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Abstract: - The purpose of this study is to incorporate the cost of raw material into the classical production
model with planned shortages. A mathematical model is developed to account for the cost of producing and
holding the finished product, the administrative and backorder costs of shortages, as well as the cost of
acquiring and holding the raw materials used in the production process. Explicit expressions for the optimal
production and planned shortage quantities are derived from the mathematical model. Moreover, a proof of the
uniqueness of the optimal solution is provided. Numerical examples are presented to analyze the sensitivity of
the optimal solution relative to changes in the parameters of the model.
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1 Introduction

The economic production quantity (EPQ) model
examines the inventory problem of determining the
optimal quantity to be produced in order to meet the
demand for a certain item. This classical model,

which dates back to the early 20" century [1], vio | 2CB @)
imposes several simplifying assumptions. Over the hp(l—B/a)
past hundred years, the classical EPQ model has One of the assumptions of the classical EPQ

been ex:gnswel;(; r_esearcheci_by relalx:pfg tpetlmpo_sid model is that shortages are not allowed. However,
assumptions and incorporating real fife Tactors 1nto an extension of the model that allows for planned

th's model. Factors conS|d_ered _|r_1(_:lude. sh(_)rtag_es, shortages can be found in most books on inventory
time value qf money, credit faC|I|_t|es, deterlpratmg models; for instance, see [2].
items, _quallty, and raw material used in the The various costs associated with raw material
production Process. . used to produce the finished items are not reflected

The classical EPQ model (_:on_5|ders_ the case in the classical model. Recently, considerable
where _the dem_and for a certain item is met by research work has been dedicated to incorporate the
producmg the item. The model assumes that the costs of raw material into the EPQ model. Salameh
production rate o and the demand rate B are and El-Kassar incorporated the cost of raw material

(00

The optimal quantity to be produced Y*, the
minimizer of the TCU, is given by

_ CoB h_p( _Ej
TCU(Y)=CpB+ v + 5 1 Y . )

constant and known with o > B. The cost used in the production process into the classical
components are the setup cost K, the holding cost EPQ model [3]. Several papers extended Salameh
per item produced per unit time h, and the and El-Kassar model in various directions. For
production cost per unit C,. For a given production instance, a number of papers studied the effect of
quantity Y, the total cost per unit time function is quality of raw material on the EPQ model [4], [5],
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[6], [7] and [8]. In another direction, the effect of
raw material on the EPQ model was considered in
the context of supply chain [9], [10], [11] and [12].

The purpose of this paper is to extend the
classical EPQ model to incorporate the costs of raw
material into the EPQ model with planned
shortages. For simplicity, and without loss of
generality, we consider the case where a single type
of raw material is used in the production process
and each unit of the finished product requires one
single unit of a raw material. The rest of this paper
is structured as follows. The mathematical model is
accounting for the cost of producing and holding the
finished product, the administrative and backorder
costs of shortages, as well as the cost of acquiring
and holding the raw materials used in the production
process is developed in section 2. Explicit
expressions for the optimal production and planned
shortage quantities are derived in section 3. A proof
of the uniqueness of the optimal solution is also
provided in section 3. Numerical examples that
analyse the sensitivity of the optimal solution
relative to changes in the parameters of the model
are presented in section 4. The paper is concluded in
section 5.

2 The Mathematical Model

The following notation is used throughout the rest of
this paper:

Y Order size of raw material

S Size of planned shortage

Z maximum inventory level

o Production rate

B Demand rate

Tp Length of the production period
T Length of the inventory cycle

T, time to fulfil the backorder of size S

T, time to build the maximum inventory level
z

Ts time to deplete the maximum inventory
T, time to build a backorder of size S

C, Cost per item raw material

Co production cost

Co Administrative cost per item short

Cs Cost per item short per unit time

Co ordering cost of raw materials

C, setup cost for production

i inventory holding cost rate

h, holding cost of raw materials

hp holding cost due to production
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The raw materials acquired from a supplier are
processed into a finished product at a production
rate o.. Let Y be the order size of the raw material, an
unknown to be determined and let C, be the cost per
unit of raw material. The raw materials are stored
and processed at a rate o until it is depleted at the
end of the production period. The length of the
production period is

T, = Ylo. 3)

The inventory level for raw materials is shown in
figure 1. During the production period, the finished
product is produced at a rate o and consumed at the
demand rate B.

