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Abstract: This paper investigates function projective synchronization (FPS) for complex dynamical network with
mixed time-varying and hybrid coupling delays, which is composed of state coupling, time-varying delay coupling
and distributed time-varying delay coupling. In contrast to previous results, the coupling configuration matrix need
not be symmetric or irreducible. The designed controller ensures that the FPS of delayed complex dynamical net-
work are proposed via hybrid error adaptive control, which contains error term, time-varying delay error term and
distributed time-varying delay error term. Based on the construction of improved Lyapunov-Krasovskii functional
is combined with Leibniz-Newton formula and the technique of dealing with some integral terms, we prove the
stability of the closed-loop system and the convergence of the error system. Numerical example is included to
show the effectiveness of the proposed hybrid adaptive control scheme.
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1 Introduction

Complex dynamical network, as an interesting sub-
ject, has been thoroughly investigated for decades.
These networks show very complicated behavior and
can be used to model and explain many complex
systems in nature such as computer networks [5],
the world wide web [6], food webs [7], cellular and
metabolic networks [8], social networks [17], electri-
cal power grids [10] etc.

The concept of chaos synchronization is making
two or more chaotic systems oscillate in a synchro-
nized manner. There are several schemes which can
be used to achieve chaos synchronization of chaos
complex network, for example time-delay feedback
control [28], intermittent control [28], adaptive con-
trol [29, 30], active control [18], nonlinear feedback
control [31–33], sampled-data control [33]. The tradi-
tional method to synchronize a complex network is to
add a controller to each of the network nodes to tame
the dynamics to approach a desired synchronization
trajectory. Authors in [34], investigated adaptive con-
trol strategy for complex delayed dynamical networks
with time-varying coupling strength and time-varying
delayed. Shi et al. [27], introduced FPS for complex
dynamical networks with state coupling, which it is

not necessary for the coupling matrix to satisfy sym-
metric or nonnegative criteria. FPS is investigated via
adaptive feedback control and pinning control with
adaptive coupling strength.

In the last decade, the synchronization of com-
plex dynamic networks has attracted much attention
of researchers in this field [18, 22, 23, 27, 34]. Be-
cause the synchronization of complex dynamical net-
works can well explain many natural phenomena ob-
served and is one of the important dynamical mech-
anisms for creating order in complex dynamical net-
works, the synchronization of coupled dynamical net-
works has come be a focal point in the study of non-
linear science. Wang and Chen introduced a uniform
dynamical network model and also investigated its
synchronization [37, 38]. They have shown that the
synchronizability of a scale-free dynamical network
is robust against random removal of nodes, and yet
is fragile to specific removal of the most highly con-
nected nodes [38]. Authors in [35, 36] investigated
synchronization of general complex dynamical net-
work models with coupling delays. Wang [39] intro-
duced several synchronization criteria for both delay-
independent and delay-dependent asymptotical stabil-
ity. Li [40] investigated synchronization of complex
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networks with time-varying couplings, the stability
criteria were obtained by using Lyapunov-Krasovskii
function method and subspace projection method.

Function projective synchronization (FPS), which
is the generalization of projective synchronization
(PS), is one of the important synchronization meth-
ods that have been widely investigated to obtain faster
communication with its proportional feature. FPS
of general complex networks was investigated which
means that the nodes of complex networks could be
synchronize up to an equilibrium point or periodic
orbit with a desired scaling function. FPS has at-
tracted the interest of many researchers in various
fields [15, 18, 20, 21, 23, 25]. Very recently, FPS has
been investigated in a two-cell quantum-CNN chaotic
oscillator, [25, 26]. In [21], the authors just consid-
ered the FPS in drive-response dynamical networks
(DRDNs) with coupled partially linear chaotic sys-
tems by assuming that the node dynamics are iden-
tical and using a simple control law. Furthermore,
In [15], investigated the problem of FPS in DRDNs
with nonidentical nodes by the adaptive open-plus-
closed-loop method. Ref. [22], investigated FPS in
DRDNs with uncertain parameters and disturbances.
In [23], a hybrid feedback control method was pro-
posed for achieving FPS in CDNs with constant time
delay and time-varying coupling delay. In [18], the
authors studied projective synchronization by using
active control approach. These synchronization meth-
ods or ideas can be applied to the synchronization of
complex network.

