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Abstract: In this paper, the First Same As Last (FSAL) technique is implemented to Two Derivative Runge-
Kutta method (TDRK) for the numerical integration of first order Initial Value Problems (IVPs). Using the FSAL
property, a four stages fifth algebraic order TDRK method is constructed. Hence, the new method has three
effective stages meaning that it has three function evaluations per step. It has two stages less compared with
the classical Runge-Kutta for the same order. The stability of the method derived is analyzed. The numerical
experiments are carried out to show the accuracy and efficiency of the method by comparing the derived method
with other existing Runge-Kutta methods (RK).

Key–Words: TDRK method, FSAL technique, IVPs, Explicit methods

1 Introduction
Consider the numerical solution of the Initial Value
Problems (IVPs) for the first order Ordinary Differen-
tial Equations (ODEs) given in the following form

y
′

= f(x, y), y(x0) = y0. (1)

A numerous number of researchers have proposed
several efficient TDRK methods with constant step-
size as well as implementing the FSAL technique in
the derivation of their methods. In the evolution of
TDRK methods, Chan and Tsai[1] introduced spe-
cial explicit TDRK methods by including the second
derivative which involves one evaluation off and a
few evaluations ofg per step with stages up to five and
of order up to seven as well as some embedded pairs.
Chan et al.[2] then presented their study related to stiff
ODEs problems on explicit and implicit TDRK meth-
ods and extend the applications of the TDRK methods
to various Partial Differential Equations (PDEs).

Zhang et al.[3] developed a new Trigonometri-
cally Fitted TDRK method of algebraic order five, an-
alyze the linear stability and phase properties of the
new method. Chen et al.[4] constructed three prac-
tical exponentially fitted TDRK (EFTDRK) methods
where the numerical experiments show the efficiency
and accuracy of the developed methods compared to
their prototype TDRK methods or RK methods of
the same order and the traditional exponentially fit-
ted RK method in the literature. In the previous year,

Yakubu and Kwami[5] introduced a new class of im-
plicit TDRK collocation methods especially for the
numerical solution of systems of equations and their
implementation in an efficient parallel computing en-
vironment.

By implementing FSAL technique, Dormand and
Prince[6] derived a family of embedded RK formu-
lae RK5(4) with an extended region of absolute sta-
bility and a “small” principal truncation terms in the
fifth order formulae. Franco[7] designed an explicit
Exponentially Fitted Runge-Kutta Nyström method
(EFRKN) with two and three stages and algebraic or-
der three and four as well as a 4(3) embedded pair
based on the FSAL technique for the numerical in-
tegration of second order IVPs with oscillatory solu-
tions.

Fang et al. in [8] and [9] proposed extended
RKN method with fixed step-size and embedded pairs
for numerical integration of perturbed oscillators and
higher order RK (pair) method of order five and
four as well as new fifth order RK method specially
adapted to the numerical integration of IVPs with os-
cillatory solutions respectively. Meanwhile, Van de
Vyver[10] constructed a new way for constructing
efficient embedded modified RK methods based on
the FSAL technique which has algebraic order four
and five for the numerical solution of the Schrödinger
equation.

The main objective of the paper is that we want
to reduce the number function evaluations per step.
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Hence, in this paper, a fifth order four stages TDRK
method with FSAL property is constructed. The ad-
vantage of the TDRK method is that it has one less
number of stage than the classical RK method for
the same order of the method. Furthermore by us-
ing FSAL technique another one more less number of
stage and the total of two number of function eval-
uation per step less compared with the classical RK
method for the same order of the method will be de-
veloped. In Section 2, an overview of TDRK method
is given. The new FSAL TDRK method is constructed
and the stability of the new method is analyzed in Sec-
tion 3. The numerical results, discussion and conclu-
sion are dealt in Section 4, Section 5 and Section 6
respectively.