To determine the optimal production quantity Y
and the optimal shortage quantity S°, we first
calculate the total cost per cycle function and then
the total cost per unit time function. The cost
components per inventory cycle consists of:

i- ordering, purchasing and holding costs of raw

materials;

ii- setup cost of production;

ili-production and holding costs of finished

product;

iv- shortage and backorder costs.

3 Taventory level

time

- T=vi »

Fig. 1: Inwentory Lewel of Raw Material

At the start of the production period and until
time T4, the excess amount of the finished product is
used to fulfil the S units of backorders at a rate of
o—f. Hence,

Ty = Sl(o—p). 4)

After such time and until the end of the
production period, the excess amount of the finished
product is used to accumulate inventory of the
finished product at a rate of a—f3. This occurs during
a time period of T, where T, = T;+T,. Using (4), we
have
T,=T,—T1=Ylo— SI(a—). (5)
At the end of this period, a maximum inventory
level Z is reached. Then,
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Y S
Z=T,(0-PB)=| ———— | (a—
) (a a—BJ(a p) ©
=Y(1-B/a)-S.
This maximum level will be used to meet the
demand at a rate 3 until time T when the inventory

level of the finished product reaches zero. Hence,
r,= 2 YUBla)=s Yy gy S
p p p
Throughout the remainder of the inventory cycle,
a planned shortage of size S is built up at the
demand rate 3 until time T4, where

T, =—. 8
i (8)
The inventory level for the finished product is
shown in figure 2. Note that the length of the
inventory cycleis T=T; + T, + T3 + Ty; that is,

T-1

p
9)

The ordering cost of raw materials is C, and the
purchasing cost is C,Y. The raw materials holding
cost is the holding cost per unit of material per unit
time, h,, multiply by the average on hand inventory
of raw materials times the cycle length. From figure
2, we have

Holding Cost of Raw Material =
1, T y?
he=Y LT =h— . 10
Y T =M (10)

Note that, the holding cost per unit of material per
unit time, hy, is the product of the inventory holding
cost rate i and the unit purchasing cost C,. That is,
h, =iC,.
(11)

The cost of producing the Y units of the finished
product is the sum of the setup is C; and the
production cost is C,Y. The holding cost per unit of
the finished product is the sum of h, and h,, where
hy, = iC,. This is due to the fact that a single unit of
the finished product incur both the cost of
production as well as the cost of raw material. Thus
the finished product holding cost is the average
inventory of on hand finished product times the
inventory cycle length times the holding cost per
unit of a finished product per unit time. From (5)-
(7), we have
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Holding Cost of Finished Product
1_ (Tr+T3)
=(h, +h,).=Z2——=2T
(e +hp)-2 T

_ (e +hp) (Y (1-%-3}(\( —S—O‘J.
2B o oa—p

b
1 Inventory
Level

(12)

a-p, B

Ty T2 T3 Ts

Time

T

T

Fig. 2: Finished Product Inventory level

The shortage cost has two components. The first
is the time independent administrative cost given by
CpS, while the second is time dependent obtained by
multiplying the cost per unit short per unit time C,
by the area below the horizontal axis in figure 3.
From (4) and (8), the shortage cost per inventory
cycle is

Shortage Cost=C,,S + Cg %S@.T

:CbS+Cs£S i+§
2 \a-B B

aS?
* 2B(0—B)
The total inventory cost per cycle function TC(Y, S)
is obtained by adding all cost components. Hence,
TC(Y,8)=Cu+Cy +(C, +Cp)Y
2 2
wh e s+C, T
20 2B(o—P)