This paper, inspired by the above discussions, we
shall investigate function projective synchronization
(FPS) for complex dynamical network with mixed
time-varying and hybrid coupling delays, which is
composed of state coupling, time-varying delay cou-
pling and distributed time-varying delay coupling. In
contrast to previous results, the coupling configuration
matrix need not be symmetric or irreducible. The de-
signed controller ensures that the FPS of delayed com-
plex dynamical network are proposed via hybrid er-
ror adaptive control, which contains error term, time-
varying delay error term and distributed time-varying
delay error term. Based on the construction of im-
proved Lyapunov-Krasovskii functional is combined
with Leibniz-Newton formula and the technique of
dealing with some integral terms, we prove the sta-
bility of the closed-loop system and the convergence
of the error system. Numerical example is included to
show the effectiveness of the proposed hybrid adap-
tive control scheme.

Notation R
n is the n-dimensional Euclidean

space;Rm×n denotes the set ofm × n real ma-
trices; In represents then-dimensional identity ma-
trix; λ(A) denotes the set of all eigenvalues ofA;

λmax(A) = max{Reλ;λ ∈ λ(A)}; C([0, t],Rn) de-
notes the set of allRn-valued continuous functions on
[0, t]; L2([0, t],R

m) denotes the set of all theRm-
valued square integrable functions on[0, t]; The no-
tation X ≥ 0 (respectively,X > 0 ) means that
X is positive semidefinite (respectively, positive def-
inite); diag(· · · ) denotes a b lock diagonal matrix;
[

X Y

∗ Z

]

stands for

[

X Y

Y T Z

]

. Matrix dimen-

sions, if not explicitly stated, are assumed to be com-
patible for algebraic operations.

2 Problem statements and prelimi-
naries

Consider a complex dynamical network consisting of
N identical coupled nodes, with each node being an
n-dimensional nonlinear dynamical system

ẋi(t) = f(xi(t), xi(t− h(t)),

∫ t

t−k(t)
xi(s) ds)

+c1

N
∑

j=1

aijG1xj(t)

+c2

N
∑

j=1

bijG2xj(t− h(t)) (1)

+c3

N
∑

j=1

cijG3

∫ t

t−k(t)
xj(s) ds + Ui(t),

t ≥ 0, i = 1, 2, ..., N,

xi(t) = φi(t), t ∈ [−τmax, 0], τmax = max{h, k},

wherexi(t) = (xi1(t), xi2(t), ..., xin(t))
T ∈ R

n is
the state vector ofith node;Ui(t) ∈ R

m are the con-
trol input of the nodei; the constantc1, c2, c3 > 0
are the coupling strength;G1 = (g1ij)n×n, G2 =
(g2ij)n×n, G3 = (g3ij)n×n ∈ R

n×n are a con-
stant inner-coupling matrix;A = (aij)N×N , B =
(bij)N×N , C = (cij)N×N ∈ R

N×N are the outer-
coupling matrix of the network, in whichaij , bij are
defined as follows: if there are a connection between
nodei and nodej (j 6= i), thenaij > 0, bij > 0,
cij > 0; otherwise,aij = aji = 0, bij = bji = 0,
cij = cji = 0 (j 6= i), and the diagonal elements of
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matrixA, B andC are defined by

aii = −

N
∑

j=1,i6=j

aij = −

N
∑

j=1,i6=j

aji,

bii = −
N
∑

j=1,i6=j

bij = −
N
∑

j=1,i6=j

bji, (2)

cii = −

N
∑

j=1,i6=j

cij = −

N
∑

j=1,i6=j

cji, i = 1, 2, ..., N.