2 Two Derivative Runge-Kutta
Methods

Consider the scalar ODEs (1) withf : ℜN → ℜN .
For this case, we assume that the second derivative is
also known where

y
′′

= g(y) := f ′(y)f(y), g : ℜN
→ ℜ

N . (2)

An explicit TDRK method for the numerical inte-
gration of IVPs (1) is given by

Yi = yn + h

s
∑

j=1

aijf(yj) + h2
s

∑

j=1

âijg(Yj), (3)

yn+1 = yn + h

s
∑

i=1

bif(yi) + h2
s

∑

i=1

b̂ig(Yi), (4)

wherei = 1, . . . , s.
We present the explicit TDRK method with the

coefficients in (3) and (4) using the Butcher tableau as
follows

c A Â

bT b̂T

Explicit methods with minimal number of func-
tion evaluations can be developed by considering the
methods in the form

Yi = yn + hcif(xn, yn) + h2
i−1
∑

j=1

âijg(xn + hcj , Yj),

(5)

yn+1 = yn + hf(xn, yn) + h2
s

∑

i=1

b̂ig(xn + hci, Yi),

(6)
wherei = 2, . . . , s.

The above method is called special explicit
TDRK methods. The unique part of this method is
that it involves only one evaluation off per step com-
pared to many evaluation off per step in traditional
explicit RK methods. Its Butcher tableau is given as
follows

c Â

b̂T

The TDRK parametersâij , b̂i and ci are
assumed to be real ands is the number of
stages of the method. We introduce thes-
dimensional vectorsb̂, c and s × s matrix, Â

where b̂ =
[

b̂1, b̂2, . . . , b̂s

]T

, c = [c1, c2, . . . , cs]
T

andÂ = [âij] respectively.

The order conditions for special explicit TDRK
methods are given in the following Table 1.

Table 1: Order conditions for special explicit TDRK
methods.

Order Conditions

1 bT e = 1

2 b̂T e = 1
2

3 b̂T c = 1
6

4 b̂T c2 = 1
12

5 b̂T c3 = 1
20 b̂T Âc = 1

120

6 b̂T c4 = 1
30 b̂T cÂc = 1

180 b̂T Âc2 = 1
360

7 b̂T c5 = 1
42 b̂T c2Âc = 1

252 b̂T cÂc2 = 1
504

b̂T Âc3 = 1
840 b̂T Â2c = 1

5040

The following simplifying assumption is used in
practice

s
∑

i=1

âij =
1

2
ci

2, (7)

for i = 2, . . . , s.
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3 A Fifth-order TDRK Method with
FSAL property

An interesting special class of explicit RK methods for
which the coefficients have a special structure known
as First Same As Last (FSAL) where

b̂i = âsi, i = 1, . . . , s− 1, and b̂s = 0. (8)

The function valueks at the end of one integration
step is the same as the first function valuek1 at the
next integration step.

The FSAL technique is implemented into the
TDRK methods. The order conditions given in Ta-
ble 1 as well as the simplifying assumption (7) need
to be satisfied in order for a method to be a TDRK
method. In this paper, a four stages explicit TDRK
method given by the following Butcher tableau with
FSAL property is considered.

0 0
c2 â21 0
c3 â31 â32 0
1 â41 â42 â43 0

â41 â42 â43 0

(9)

3.1 Construction of the new method
Evaluate the simplifying assumption (7) leads to

â21 =
c22
2
, â31 =

c23
2
−â32, â41 =

c24
2
−â42−â43.

(10)
According to order conditions up to order five in

Table 1, we have

â42c2 + â43c3 −
1

6
= 0, (11)

â42c2
2 + â43c3

2
−

1

12
= 0, (12)

â42c2
3 + â43c3

3
−

1

20
= 0, (13)

â43â32c2 −
1

120
= 0. (14)

Solving equation (11)–(14) will lead to a solution
of â32, â42, â43 andc3 in term ofc2

â32 = −
−50 c2

3 + 80 c2
2 − 45 c2 + 9

−3000 c23 + 1500 c22 + 2000 c24 − 250 c2
,

(15)

â42 =
1

120 c23 − 120 c22 + 36 c2
, (16)

â43 = −
300 c2

2 − 150 c2 − 200 c2
3 + 25

−108 + 600 c23 − 960 c22 + 540 c2
, (17)

c3 = −
−5 c2 + 3

10 c2 − 5
. (18)

Our aim is to choosec2 such that the princi-
pal local truncation error coefficient,

∥

∥τ (6)
∥

∥

2
have a

very small value. Wrong choices ofc2 may cause a
huge global error difference. By plotting the graph
of

∥

∥τ (6)
∥

∥

2
againstc2, a small value ofc2 is chosen

in the range of[0.0, 1.0] and hence, the value ofc2
lies between[0.2, 0.4]. We choosec2 = 329

1000 for an
optimized pair. All the coefficients are showed in the
following Butcher tableau and it is denoted as FSALT-
DRK4(5).