+(h, +hp)%[v(1—%j—slv —%j

The total inventory cost per cycle function, TCU(Y,
S), is obtained by dividing (14) by the cycle length T
=Y/ so that

(13)

=C,S+C

(14)
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(Co+Cy)B

TCU(Y,S)=(C, +C,)B+ v

2
+hrﬂ+BCbS+ CsS
20, Y 2(1-B/a)Y

+M(1_E_§J(Y_ S ]
o Y 1-B/a

2
3 The Optimal Solution
To obtain the optimal production quantity Y" and the
optimal shortage size S°, we calculate the first
partial derivatives of TCU(Y, S) and set these
derivatives equal to zero. Now

oTCU :_(CO +C,)B +h B

(15)

CS?

oY y? "20 2(1-Bla)Y?
,1 (16)
BCyS u(lﬁ]{l(LJ ]
Y2 2 a Y1-Bla)) |
and
oaTCU _BCy . CS
S Y  @A-Bla)Y

17)
+(h +h ;—1
OPAY@A-Bla) )

Setting 0TCU/8S equal to zero and multiplying
by Y, we have

C.S
R )
(18)
+(hr + hp{;—Y}
(1-p/a)
Solving (18) for Y, yields
__BG C,S S (19)

(h, + hp)+ @-p/o)lh, + hp)+ 1-Bla)’

Setting (16) equal to zero and multiplying by Y?,
we have

C,S?
0=—(Co+Cy)p+Y2h P _peys—— S5
(Co+Cp)B+ g BCy 20-pla)

+hr+_hp(1_ﬁj{y 2 _L}
2 et 1-B/a)?

Solving for Y, we obtain
S2(h, +h, +Cy)
1-B/a)

h, %+(hr +h,))(1-B/o)

2B(Cy+Cy +CyS) +

‘- (20)
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Setting the expressions for Y in (19) and (20)
equal to each other, squaring and cross multiplying,
we get

KB%Cy? i
K 1

(hr+hp)2 [(hr+hp)+ J
L2KBC, (G ] S

(he+h,) {0, +h,) " @-Bla)
—2(1-Bl/a)(Cy+Cy)B—S>(h, +hy)
—-2(1-B/a)BC,S —C,S% =0
where K is the denominator in (20); that is
K:(1—Bloc)h,%+(hr+hp)(1—B/oc)2.

SZ
(1-Bla)?

Cs

(21)

(22)

Rearranging the terms of (21), the following
quadratic equation is obtained

2
Cs 1 _ _ 2
{K((hwhp)”] pia? (h”h")is

2KBC, | Cs 1
+[(hr+hp).[(hr+hp)+lJ(1—B/a) 2t B/a)BCb}s
KB v el )z
e S
Define

2
C 1
A=K S 1
[(hr+hp)+ ] —Blo)’

5. 2KBC, [ Co ] 1
(he+hy )by +hy) 7 @A-B/a)

-Cs—(hy +hy)

-2(1-B/a)pCy

2~ 2
C= KB—CbZ— 2(1-B/a)(Cq +Cy)B. (24)
(h, +h, )
Then the optimal shortage size is
[a2
« —B= -
St B+vB 4AC. (25)

2A
The optimal production quantity is obtained by
substituting the value of S* in (19) so that
Y*= Bcb CSS* S*

Ty +hy) T @=plolhy+h,) apray
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To demonstrate the uniqueness of the optimal
solution, we first calculate the Jacobian matrix with
entries equal to the following second partial
derivatives:

d?TCU _ 2B(Cy +C, +C,S)

Y 2 Y3 @
(Cs +h, +h)s?
+
Y31-Bla)
and
2
0Ty _ Cothy +hy (28)
52 (1-Bla)Y
d?TCU _ 8*TCU
Yes  asaY
_ (1-B/a)BCy+CiS+(h, +hp s (29)
1-B/a)Y?