Definition 1. The network (1) with time delay is said
to achieve function projective synchronization if there
exists a continuously differentiable scaling function
matrixα(t) such that

lim
t→∞

‖ei(t)‖ = lim
t→∞

‖xi(t)−α(t)s(t)‖, i = 1, 2, . . . , N

where ‖.‖ stands for the Euclidean vector norm
and s(t) ∈ Rn can be an equilibrium point, or
a (quasi-)periodic orbit, or an orbit of a chaotic
attractor, which satisfiesṡ(t) = f(s(t), s(t −

h(t)),
∫ t

t−k1(t)
s(θ) dθ).

To investigate the stability of the synchronized
states (1), we set the synchronization errorei(t) in
the form ei(t) = xi(t) − α(t)s(t), i = 1, . . . , N ,
where α(t) is a n-order real diagonal matrix, i.e.
α(t) =diag(α(t)1, α(t)2, . . . , n) andαi(t) is a con-
tinuously bounded differentiable function. Then, sub-
stituting it into complex dynamical network (1), it is
easy to get the following:

ėi(t) = ẋi(t)− α̇(t)s(t)− α(t)ṡ(t)

= f(xi(t), xi(t− h(t)),

∫ t

t−k(t)
xi(s) ds)

−α(t)f(s(t), s(t− h(t)),

∫ t

t−k(t)
s(θ) dθ)

+c1

N
∑

j=1

aijG1ej(t) (3)

+c2

N
∑

j=1

bijG2ej(t− h(t))

+c3

N
∑

j=1

cijG3

∫ t

t−k(t)
ej(s) ds

−α̇(t)s(t) + Ui(t), i = 1, . . . , N.

The initial condition functionφi(t) denotes a contin-
uous vector-valued initial function oft ∈ [−τmax, 0],
τmax = max {h, k}.

In the rest of this paper, we need the following
assumption and some lemmas:

Assumption 2. The time-varying delay functionsh(t)
is differential function andk(t) with satisfy the condi-
tion 0 ≤ h(t) ≤ h, 0 ≤ k(t) ≤ k and 0 ≤ ḣ(t) ≤
h < 1.

Lemma 3. [1] (Cauchy inequality) For any symmet-
ric positive definite matrixN ∈ Mn×n andx, y ∈ R

n

we have

±2xT y ≤ xTNx+ yTN−1y.

Lemma 4. [1] For any constant symmetric matrix
M ∈ Rm×m, M = MT > 0, γ > 0, vector function
ω : [0, γ] → R

m such that the integrations concerned
are well defined, then

(

∫ γ

0
ωT (s)ds

)T

M
(

∫ γ

0
ω(s)ds

)

≤ γ

∫ γ

0
ωT (s)Mω(s)ds.

Lemma 5. [2]. Let c ∈ R and A, B, C, D, be
matrices with appropriate dimensions. Then

(i) c(A⊗B) = (cA)⊗B = A⊗ (cB),

(ii) (A⊗B)T = AT ⊗BT ,

(iii) (A⊗B)(C ⊗D) = (AC)⊗ (BD),

(iv) A⊗B ⊗ C = (A⊗B)⊗ C = A⊗ (B ⊗ C).

3 Main results

In this section, we will give some sufficient condi-
tion for function projective synchronization of com-
plex dynamical network with discrete and distributed
time-varying delays and mixed- coupling delays (1)
via hybrid adaptive control In order to stabilize the
origin of delayed complex dynamical network (1) by
means of the hybrid adaptive controlUi(t) such as

Ui(t) = ui1(t) + ui2(t), i = 1, 2, ..., N, (4)

where

ui1(t) = α̇(t)s(t),

ui2(t) = −c1di1(t)G1ei(t)− c2di2(t)G2ei(t− h(t))

−c3di3(t)G3

∫ t

t−k(t)
ei(θ) dθ,

and the updating laws are

ḋi1(t) = qi1e
T
i (t)G1ei(t),

ḋi2(t) = qi2e
T
i (t)G2ei(t− h(t)), (5)

ḋi3(t) = qi3e
T
i (t)G3

[

∫ t

t−k(t)
ei(θ) dθ

]

,
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whereqi1, qi2 andqi3 are positive constants ands(t)
is a solution of an isolated node, satisfyingṡ(t) =

f(s(t), s(t− h(t)),
∫ t

t−k(t) s(θ) dθ). The controller in
(4),ui1(t) is the nonlinear feedback control andui2(t)
is the hybrid adaptive linear feedback control. Then,
substituting it into complex dynamical network (6), it
is easy to get the following:

