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Abstract: - The present article shows a proof of Riemann’s Hypothesis (RH) which is both general (i.e. valid 

for all the non-trivial zeroes of the zeta function) and elementary (that is not using the theory of the complex 

functions) in which the real constant σ=+1/2 arises by itself and automatically. The modified chi-square 

function in one of its four forms (±1/∙)Xk
2
(Ω,x/ω)  is used as an interpolating function of the progressions {n

±α
}, 

of their summations {∑n
±α

} and of the progressions {N
±α+1

/(±α+1)}, with α∈R n,N∈N so that k=2±2α and in 

the real plane (α,k) two half-lines are set up with k<2.  The use of the Euler-MacLaurin formula with the one-

to-one correspondence between the summation operation ∑ and the shift vector operator Σ≡(Σα,Σk) in the real 

2D plane (α,k) lead to find the zeroes of Euler’s function. Finally, the extrusion to the third imaginary axis  it  

leads to prove Riemann’s hypothesis.  
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1 Introduction 
Since 1859, when formulated by G.F.B. Riemann 

for the first time, Riemann’s hypothesis (RH), “all 

the non-trivial zeroes of the zeta function 

ζ(s)=ζ(σ+it) have real part equal to +1/2”, has been 

a challenge in number  theory in that, though 

accepted and experimentally verified up to values of   

t ≈ 10
15

  and beyond, it has never been proven. Its 

proof would have important consequences in both 

mathematics and physics [1-8]. As the experimental 

confirmation is not enough for mathematics, the 

present article shows a general (that is valid for any 

value of  t∈R up to ∞) and elementary (in the sense 

that it does not use the theory of complex functions) 

proof of RH.  

The proof uses some simple techniques [9-11]:  

1) the modified chi-square function as an 

interpolating function of the progressions {n
±α

}, of 

their summations {∑n
±α

} and of the progressions 

{N
±α+1

/(±α+1)}, with α∈R n,N∈N and the 

relationships k=2±2α;   

2) the Euler-MacLaurin formula valid for high 

enough N values;  

3) the on-to-one correspondence between the 

summation operation ∑ and the shift vector operator 

Σ in the plane (a k) so that the Euler equation  

ζ(α)=0 can be replaced by  Σ=0=null_vector i.e. 

│Σ│= 0 thus finding all the roots of Euler’s 

equations that is the zeroes of the Euler zeta 

function;  

4) the extrusion to the third imaginary axis  it  in 

both the positive and negative direction thus finding 

all the zeroes of Riemann’s zeta functions, in the 

same way as above, all of them having real part 

+1/2.              

 

 

2 Problem Formulation 
The modified chi-square function (±1/∙)Xk

2
(Ω,x/ω) 

with k degrees of freedom in one of its four forms:   

(±1/∙)Xk
2
(Ω,x/ω) =  

         = (±1/∙)[Ω/(2Γk/2)]∙[x/(2ω)]
(k/2–1)

∙e
–x/2ω

       (1) 

with k<2 is a general version  of the standard chi-

square function Xk
2
(x) also used in statistics [12-15]  

with the values  Ω = ω = 1 and is used as a fit 

function of the finite progressions {n
±α

}, of their 

summations {∑(n=1→N)n
±α

} and of the progressions 

{N
±α+1

/(±α+1)} taking advantage of the adjustment 

of its parameters k, Ω and ω just like the f(x)=x
±α

 

function and just as the Γ(x)=Γx function is an 

interpolating function of factorial numbers  n!  being 

x∈R+ 
and n∈N.    

    As a matter of fact it is very easy to verify that it 

is possible to write  

Xk
2
(Ω,x/ω)={Ω/[2Γk/2∙(2ω)

k/2–1
]}∙x

k/2–1
∙e

–x/(2ω)
 

