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Abstract: This paper investigates the numerical solution of some particular types of fractional order differential
equations which involve multi derivative terms. Fractional equations have advantages when compared with the
integer order ones, since they describe some natural physical processes and dynamical systems much better. There
are some suggested numerical algorithms for these types of equations but they usually involve a single term.
Therefore, we present a hybrid method here. According to the method, the fractional order derivative is written
in terms of Riemann Liouville integral and this integral is evaluated as Hadamard finite-part integral numerically
as in [1]. On the other hand, the other ordinary derivatives are discretized in terms of standard finite difference
approximation. In this study, error estimate has been dealt with and reliability and convergency of the method are
tested on some illustrative examples.

Fractional Order Differential Equations, Hadamard Finite Part Integral and Finite Difference Method: Typing
manuscripts, LATEX

1 Introduction
Nowadays, differential equations which involve frac-
tional order terms are assumed to be suitable models
for many physical, biological processes as it is cited
in [2–4]. As a result, fractional differential equations
may arise from the many engineering and scientific
disciplines such as physics, chemistry, biology, eco-
nomics, control theory, signal and image processing,
biophysics, blood flow phenomena, aerodynamics, fit-
ting of experimental data, etc. The comprehensive de-
tails of the topic can be found in [2, 3, 5–7] and the
references therein. Unfortunately, these model equa-
tions are usually difficult to solve analytically. There-
fore, there is need to develop numerical or approx-
imate techniques. Some numerical or approximate
schemes have been developed so far. Among them,
finite difference approximation methods [8–12], frac-
tional linear multistep methods [13–15], the Adomian
decomposition method [16–18], variational iteration
method [18,19], differential transform method [20,21]
can be accounted. But, most generally, these methods
involve single derivative term and there is still need
to develop more powerful techniques for solving frac-
tional order equations with multi terms. In this study,
we introduce a hybrid method which is the combina-
tion of Diethelm’s method ( [1]) and the finite differ-
ence method. We consider here a class of differential

equations with the specified initial conditions of the
form:

Dq[y(t)− y0] = αy′′(t) + δy′(t) + βy(t) + f(t)

y(0) = y0, y
′(0) = y′0, (1)

where 0 < q < 1, f is a function which is defined
on [0,1], β ≤ 0 ,α, δ are some constants. Dqy defines
the qth order Riemann-Liouville fractional derivative
of the function y, and given by ( [22]),

(Dqy)(t) =
1

Γ(1− q)
d

dy

∫ t

0

y(u)

(t− u)q
du. (2)

The initial condition y(0) is incorporated into the left
hand side of Eq. (1) by following the common prac-
tice in the theory of fractional equations. This study
is organized as follows: in the next section, the Di-
etelm’s quadrature method for the Riemann Liouville
fractional derivative will be discussed. In the third
section, the hybrid method will be introduced for a
class of equations. The last section is the conclusion
which includes the further work and the discussion.

2 The Hybrid Method

The algorithm which is used here to evaluate frac-
tional derivative of a function is based on the obser-
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vations in [23] therefore, the integral can be inter-
changed by differentiation in Eq.(2) as,

Dqy(t) =
1

Γ(−q)

∫ t

0

y(u)

(t− u)q+1
du. (3)

The integral in Eq.(3) is analogous with the Hadamard
finite-part integral. For a given n we define an eq-
uispaced discretization in the interval such as tj =
j/n. If we apply the discretization into Eq.(3), for
j = 1, 2, ..., n , we obtain,

(Dqy)(t) =
1

Γ(−q)

∫ tj

0

y(u)− y(0)

(tj − u)q+1
du. (4)

If we use the transformation, tj − tjw = u, then, we
can write tj−u = tjw. Hence, arranging Eq.(4) gives,

(Dq)y(t) =
1

Γ(−q)

∫ 1

0

y(tj − tjw)− y(0)

(tq+1
j wq+1)

tjdw

=
t−qj

Γ(−q)

∫ 1

0

y(tj − tjw)− y(0)

wq+1
dw.(5)

For a defined n, an equispaced mesh can be defined
as tj = j/n on the interval and we replace the inte-
gral in Eq.(5) by the first order compound quadrature
formula same as in [1]. Therefore, this integral can be
evaluated as,

Qj [g] :=
j∑

k=0

αkjg(k/j) ≈
∫ 1

0
g(u)u−q−1du (6)

where the residual term is equivalent to:

Rj [g] =

∫ 1

0
g(u)u−q−1du−Qj [g] (7)

If we ignore the quadrature error, then we have

j∑
k=0

αkj ≈
∫ 1

0
u−q−1du = −1

q
(8)