ėi(t) = ẋi(t)− α̇(t)s(t)− α(t)ṡ(t)

= f(xi(t), xi(t− h(t)),

∫ t

t−k(t)
xi(s) ds)

−α(t)f(s(t), s(t− h(t)),

∫ t

t−k(t)
s(θ) dθ)

+c1

N
∑

j=1

aijG1ej(t)

+c2

N
∑

j=1

bijG2ej(t− h(t))

+c3

N
∑

j=1

cijG3

∫ t

t−k(t)
ej(s) ds

−c1di1(t)ei(t)− c2di2(t)ei(t− h(t))

−c3di3(t)

∫ t

t−k(t)
ei(θ) dθ, i = 1, . . . , N, (6)

ḋi1(t) = qi1e
T
i (t)G1ei(t), i = 1, . . . , N

ḋi2(t) = qi2e
T
i (t)G2ei(t− h(t)), i = 1, . . . , N

ḋi3(t) = qi3e
T
i (t)G3

[

∫ t

t−k(t)
ei(θ) dθ

]

, i = 1, . . . , N.

Let us set

1. J(t) = f ′(s(t), s(t − h(t)),
∫ t

t−k(t) s(ξ) dξ)

∈ Rn×n is the Jacobian off(x(t), x(t −

h(t)),
∫ t

t−k(t) x(s) ds) at s(t) with the derivative

of f(x(t), x(t−h(t)),
∫ t

t−k(t) x(s) ds) respect to
x(t),

2. Jh(t) = f ′(s(t), s(t − h(t)),
∫ t

t−k(t) s(ξ) dξ)

∈ Rn×n is the Jacobian off(x(t), x(t −

h(t)),
∫ t

t−k(t) x(s) ds) at s(t − h(t)) with the

derivative off(x(t), x(t−h(t)),
∫ t

t−k(t) x(s) ds)

respect tox(t− h(t)),

3. Jk1(t) = f ′(s(t), s(t − h(t)),
∫ t

t−k(t) s(ξ) dξ)

∈ Rn×n is the Jacobian off(x(t), x(t −

h(t)),
∫ t

t−k(t) x(s) ds) at
∫ t

t−k(t) s(ξ) dξ with the

derivative off(x(t), x(t−h(t)),
∫ t

t−k(t) x(s) ds)

respect to
∫ t

t−k(t) x(s) ds

and

δ =
1

2λmin(IN ⊗G2)

(

ε1 + c2ε2 + c2d
∗
2ε5),

τ =
1

2λmin(IN ⊗G3)

(

ε2 + c3ε4 + 2c3d
∗
3ε6),

η =
1

λmin(IN ⊗G1)

(

λ̄(IN ⊗ J(t))

+c1λ̄(A)λ̄(G1) +
c2

2(1− β)
λ̄(IN ⊗G2)

+
c3k

2

2
λ̄(IN ⊗G3) +

1

2ε1
λ̄(IN ⊗ Jh(t)J

T
h (t))

+
1

2ε2
λ̄(IN ⊗ Jk(t)J

T
k (t))

+
c2

2ε3
λ̄(BBT )λ̄(G2G

T
2 ) +

c3

2ε4
λ̄(CCT )λ̄(G3G

T
3 )

+
c2d

∗
2

2ε5
λ̄(IN ⊗G2G

T
2 ) +

c3d
∗
3

2ε6
λ̄(IN ⊗G3G

T
3 )
)

.

Theorem 6. For some given synchronization scaling
function α(t), the complex dynamical networks (1)
with time-varying delay satisfying Assumption 2. and
target system can realize function projective synchro-
nization by the adaptive control law as shown in (4)
if there exist positive constantsεi, i = 1, 2, . . . , 5 and
by taking appropriated∗1, d

∗
2 andd∗3 such that

d∗1 −
η

c1
> 0, (7)

d∗2 −
1

ε5
(
ε1

c2
+ ε2 − λmin(IN ⊗G2)) > 0, (8)

d∗3 −
1

ε6
(
ε2

c3
+ ε4 − λmin(IN ⊗G3)) > 0. (9)

Then the controlled complex dynamical networks (1)
is function projective synchronization.