Table 2: Butcher Tableau for FSALTDRK4(5) method

0 0

329
1000

108241
2000000 0

271
342 −

163144981
13160555352

536857775
1645069419 0

1 54959
534954

25000000
78210867

1666737
21474311 0

54959
534954

25000000
78210867

1666737
21474311 0

The norms of the principal local truncation error
coefficients for FSALTDRK4(5) method is given by

∥

∥

∥
τ (6)

∥

∥

∥

2
= 1.456891018 × 10−3. (19)

3.2 Stability of the new method
The stability function of explicit TDRK method is
given as follows

R(z) =1 + zbT
(

I − zA− z2Â
)

−1
e+

z2bT
(

I − zA− z2Â
)

−1
e.

(20)

Meanwhile for special explicit TDRK method,
the following test equation is considered

y
′

= iλy where λ > 0. (21)

Apply equation (21) to the special explicit TDRK
method produces the difference equation

yn+1 = H(z)yn and z = iv, v = λh, (22)

where
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H(z) =

(

1 + z2b̂
(

I − v2Â
)

−1
e

)

+

i

(

v + v3b̂
(

I − v2Â
)

−1
c

)

.

(23)

Â, c andb̂ are the coefficient given in Table 2 with

I =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









and e =









1
1
1
1









. (24)

The stability function of FSALTDRK4(5) method
is

H(z) = 1+v+
1

2
v2+

1

6
v3+

1

24
v4+

1

120
v5+

329

240000
v6.

(25)
The stability region of FSALTDRK4(5) method

is plotted in Figure 1.

Figure 1: Stability region of FSALTDRK4(5) method.

The stability interval of this new method is
(−3.57, 0.00).

4 Problems Tested and Numerical
Results

In this section, we compare the performance of the
proposed method FSALTDRK4(5) with existing RK
methods by considering the following problems. All
problems below are tested using C code for solving
first order ODEs.

Problem 1(Harmonic Oscillator[11])

y1
′

= y2, y1(0) = 1, x ∈ [0, 10],

y2
′

= −64y1, y2(0) = −2.

Exact solution is

y1(x) = −
1

4
sin(8x) + cos(8x),

y2(x) = −2 cos(8x)− 8 sin(8x).

Problem 2(Inhomogeneous problem[10])

y1
′

= y2, y1(0) = 1, x ∈ [0, 10],

y2
′

= −100y1 + 99 sin(x), y2(0) = 11.

Exact solution is

y1(x) = cos(10x) + sin(10x) + sin(x),

y2(x) = −10 sin(x) + 10 cos(10x) + cos(x).

Problem 3(An “almost” Periodic Orbit problem[12])

y1
′

= y2, y1(0) = 1, x ∈ [0, 10],

y2
′

= −y1 + 0.001 cos(x), y2(0) = 1,

y3
′

= y4, y3(0) = 0,

y4
′

= −y3 + 0.001 sin(x), y4(0) = 0.995.

Exact solution is

y1(t) = cos(x) + 0.0005x sin(x),

y2(x) = − sin(x) + 0.0005x cos(x) + 0.0005x sin(x),

y3(t) = sin(x)− 0.0005x cos(x),

y4(x) = cos(x) + 0.0005x sin(x)− 0.0005 cos(x).

Problem 4(Allen and Wing[13])

y1
′

= y2, y1(0) = 1, x ∈ [0, 10],

y2
′

= −y1 + x, y2(0) = 2.

Exact solution is

y1(x) = sin(x) + cos(x) + x,

y2(x) = cos(x)− sin(x) + 1.

Problem 5(Jawias et al.[14])

y
′

= y − x2 + 1, y(0) = 0.5, x ∈ [0, 10].

Exact solution is

y(x) = (x+ 1)2 − 0.5ex.
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Problem 6(Radzi et al.[15])

y
′

= y, y(0) = 1, x ∈ [0, 10].

Exact solution is

y(x) = ex.