The Jacobian matrix is
0°TCU  9%TCU

j-| ov? oYos
0°TCU  o°TCU
oSoY 052

The determinant of the Jacobian matrix is always
positive since

9]= 2(Co +CIBC, +hy +hp) | (1-B/o)B°Cy°
@L-Blo)y* L-plo)Y?*

2 2

0 (TCU£Y,S)) and 0 (TCUZ(Y,S)) are
oY 0S

all positive, we have that the optimal solution

(Y*,S*) given in (25) and (26) is the unique

minimizer of the TCU(Y, S) function.

Since |J|,

Note that the discriminant B> — 4AC under the
radical in (24) gives a condition on the
administrative  cost. When  simplified, the
discriminant is given by

1
— —14B(C.(h,a+h, (o —
T l4p(C (hyathy (e —B)
+ (hr (hr + hp)B)(za(Cs + hr + hp)(CO + Cl) :
+C2p(-a+p))]

Since the first factor in the numerator and the

denominator are both positive, the condition on C,
for an optimal solution to exist is

\/2(03 +hy +h,)(Co +Cy)
Cb < .
BA-B/a)

(29)
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4 Numerical Examples

The daily demand and production rates for a certain
item are B = 100 o = 300. The ordering cost of the
raw materials used in production is Co = $100 with a
unit purchasing cost C, = $5. The production and
setup cost are C, = $10 and C; = $1,250. The
holding cost rate is 2% per day so that h, = 5(0.02) =
$0.1 per item per day, and h, = 10(0.2) = $0.2 per
item per day. The shortage cost is C; = $0.1 per unit
per day and the administrative shortage cost is Cy, =
$0.

Then K = 0.1556, A = 0.2222, B =0, and C =
—180, so that the optimal solution is to produce Y* =
1800 units during each production run and to plan
for S* = 900 units of shortages. The corresponding
daily total cost of TCU[Y*, S*] = $1,650. The
optimal policy calls for an inventory cycle length
quantity of T" = 18 days, production period of T, =
6 days, and a maximum inventory level of Z" = 300
units.

To study the effects of changes in the parameters
of the problem on the optimal solution, the above
example was used with varying the values of C, and
C.. First, we kept C, = 0. The results are shown in
Table 1.

Table 1: Effects of Changes in C; and C,

Cc1l S Y TCU
Ch = 0.
Cs = 0. 0 516.4 774.6 | $1,525.82
200 894.4 1341.6 | $1,544.72
800 1549.2 | 2323.8 | $1,577.46
1400 2000.0 | 3000.0 | $1,600.00
Cs =01
0 244.9 489.9 | $1,540.82
200 424.3 848.5 | $1,570.71
800 734.8 1469.7 | $1,622.47
2000 11225 | 2245.0 | $1,687.08
Cs = 05
0 88.9 355.4 | $1,556.27
600 235.1 940.3 | $1,648.88
1000 294.7 1178.8 | $1,686.64
2000 407.2 1628.7 | $1,757.88

The results of Table 1 indicate that when the
administrative shortage is $0, the size of the number
of planned shortage relative to the lot size is high
when the time dependent shortage cost is low and
that relative size decreases as the shortage cost
increases. We also note that the total cost per unit
time is not very sensitive to change in the time
dependent shortage cost and the ordering cost of raw
material.
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4 Conclusion
The model presented in this paper accounts for the
costs due to raw material on the classical economic
production model with planned shortages. The
mathematical models was derived and explicit
expressions for the optimal production and shortage
quantities were obtained. A proof of the uniqueness
of the optimal solution was presented. Numerical
examples were given to illustrate the model and to
examine the sensitivity of the optimal solution
relative to changes in the parameters of the model.
For future work, we suggest incorporating the
effects of quality of the raw materials in this model.
Also, we suggest studying the effects of quality of
the finished product where on these models by
considering reworking and scraping the imperfect
quality finished items. In other direction, we suggest
considering the model presented in the paper in the
supply chain context.
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