Proof. Since f(.) is continuous differentiable, it is
easy to know that the origin of the nonlinear system
(6) is an asymptotically stable equilibrium point if it is
an asymptotically stable equilibrium point of the fol-
lowing linear time-varying delays systems

ėi(t) = J(t)ei(t) + Jh(t)ei(t− h(t))

+Jk1(t)

∫ t

t−k(t)
ei(s) ds

+c1

N
∑

j=1

aijG1ej(t) (10)

+c2

N
∑

j=1

bijG2ej(t− h(t))

+c3

N
∑

j=1

cijG3

∫ t

t−k(t)
ej(s) ds
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−c1di1(t)ei(t)− c2di2(t)ei(t− h(t))

−c3di3(t)

∫ t

t−k(t)
ei(θ) dθ, i = 1, . . . , N,

ḋi1(t) = qi1e
T
i (t)G1ei(t), i = 1, . . . , N

ḋi2(t) = qi2e
T
i (t)G2ei(t− h(t)), i = 1, . . . , N

ḋi3(t) = qi3e
T
i (t)G3

[

∫ t

t−k(t)
ei(θ) dθ

]

, i = 1, . . . , N.

Construct the the following Lyapunov-Krasovskii
functional candidate:

V (t) =
1

2

N
∑

i=1

eTi (t)ei(t) +
1

2

N
∑

i=1

c1

qi1
(di1(t)− d∗1)

2

+
c2

2(1− β)

N
∑

i=1

∫ t

t−h(t)
eTi (s)G2ei(s) ds

+
1

2

N
∑

i=1

c2

qi2
(di2(t)− d∗2)

2

+
c3k

2

N
∑

i=1

∫ 0

−k

∫ t

t+s

eTi (θ)G3ei(θ) dθds

+
1

2

N
∑

i=1

c3

qi3
(di3(t)− d∗3)

2. (11)

By taking the derivative ofV (t) along the trajectories
of system (6), we have the following:

V̇ (t) ≤

N
∑

i=1

eTi (t)J(t)ei(t)

+

N
∑

i=1

eTi (t)Jh(t)ei(t− h(t))

+

N
∑

i=1

eTi (t)Jk(t)

∫ t

t−k(t)
ei(s) ds

+c1

N
∑

i=1

N
∑

j=1

eTi (t)aijG1ej(t)

+c2

N
∑

i=1

N
∑

j=1

eTi (t)bijG2ej(t− h(t))

+c3

N
∑

i=1

N
∑

j=1

eTi (t)cijG3

∫ t

t−h(t)
ej(s) ds

+
c2

2(1− β)

N
∑

i=1

eTi (t)G2ei(t)

−
c2

2

N
∑

i=1

eTi (t− h(t))G2ei(t− h(t))

−c2d
∗
2

N
∑

i=1

eTi (t)G2ei(t− h(t))

−c1d
∗
1

N
∑

i=1

eTi (t)G1ei(t)

+
c3k

2

2

N
∑

i=1

eTi (t)G3ei(t)

−
c3k

2

N
∑

i=1

∫ t

t−k

eTi (s)G3ei(s) ds

−c3d
∗
3

N
∑

i=1

eTi (t)G3

∫ t

t−k(t)
ei(s) ds (12)

Let e(t) = (e1(t), ..., eN (t)) ∈ Rn×N , e(t −
h(t)) = (e1(t − h(t)), ..., eN (t − h(t))) ∈ Rn×N ,
∫ t

t−k(t) e(s) ds =
∫ t

t−k(t)(e1(s), e2(s), ..., eN (s)) ds

∈ Rn×N . we have

V̇ (t) ≤ eT (t)(IN ⊗ J(t))e(t)

+eT (t)(IN ⊗ Jh(t))e(t − h(t))

+c1e
T (t)(A⊗G1)e(t)