Therefore, Eq.(5) becomes,∫ 1

0

y(tj − tjw)− y(0)

wq+1
dw

=
j∑

k=0

αkjyj−k −
1

q
y0 (9)

=
j∑

k=1

αkjyj−k + α0jyj −
1

q
y0

Being use the both endpoints of the integration inter-
val as a node, consequently, fractional derivative of

y of order q are explicitly evaluated by the following
formula:

(Dqy)(t) =
t−qj

Γ(−q)

( j∑
k=1

αkjyj−k + α0jyj +
1

q
y0
)

=
t−qj α0j

Γ(−q)
yj +

t−qj

Γ(−q)

( j∑
k=1

αkjyj−k +
1

q
y0
)

(10)

where the weights, αkj for j ≥ 1 , are calculated by
the following Lemma;

Lemma 1 In the quadrature formula Qj , αkj’s are
evaluated by:

q(1− q)j−qαkj =
−1 k = 0
2k1−q − (k − 1)1−q − (k + 1)1−q k = 1, . . . , j − 1
(q − 1)k−q − (k − 1)1−q + k1−q k = j

Proof 1 The Proof is straightforward from the defini-
tion of the quadratureformula.

3 Solutions of Some Particular Types
of Fractional Equations Involving
Multi Derivative Terms

In this section, we will mention about the hybrid
method for the solution of the Eq.(1) with the pre-
scribed initial conditions. According to the method
fractional derivative is evaluated by the quadrature
method which is defined by the formula Eq. (10) and
ordinary derivatives will be evaluated by finite differ-
ence method.

3.1 Case I: Solving Fractional Order Dif-
ferential Equation Involving First Order
Derivative Term

First of all, we will consider the case I, where we as-
sume that α = 0 and δ = 1 in Eq. (1). Hence, we can
write,

Dq[y − y0](t) = y′(t) + βy(t) + f(t) (11)

with the initial condition;

y(t0) = y0. (12)

The numerical algorithm for the fractional order
derivative in Eq.(11), which states on the left hand
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side of equation, has already been defined by Eq.(10)
in the case of equispaced grid for j = 1, . . . n. Now,
in Eq. (12), the term y′(t) will be approximated by
backward finite difference formulation again by using
the same nodes. If we write backward finite difference
formulation for the first derivative of y we approxi-
mately have

y′(tj) ≈
y(tj)− y(tj−1)

h
. (13)

As it is well known the error for the backward finite
difference formula is order O(n−1) since h = 1/n .
Substituting the last formula and the formula which is
given by Eq. (10) into Eq. (11) we obtain,

yj − yj−1
h

+ f(tj) + βy(tj) =
t−qj α0j

Γ(−q)
yj

+
t−qj

Γ(−q)

( j∑
k=1

αkjyj−k −
1

q
y0
)
. (14)

Arranging Eq. (14), that yields,

yj
(1

h
+ β −

t−qj α0j

Γ(−q)

)
=
yj−1
h

− f(tj) +
t−qj

Γ(−q)

( j∑
k=1

αkjyj−k −
1

q
y0
)
.(15)

Hence, for j = 1 we have,

y1
(1

h
+ β − t−q1 α01

Γ(−q)

)
=
y0
h
− f(t1)

+
t−q1

Γ(−q)

(
α11y0 −

1

q
y0
)

(16)

Therefore, y1 is obtained as,

y1 =
htq1Γ(−q)

Γ(−q)tq1 + βhΓ(−q)tq1 − hα01

(
y0
h
− f(t1)

+
t−q1

Γ(−q)

(
α11y0 −

1

q
y0
))

(17)

Subsequently, for j = 2, 3, .., n all yj’s are evaluated
from Eq. (15) easily. Now, for verifying the reliability
of the new hybride method we can solve some proto-
type problems with the given initial condition.

Example 1 Let us consider the following initial value
problem;

Dq[y](t) = y′(t)− y(t) + t2 − 2t+
2

Γ(3− q)
t2−q,

y(0) = 0. (18)

It can be taken out easily from the differential equation
that the solution of the the problem is y(t) = t2. By
using the formula in Eq.(14), we evaluate the yj’s for
j = 1, 2, . . . , n, and Table 1 lists the absolute errors
for h = 0.01 and h = 0.001 obtained from the hybrid
method. The second column in the same Table shows
the exact values of the function at particular points.
For finer mesh it is clear that the results much closer
to the exact solution.

q = 1/2

t y(t) = t2 h = 0.01 h = 0.001

0.1 0.01 0.000280 0.000001
0.2 0404 0.000150 0.000004
0.3 0.09 0.000570 0.000012
0.4 0.16 0.000186 0.000012
0.5 0.25 0.000319 0.000018
0.6 0.36 0.000494 0.000026
0.7 0.49 0.000724 0.000030
0.8 0.64 0.001025 0.000050
0.9 0.81 0.001437 0.000067
1.0 1.00 0.001929 0.000090

Table 1: The absolute errors for h = 0.01 and h =
0.001 at particular points t. The second column in
Table, indicates the exact solutions of the equation.