and, being  Ω  a free parameter that can be selected 

at one’s own choice, being always x<<ω as also 

experimentally verified and shown later on, it is 

possible to write  

(±1/∙)Χk
2
(Ω,x/ω) = (±1/∙)1∙x

k/2–1
∙e

–x/(2ω) 
≈ 
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≈ (±1/∙)x
k/2–1

 = (±1/∙)x
α
 = ± x

±α
 

and, as we are not interested in the progressions  

{–n
±α

} fitted by  –x
±α

  we get  

x
k/2–1 

= x
±α 

       i.e.        k = 2 ± 2α 

with real domain α and real co-domain k<2 for all 

the progressions {n
±α

} and all their interpolating 

functions  (±1/∙)Χk
2
(Ω,x/ω). In such a way, from the 

geometric standpoint, two half-lines are created in 

the Euclidean real plane (α k) of equations   

k = 2 + 2α  for  α<0  and  k = 2 – 2α  for  α>0       (2) 

along which all the progressions {n
±α

} and all their 

interpolating functions  (±1/∙)Χk
2
(Ω,x/ω)  lay.  

    Simple numerical checks can be performed, as 

shown in the example of Fig. 1 where the fit of the 

progression {n
–0.05

}  by  the Χk
2
(A,x/xo) function is 

shown with the fit parameters   

A=1∙10
–6

 xo=9.74002∙10
125

 k=1.90=2+2α  

Γk/2=Γ0.95=1.03145332 X
2
test-value=5.592∙10

–19
  

R=I=1.000000000000 within the precision of the 

calculations δR=δI=1∙10
–12

 being R the Bravais-

Pearson correlation coefficient and I the non-linear 

index of correlation, both measuring the goodness of 

the fit. In addition <n
–0.05

>=<Xk
2
>=0.43246  and  

σprogr=σfit=0.019826   

 

 
Fig. 1 Fit between the progression {n

–0.05
} and the 

function Χk
2
(A,x/xo) with k=2+2α  

 

 
Fig. 2 Fit between the progression {n

+0.2
} and the 

function 1/Χk
2
(A,x/xo) with k=2–2α  

 

Again in Fig. 2 the fit of the progression {n
+0.2

} by  

the 1/Χk
2
(A,x/xo) function is shown with the fit 

parameters A=1∙10
–6 

  xo=3.422264∙10
31 

  k=1.60= 

=2–2α  Γk/2=Γ0.8=1.16422971  X
2

test-val=1.84248∙10
–9

   

R=I=1.000000000000 again within the precision of 

the calculations δR=δI=1∙10
–12

 and <n
+0.2

>=<1/Xk
2
> 

=29.117001  σprogr=σfit=4.621575 

   Of course, in the fitting  procedure, all the 

statistical tools have been used to make the fits at 

the utmost reliable level that is to match the data 

points and the fit curve as much as possible.  

    Both examples show that the decay (or growth 

according to the case) parameter is much greater  

than the number of terms  xo>>nmax  as already 

anticipated.  

    The next step of the proof involves the 

examination of the summation progressions 

{∑(n=1→N)n
±α

} which, owing  to the Euler-MacLaurin 

formula are equal to {N
±α+1

/(±α+1)} for N high 

enough, apart from an error term ε→0 for N→∞ as 

shown in the Fig. 3,  Fig. 4 and Fig. 5 where the 

examples of the progression {n
–0.5

}≡ Χk
2
(A,x/xo) 

and of the ∑ summation progression            

{∑(n=1→N)n
–0.5

} ≡ {N
+0.5

/0.5} ≈ 1/Χk
2
(A,x/xo)  are 

shown.  
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Fig. 3 Fit between the progression {n
–0.5

} and the 

function Χk
2
(A,x/xo) with k=2+2α=1  
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Fig. 4 Fit between the progression {N
+0.5

/0.5} and 

the function 1/Χk
2
(A,x/xo) with k=2–2α=1  
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Plain to say that this progression with the value of 

α=–1/2 is of the extreme importance in view of the 

proof of Riemann’s hypothesis. Thus it deserves the 

utmost attention.      
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Fig. 5 Fit between the two progressions 

{∑(n=1→2E7)n
–0.5

} and {N
+0.5

/0.5}  

 

    The previous Fig. 3 shows the progression {n
–0.5

} 

for 2∙10
7
 terms as fitted by the Χk

2
(A,x/xo) function 

with k=1.0=2+2α xo=2.00000∙10
12

 with 

R=I=0.999999999999     LSS=5.777417∙10
–10

   

