 

is the time independent administrative cost given by 
CbS, while the second is time dependent obtained by 
multiplying the cost per unit short per unit time Cs 
by the area below the horizontal axis in figure 3. 
From (4) and (8), the shortage cost per inventory 
cycle is  
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The total inventory cost per cycle function TC(Y, S) 
is obtained by adding all cost components. Hence,            
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The total inventory cost per cycle function, TCU(Y, 
S), is obtained by dividing (14) by the cycle length T 
= Y/β so that   
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Fig. 2: Finished Product Inventory level 
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3 The Optimal Solution 
To obtain the optimal production quantity Y* and the 
optimal shortage size S*, we calculate the first 
partial derivatives of TCU(Y, S) and set these 
derivatives equal to zero. Now  
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Setting ∂TCU/∂S equal to zero and multiplying 

by Y, we have 
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Solving (18) for Y, yields 
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Setting (16) equal to zero and multiplying by Y2, 

we have  
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Solving for Y, we obtain 
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Setting the expressions for Y in (19) and (20) 
equal to each other, squaring and cross multiplying, 
we get 

( ) ( )

( ) ( )

0)/1(2

)())(/1(2

)/1(
1.2

)/1(
1

2

2
10

2

22

2

22

=−βαβ−−

+−β+αβ−−

αβ−









+

++
β

+

αβ−









+

+
+

+

β

SCSC

hhSCC

S
hh

C
hh
CK

S
hh

CK
hh
CK

sb

pr

pr

s

pr

b

pr

s

pr

b

             (21) 

where K is the denominator in (20); that is 
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Rearranging the terms of (21), the following 
quadratic equation is obtained  
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Then the optimal shortage size is  
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The optimal production quantity is obtained by 
substituting the value of S* in (19) so that 
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To demonstrate the uniqueness of the optimal 
solution, we first calculate the Jacobian matrix with 
entries equal to the following second partial 
derivatives:  
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The Jacobian matrix is  
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The determinant of the Jacobian matrix is always 
positive since  
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Since |J|, 2
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all positive, we have that the optimal solution 
(Y*,S*) given in (25) and (26) is the unique 
minimizer of the TCU(Y, S) function.   
 

Note that the discriminant B2 − 4AC under the 
radical in (24) gives a condition on the 
administrative cost. When simplified, the 
discriminant is given by   
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Since the first factor in the numerator and the 
denominator are both positive, the condition on Cb 
for an optimal solution to exist is  

.
)/1(

))((2 10

αβ−β

+++
<

CChhC
C prs

b              (29) 

4 Numerical Examples 
The daily demand and production rates for a certain 
item are β = 100 α = 300. The ordering cost of the 
raw materials used in production is C0 = $100 with a 
unit purchasing cost Cr = $5. The production and 
setup cost are Cp = $10 and C1 = $1,250. The 
holding cost rate is 2% per day so that hr = 5(0.02) = 
$0.1 per item per day, and hp = 10(0.2) = $0.2 per 
item per day. The shortage cost is Cs = $0.1 per unit 
per day and the administrative shortage cost is Cb = 
$0.  

Then K = 0.1556, A = 0.2222, B = 0, and C = 
−180, so that the optimal solution is to produce Y* = 
1800 units during each production run and to plan 
for S* = 900 units of shortages. The corresponding 
daily total cost of TCU[Y*, S*] = $1,650.  The 
optimal policy calls for an inventory cycle length 
quantity of T* = 18 days, production period of Tp

* = 
6 days, and a maximum inventory level of Z* = 300 
units.  

To study the effects of changes in the parameters 
of the problem on the optimal solution, the above 
example was used with varying the values of Cs, and 
C1. First, we kept Cb = 0. The results are shown in 
Table 1.  

 
Table 1: Effects of Changes in Cs and C1   

 
 
 The results of Table 1 indicate that when the 
administrative shortage is $0, the size of the number 
of planned shortage relative to the lot size is high 
when the time dependent shortage cost is low and 
that relative size decreases as the shortage cost 
increases. We also note that the total cost per unit 
time is not very sensitive to change in the time 
dependent shortage cost and the ordering cost of raw 
material.  

C 1 S Y TCU
 Cb  =  0.
 Cs  =  0. 0 516.4 774.6 1,525.82$ 

200 894.4 1341.6 1,544.72$ 
800 1549.2 2323.8 1,577.46$ 

1400 2000.0 3000.0 1,600.00$ 
 Cs  =  0.1

0 244.9 489.9 1,540.82$ 
200 424.3 848.5 1,570.71$ 
800 734.8 1469.7 1,622.47$ 

2000 1122.5 2245.0 1,687.08$ 
 Cs  =  0.5

0 88.9 355.4 1,556.27$ 
600 235.1 940.3 1,648.88$ 

1000 294.7 1178.8 1,686.64$ 
2000 407.2 1628.7 1,757.88$ 
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4 Conclusion 
The model presented in this paper accounts for the 
costs due to raw material on the classical economic 
production model with planned shortages. The 
mathematical models was derived and explicit 
expressions for the optimal production and shortage 
quantities were obtained. A proof of the uniqueness 
of the optimal solution was presented. Numerical 
examples were given to illustrate the model and to 
examine the sensitivity of the optimal solution 
relative to changes in the parameters of the model.  

For future work, we suggest incorporating the 
effects of quality of the raw materials in this model. 
Also, we suggest studying the effects of quality of 
the finished product where on these models by 
considering reworking and scraping the imperfect 
quality finished items. In other direction, we suggest 
considering the model presented in the paper in the 
supply chain context. 
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