Figure 1: The comparison between the exact solution
and numerical solutions for h = 0.01 and h = 0.001
for different mesh size.
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Example 2 Now, we consider another initial value
problem which involves both fractional derivative and
first order derivative as follows;

Dq(y)(t) = y′(t)− y(t) + t4 − 1

2
t3 − 4t3 +

3

2
t2

− 3

Γ(4− q)
t3−q +

24

Γ(5− q)
t4−q,

y(0) = 0 (19)

Analytical solution of this problem is defined by the
function:

y(t) = t4 − 1

2
t3 (20)

The results which are obtained from Eq.(15) for yj’s
are listed in Table 2.

q = 1/2

t y(t) = t4 − 1
2 t

3 h = 0, 01 h = 0, 001

0.1 -0.0004 -0.000394 -0.000400
0.2 -0.0024 -0.002388 -0.002400
0.3 -0.0054 -0.005389 -0.005400
0.4 -0.0064 -0.006409 -0.006400
0.5 0.0 -0.000063 -0.000001
0.6 0.0216 0.021430 0.021596
0.7 0.0686 0.068244 0.068559
0.8 0.01536 0.152945 0.153583
0.9 0.2916 0.290491 0.291570
1.0 0.5 0.498223 0.499952

Table 2: Comparing the numerical results, which are
obtained from the new method for different mesh
sizes, h = 0.01 and h = 0.001, with exact solutions
at particular points t.

According to the table, the numerical method im-
plies that the results are in good agreement with the
exact solutions. It is clear that finer mesh gives more
accurate results.

3.2 Case II: Solving Fractional Order Dif-
ferential Equation, Involving Second Or-
der Derivative Term

As a second case, we will consider an another frac-
tional differential equations involving second order
derivative term. The method is straightforward and
similar steps will be applied to the Case II. Here, for
simplicity, we assume that α = 1 and δ = 0 and
β < 0 in Eq. (1). Hence, we can write,

Dq[y − y0](t) = y′′(t) + βy(t) + f(t)

y(0) = y0, y
′(0) = 0 (21)

Again, we consider, 0 < q < 1, and f is a known
function. We will compute the y values on the equi-
spaced grid as it is mentioned in case I. For y′′(t) we
will use central finite difference formula ;

f ′′(ti) ≈
f(ti+1)− 2f(tj) + f(ti−1)

h2
(22)

where the error of the formula is O(n−2) as known.
By substituting Eq. (15) and Eq. (22) into Eq. (21),
we have;

yj+1 − 2yj + yj−1
h2

+ f(tj) + βy(tj) =
t−qj α0j

Γ(−q)
yj

+
t−qj

Γ(−q)

( j∑
k=1

αkjyj−k −
1

q
y0
)

(23)

Arranging the last equation,

yj+1

h2
=

2yj
h2
− yj−1

h2
− f(tj)− βy(tj)

+
t−qj α0j

Γ(−q)
yj +

t−qj

Γ(−q)

( j∑
k=1

αkjyj−k −
1

q
y0
)

(24)

and solving in terms of yj+1 we obtain,

yj+1 = h2
[
− yj−1

h2
− f(tj) + y(tj)

( 2

h2
+
t−qj α0j

Γ(−q)
− β

)

+
t−qj

Γ(−q)

( j∑
k=1

αkjyj−k −
1

q
y0
)]

(25)

Here, we will give an example related to Case II.

Example 3 Consider the following initial value prob-
lem;

Dq[y](t) = y′′(t)− y(t) + t2 − 2 +
2

Γ(3− q)
t2−q,

y(0) = 0, y′(0) = 0. (26)

Solution of the differential equation is easily verified
that y(t) = t2. Now letting q = 1/2, the numerical
values of yj’s can be evaluated from Eq. (25). These
results are listed in Table 3. Column 2 indicates the
exact results at particular values of t and columns 2
and 3 shows absolute errors for h = 0.01 and h =
0.001 respectively. For finer mesh, it is clear that the
results much more reliable.