+c2e
T (t)(B ⊗G2)e(t− h(t))

−c1d
∗
1e

T (t)(IN ⊗G1)e(t)

+c3e
T (t)(C ⊗G3)

∫ t

t−k(t)
e(s) ds

−c2d
∗
2e

T (t)(IN ⊗G2)e(t− h(t))

−c3d
∗
3e

T (t)(IN ⊗G3)

∫ t

t−k(t)
e(s) ds

+
c2

2(1− β)
eT (t)(IN ⊗G2)e(t)

−
c2

2
eT (t− h(t))(IN ⊗G2)e(t− h(t))

+
c3k

2

2
eT (t)(IN ⊗G3)e(t)

+eT (t)(IN ⊗ Jk(t))

∫ t

t−k(t)
e(s) ds

−
c3k

2

∫ t

t−k

eT (s)(IN ⊗G3)e(s) ds. (13)

Applying Lemma 3., Lemma 4. and Lemma5. gives

eT (t)(IN ⊗ Jh(t))e(t − h(t))

≤
1

2ε1
eT (t)(IN ⊗ Jh(t)J

T
h (t))e(t)

+
ε1

2
eT (t− h(t))e(t − h(t)), (14)
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eT (t)(IN ⊗ Jk(t))

∫ t

t−k(t)
e(s) ds

≤
1

2ε2
eT (t)(IN ⊗ Jk(t)J

T
k (t))e(t) (15)

+
ε2

2

(

∫ t

t−k(i)
eT (s) ds

)T(
∫ t

t−k(i)
eT (s) ds

)

c2e
T (t)(B ⊗G2)e(t− h(t))

≤
c2

2ε3
eT (t)(BBT ⊗G2G

T
2 )e(t)

+
c2ε3

2
eT (t− h(t))e(t − h(t)), (16)

c3e
T (t)(C ⊗G3)

∫ t

t−k(t)
e(s) ds

≤
c3

2ε4
eT (t)(CCT ⊗G3G

T
3 )e(t) (17)

+
c3ε4

2

(

∫ t

t−k(i)
eT (s) ds

)T(
∫ t

t−k(i)
eT (s) ds

)

−c2d
∗
2e

T (t)(IN ⊗G2)e(t − h(t))

≤
c2d

∗
2

2ε5
eT (t)(IN ⊗G2G

T
2 )e(t)

+
c2d

∗
2ε5

2
eT (t− h(t))e(t − h(t)), (18)

−c3d
∗
3e

T (t)(IN ⊗G3)

∫ t

t−k(t)
e(s) ds

≤
c3d

∗
3

2ε6
eT (t)(IN ⊗G3G

T
3 )e(t) (19)

+
c3d

∗
3ε6

2

(

∫ t

t−k(i)
eT (s) ds

)T(
∫ t

t−k(i)
eT (s) ds

)

.

Hence, according to(13) -(14) we have

V̇ (t) ≤ eT (t)
(

IN ⊗ J(t) + c1(A⊗G1)

−c1d
∗
1(IN ⊗G1)) +

c2

2(1 − β)
(IN ⊗G2)

+
c3k

2

2
(IN ⊗G3) +

1

2ε1
(IN ⊗ Jh(t)J

T
h (t))

+
1

2ε2
(IN ⊗ Jk(t)J

T
k (t))

+
c2

2ε3
(BBT ⊗G2G

T
2 )

+
c3

2ε4
(CCT ⊗G3G

T
3 )

+
c2d

∗
2

2ε5
(IN ⊗G2G

T
2 )

+
c2d

∗
3

2ε6
(IN ⊗G3G

T
3 )

)

e(t)

+
c2

2ε3
(BBT ⊗G2G

T
2 )

−eT (t− h(t))
(c2

2
(IN ⊗G2)

+δ(IN ⊗G2)
)

e(t− h(t))

−
(

∫ t

t−k

e(s) ds
)T

(c3

2
(IN ⊗G3)

−τ(IN ⊗G3)
)

(

∫ t

t−k

e(s) ds
)

≤ (η − c1d
∗
1)e

T (t)(IN ⊗G1)e(t)