X
2

test-value=1.86468∙10
–13

  while Fig. 4 shows the fit 

between the  progression {N
+0.5

/0.5}  again for 2∙10
7
 

terms as fitted by the  1/Χk
2
(A,x/xo) function with 

k=1.0=2–2α xo=5.00000∙10
11

  R=I=0.999999999999   

LSS=2.199636∙10
–8

   X
2
test-value=3.297636∙10

–5
   

    Fig. 5 shows the fit between the progression 

{∑(n=1→2E7)n
–0.5

} for 2∙10
7
 terms and the  progression 

{N
+0.5

/0.5} again for 2∙10
7
 terms with  

R=I=1.000000000000  and δR=δI= 1∙10
–12

  

Finally, Fig. 6 shows the error term (in percentage) 

and its linear (on a log-log scale) fit with the 

asymptotic limit  lim(N→∞)ε(N)=0.   
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Fig. 6 Percentage error between the two 

progressions {∑(n=1→2E7)n
–0.5

} and {N
+0.5

/0.5}  

 
     Thus it is possible to write the following 

schemes, all of them for  k<2:  

{n
–α

}  Χk
2
(A,x/xo)   k=2+2α   α>0        

   {∑(n=1→N)n
–α

}  {N
–α+1

/(–α+1)}   1/Χk
2
(A,x/xo)   

k=2–2α   α>0 

that is  

{n
–α

} ≈ Χk
2
(A,x/xo)    k=2+2α   α>0           

{∑(n=1→N)n
–α

} ≈ {N
–α+1

/(–α+1)} ≈  1/Χk
2
(A,x/xo)      

k=2–2α   α>0 

where, in addition, being  Δα = +1  always and  

k=2±2α  one gets  Δk = ±2 according to the case.  

    However, it is of the utmost importance to 

highlight that the latest  relation  Δk = ±2 holds for  

α < –1  and  α > 0 in that within the range α ∈ (–1,0) 

there is a different situation, as described in the 

following.  

 

3 PROBLEM SOLUTION 
It is possible, now, to move to the geometric 

representation of the situation on the (α k) Euclidean 

real plane as in Fig. 7 where the two half-lines 

k=2+2α for α<0 and k=2–2α for α>0 both valid for 

k<2 are shown, crossing one each other at the point 

(α,k)≡(0,2), and being the pillars of the whole topic. 

As a matter of fact, owing to the above relationships 

from the geometric viewpoint any summation 

operation  ∑(n=1→N) ≡∑ can be put in a one-to-one 

correspondence with a shift vector operator in the 

Euclidean plane  (α k) with components  (Σα Σk) ≡ 

(Δα Δk)  so that  

∑ ↔ Σ1,2 ≡ (Σα Σk) ≡ (Δα Δk) ≡ (+1 ±2) and         

│Σ1,2│= Σ1,2 = √5 for α < –1 and α > 0   

respectively.  

    As for the α range (–1,0) and k∈(0,2) the situation 

is easily verified again in Fig. 7.   

 

 
 

Fig. 7 Examples of the three vectors  Σ1   Σ2  and Σ  

on the plane (α,k) with the two half lines k=2±2α  

 
    Here it can be seen that, while the  Σ1  and  Σ2  

shift vectors lay on the two half-lines k = 2±2α  with 
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k < 2  and  α < –1     α > 0,  the  Σ  vector, valid for 

α∈(–1, 0), has its application point on the first half-

line (k=2+2α) and its final point on the second one 

(k=2–2α) spinning around the focus F≡(0, 0.75) of 

the parabola  k=1–α
2
  which is the envelope of all 

these Σ vectors. Having renamed the half-line  

k=2+2α  by  k=2–2α  thus highlighting the negative 

values of  α and thus being  k = 2–2α = 2–2(α+1) = 

= 2α,  it is easy to check that the vector  Σ  has 

components ≡ (Σα Σk) ≡ (Δα  Δk) ≡ (+1  4α–2)  and 

that, while rotating around this point F, it changes 

its norm according to its application point (α,  k) ≡  

≡ ( α, 4α–2)  thus having norm  

│Σ│= Σ = √[1+(4α–2)
2
] = √(16α

2
–16α+5) = Σ(α)  