Problem 7(Radzi et al.[15])

y1
′

= y2, y1(0) = 0, x ∈ [0, 10],

y2
′

= 2y2 − y1, y2(0) = 1.

Exact solution is

y1(x) = xex, y2(x) = (1 + x)ex.

Problem 8(Ismail and Salih[16])

y
′

= 15− 3y, y(0) = 0, x ∈ [0, 10].

Exact solution is

y(x) = 5(1− e−3x).

The following notations are used in Figures 2–9 :

• FSALTDRK4(5): New TDRK method with
FSAL property of fifth order four stages derived
in this paper

• TDRK3(5): Existing fifth order three stage
TDRK method developed by Chan and Tsai[1].

• RKE: Existing fifth order six stage RK method
given in Lambert[17].

• RKDP: Existing fifth order seven stage RK
method derived by Wanner and Hairer[18].

• RKF: Existing fifth order six stage RK method
developed by Fehlberg[19].

• RKCK: Existing fifth order six stage RK method
derived by Cash and Karp[20].

We represent the performance of these numerical
results graphically in the following Figures 2–9:

RKCK
RKF

RKDP
RKE

TDRK3(5)
FSALTDRK4(5)

log10(Function Evaluations)

lo
g 1

0
(M

A
X
E
R
R
)

43.83.63.43.232.82.6

0

−1

−2

−3

−4

−5

−6

−7

−8

−9

Figure 2: The efficiency curve for the harmonic oscil-
lator (Problem 1) withh = 0.1/2i, i = 0, . . . , 4.

RKCK
RKF

RKDP
RKE

TDRK3(5)
FSALTDRK4(5)

log10(Function Evaluations)

lo
g 1

0
(M

A
X
E
R
R
)

43.83.63.43.232.82.6

1

0

−1

−2

−3

−4

−5

−6

−7

−8

Figure 3: The efficiency curve for the inhomogeneous
problem (Problem 2) withh = 0.1/2i, i = 0, . . . , 4.

RKCK
RKF

RKDP
RKE

TDRK3(5)
FSALTDRK4(5)

log10(Function Evaluations)

lo
g 1

0
(M

A
X
E
R
R
)

3.83.63.43.232.82.62.42.2

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14

Figure 4: The efficiency curve for the “almost” pe-
riodic problem (Problem 3) withh = 0.1/2i, i =
−1, . . . , 3.
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RKCK
RKF

RKDP
RKE

TDRK3(5)
FSALTDRK4(5)

log10(Function Evaluations)

lo
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0
(M

A
X
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R
R
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3.83.63.43.232.82.62.42.2
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−6
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−10
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−13

Figure 5: The efficiency curve for Problem 4 withh =
0.1/2i, i = −1, . . . , 3.
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Figure 6: The efficiency curve for Problem 5 withh =
0.1/2i, i = −1, . . . , 3.
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Figure 7: The efficiency curve for Problem 6 withh =
0.1/2i, i = −1, . . . , 3.
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Figure 8: The efficiency curve for Problem 7 withh =
0.1/2i, i = −1, . . . , 3.
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−12

−13

−14

Figure 9: The efficiency curve for Problem 8 withh =
0.1/2i, i = 0, . . . , 4.

5 Discussion
The results show the typical properties of the new
TDRK method with FSAL property, FSALTDRK4(5)
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which have been derived earlier. The derived method
are compared with some well-known existing RK
methods. Figures 2-9 represent the efficiency and ac-
curacy of the method developed by plotting the graph
of the logarithm of the maximum global error against
the logarithm number of function evaluations. From
Figures 2–9, the global error produced by the FSALT-
DRK4(5) method has smaller global error compared
to TDRK3(5), RKE, RKDP, RKF and RKCK. More-
over, from the same figures, FSALTDRK4(5) has the
least number of function evaluations per step com-
pared to other existing RK methods of the same order.

6 Conclusion
In this research, a fifth algebraic order TDRK method
with FSAL property has been developed. The advan-
tage of the TDRK together with FSAL property make
the new method more efficient in term of function
evaluations and also more accurate compared with
the classical RK methods. Based on the numerical
results obtained, it can be concluded that the new
FSALTDRK4(5) method is more promising compared
to other well-known existing explicit RK and TDRK
methods in terms of accuracy and the number of func-
tion evaluations per step.
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