Now, we will consider another example for Case II,
but this time we will evaluate the numerical results
for different q values.
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q = 1/2

t y(t) = t2 h = 0.001 h = 0.0001

0.1 0.01 0.000101 0.000010
0.2 0.04 0.000207 0.000021
0.3 0.09 0.003210 0.000032
0.4 0.16 0.000444 0.000044
0.5 0.25 0.000581 0.000058
0.6 0.36 0.000733 0.000073
0.7 0.49 0,489095 0.000090
0.8 0.64 0.001100 0.000110
0.9 0.81 0.001321 0.000132
1.0 1.0 0.001575 0.000157

Table 3: The absolute errors for h = 0.01 and h =
0.001 at particular points t in Example 3. The second
columns indicates the exact solutions of the equation

Example 4 Consider the following initial value prob-
lem,

Dq[y](t) = y′′(t)− y(t) + t4 − 1

2
t3 − 12t2 + 3t

− 3

Γ(3, 5)
t2,5 +

24

Γ(4, 5)
t3,5 (27)

y(0) = 0, y′(0) = 0,

For q = 0.5 we have,

D0.5[y](t) = y′′(t)− y(t) + t4 − 1

2
t3 − 12t2 + 3t

− 3

Γ(3, 5)
t2,5 +

24

Γ(4, 5)
t3,5 (28)

y(0) = 0, y′(0) = 0,

and the analytical solution of Eq.(28) is

y(t) = t4 − 1

2
t3 (29)

For different values of q, as far as we know, analytical
solutions do not exist. Therefore, we have used the hy-
brid method for evaluating solution of the problem for
different q values with step size h = 0.01 and the re-
lated plots are shown in Figure 2. Table 4 also shows
numerical results for the same problem.

3.3 Error Estimation

Now, we will give the error estimation for the hybrid
method given in Section 2. Based on residual error
estimation, the error of the method is negligable. Let

t q = 0.25 q = 0.75 q = 0.99 q = 1

0.1 -0.000395 -0.000398 -0.000403 -0.000409
0.2 -0.002378 -0.002426 -0.002489 -0.002512
0.3 -0,005322 -0.005526 -0.005762 -0.005814
0.4 -0.006221 -0.006695 -0.007188 -0.007264
0.5 0.002730 -0.000419 -0.001035 -0.001089
0.6 0.021797 0.021390 0.021270 0.021363
0.7 0.068236 0.069455 0.071285 0.071763
0.8 0,151672 0.157197 0.163340 0.164957
0.9 0.286335 0.300796 0.316437 0.319108
1.0 0.488557 0.519255 0.550879 0.555859

Table 4: Comparing the numerical results, which are
obtained from the new method for h = 0.01 and q =
0.25, q = 0.75, q = 0, 99 , q = 1.

Figure 2: Numerical Solutions of Example 4 , for h =
0.01 and comparison of the solutions for q = 0.25,
q = 0.75, q = 0.99 and for q = 1, results are obtained
via Maple 18.

y(tj) and yj denote the exact and numerical solutions
respectively. Hence, we can write,

Dq[y(tj)] − αy′′(tj)− δy′(tj)− βy(tj)

− f(tj) = 0 (30)

and

Dq[yj ]− αy′′j − δy′j − βyj − fj = Res (31)
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where Res is the residual function. Subtracting Eq.
(31) from (30), we have

Dq[y(tj)− yj ] − α(y′′(tj)− y′′j )− δ(y′(tj)− y′j)
− β(y(tj)− yj) = Res (32)

If we denote ej = y(tj)−yj as an error function then,
by Eq. (32), we get,

Dq[ej ]− αe′′j − δe′j − βej = Res (33)

Hence, Eq. (33) with the initial conditions ej(0) = 0
and e′j = 0 can be solved same as in Section 2. As a
result, we define a measure for the error estimation as
follows:

E = max{|ej | : 0 < t < 1}. (34)

4 Conclusion

So far, many numerical or approximate methods have
been introduced for solving fractional order differ-
ential equations but many of them involve only one
derivative term. Here, we aimed to solve fractional
equations involving multi derivative terms. The new
method, which is called the hybrid method, is the
combination of quadrature and finite difference meth-
ods. The method is very easy to apply and the cal-
culations are straightforward. In the given examples
above, we have considered two cases. The first one
involves first order derivative term together with the
fractional order one and in the second case, we have
investigated an equation which involves a second or-
der derivative term and a fractional order term. These
examples indicate that the relaibility and applicibility
of the method is quite well when are compared with
the analytical solutions and for finer mesh one can ob-
tain more relaible results. In this work, we also con-
sider the solution of fractional order differential equa-
tion for different q values. If we examine the Figure 4,
we see that the solution of ordinary differential equa-
tion for q = 1 overlaps with the cases q 6= 1 up to
some particular value of t ≈ 1. When t is greater
than 1, solutions tend to diverge from the solution of
ordinary differential equation. When q = 0.99 there
is a small difference between the case q = 1. The
considerable difference occurs when q = 0.25 and
q = 1. This reveals that the fractional order equations
presumably describe more realistic models. As a fur-
ther work, this method can be applied to much wider
interval for q.
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