    The next step is straightforward in that, as for the 

zeroes of Euler’s function that is the roots of the 

equation ζ(α) = ∑n
–α

 = 0,  owing to the above-said 

correspondence between the summation operation ∑  

and the shift vector operator  Σ  i.e. ∑ ↔ Σ   it is 

possible to write for the zeroes of Euler’s function  

Σ = 0 = null vector              

    │Σ│= Σ = √[1+(4α–2)
2
] = √(16α

2
–16α+5) = 0  

and solving this trivial equation leads to the two 

complex solutions   

α = +1/2 ± i/4  

    Again looking at Fig. 7 this means that the 

condition  ζ(α) = 0 is satisfied when the vector  Σ  is 

horizontal, i.e.  Σk = Δk = 4α – 2 = 0  

The extrusion to the third imaginary axis  it  leads to 

Fig. 8 (having renamed the α axis by σ thus 

following the standard symbolism with  s = σ + it) 

where the two half-lines k=2±2α have become the 

two half planes crossing one-each-other along the 

line (σ=0∩k=2) parallel to the  it  axis, thus forming 

a dihedron. 

 
 

Fig. 8 Extrusion of the whole plane (α k) to the third 

imaginary axis it  in both positive and negative 

directions (b) having renamed α by σ  

 

All that means that the generic Σ vector in the 3D 

complex space (σ k it) has components (Σσ Σk Σit)≡ 

≡(Δσ Δk iΔt)≡(1  4σ–2  it) and, owing to the fact 

that we are in the Euclidean space where the metric 

is simply the unitary diagonal matrix of components 

δmn = Kronecker symbol (δmn = 1 if m = n and = 0 

otherwise), the norm of this vector is  

│Σ│= Σ = √(ΣmδmnΣn) = √[1+(4σ–2)
2 
+t

2
] =  

= √(16σ
 2
–16σ +5+t

2
) 

    In such a way it is possible to write, for the zeroes 

of Riemann’s function,    

ζ(s) = ζ(σ + it) =∑n
–s

 = ∑n
–(σ + it) 

= 0  

that is, again as above, using the correspondence 

between the summation operation and the shift 

vector operator  

∑ ↔ Σ               Σ = 0 = null vector              

      │Σ│= Σ = √(16σ
 2
–16σ +5+t

2
) = 0  

Solving this equation leads to the complex solutions  

σ = +1/2 ± i/4∙√(1+t
2
)       ∀ t ∈ R     

that is just Riemann’s Hypothesis: all the non-trivial 

zeroes of the zeta function have real part equal to 

+1/2. In addition all these zeroes are symmetric in 

respect to the imaginary axis  it  as expected.     

    Going back again to Fig. 8 all the Σ vectors lay 

on the plane k=+1 along the strip σ∈(–1/2, +1/2) 

with their application points on (σ k it)≡(–1/2 1 it) 

and their end points on (σ k it)≡(+1/2 1 it) being all 

horizontal that is parallel to the complex plane  s  

that is k=0.   

 

 

4 Conclusion 
The innovative methodology of fitting the numeric 

progressions {n
±α

} as well as {∑n
±α

} and 

{N
±α+1

/(±α+1)} by the modified chi-square function 

in one of its four forms (±1/∙)Xk
2
(Ω,x/ω) has led to 

an elementary proof of Riemann’s hypothesis 

(elementary in the sense that it does not use the 

theory of complex functions), a results that has been 

awaited since 157 years ago and never attained 

before now.   

    It has to be remarked that, in this proof, the real 

constant  σ = +1/2  arises by itself and automatically 

in a straightforward way.  

    As for the future developments, the first one is the 

study of this shift vector operator also in the light of 

Hilbert and Pòlya conjecture, while further topics 

will concern the use of the modified chi-square 

function with k<2 for the analytical treatment of the 

finite sequences of prime numbers, with the goal of 

getting a more refined version of the prime number 

theorem (PNT), as well as the use of the same 

function with k>2 for the statistical treatment of the 

normalized spacing of the non-trivial zeroes of 

Riemann’s zeta function in the frame of random 

matrices and Gaussian ensembles.  
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