−eT (t− h(t))((
c2

2
− δ)

(IN ⊗G2))e(t− h(t))

−
(

∫ t

t−k

e(s) ds
)T

((
c3

2
− τ)(IN ⊗G3)

(

∫ t

t−k

e(s) ds
)

. (20)

It is obviously that there exists sufficiently large posi-
tive constantd∗1, d∗2 andd∗3 such that

d∗1 −
η

c1
> 0,(21)

d∗2 −
1

ε5
(
ε1

c2
+ ε2 − λmin(IN ⊗G2)) > 0,(22)

d∗3 −
1

ε6
(
ε2

c3
+ ε4 − λmin(IN ⊗G3)) > 0.(23)

We can choosed∗1, d∗2 d
∗
3 satisfying (21), (22) and (23),

respectively. SinceG1, G2 andG3 are positive def-
inite diagonal matrix, we know thaṫV (t) ≤ 0 and
V̇ (t) = 0 if and only if ξ(t) = 0. Hence, the set
W = {ξ(t) = 0, d1i = d∗1, d2i = d∗2, d3i = d∗3} is
the invariant set contained inW1 = {ξ(t) = 0 :

V̇ (t) = 0} for system (6). According to LaSalle
invariance principle [3] and Lyapunov stability the-
ory, for any initial condition, every solution of system
(6) approachesW ast −→ ∞, which indicates that
‖ei(t)‖ −→ 0, i = 1, 2, . . . N, this means that the
function projective synchronization between the de-
layed complex dynamical networks (1) and the refer-
ence nodes(t) is achieved under hybrid adaptive con-
trol (4). The proof is this completed.

4 Numerical Example

In this section, we present example to illustrate the
effectiveness and the reduced conservatism of our re-
sult.
Example 4.1We first consider the perturbed Chua’s
circuit system with mixed time-varying delays is used
as uncoupled node in the network (1) to show the ef-
fectiveness of the proposed control scheme. The per-
turbed Chua’s circuit system with mixed time-varying
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delays is given by [12]

ẋ1(t) = p
(

x2(t− h(t))−
1

7

(

2x31(t)− x1(t)
))

ẋ2(t) = x1(t)− sx2(t) + x3(t− h(t)) (24)

ẋ3(t) = qx2(t) + r

∫ t

t−k1(t)
x21(s) ds

where p, q, r and s are real positive constants.
It is well known that the system (24) exhibits
chaotic behavior with the parametersp, q, r and
s are chosen asp = 7, q = −100

7 , r =
0.07 and s = 1.5, the initial condition function
φ(t) = [0.65 cos t, 0.3 cos t,−0.2 cos t]T , the time-
varying delay functionsh(t) = 0.1 + 0.1 sin2 t and
k(t) = 0.1 cos2 t is shown in Figure 1. It is stable
at the equilibrium points(t) = 0, s(t − h(t)) = 0,
∫ t

t−k1(t)
s(θ) dθ = 0 and Jacobian matrices are

J(t) =





1 0 0
1 −1.5 0
0 −100

7 0



 , Jh(t) =





0 7 0
0 0 1
0 0 0



 ,

Jk1(t) =





0 0 0
0 0 0
0 0 0



 .

−2

−1

0

1

2

−1

−0.5

0

0.5

1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x
i3

(t), α
3
(t)s

3
(t)

x
i1

(t), α
1
(t)s

1
(t)

x i2
(t

),
 α

2(t
)s

2(t
)

drive  system 

response network 

Figure 1: Chaotic behavior of the perturbed Chua’s
circuit system with mixed time-varying delays (24)

The parameters are selected as follows: the
coupling strength c1 = 0.4, c2 = 0.3,
c3 = 0.5, the time-varying scaling function matrix
α(t) =diag(0.6 sin(2π15 ), 0.7 sin(

2π
15 ), 0.75 sin(

2π
15 )),

the inner-coupling matrix are

G1 =





3 0 0
0 3 0
0 0 3



 , G2 =





2 0 0
0 2 0
0 0 2



 ,

G3 =





1 0 0
0 1 0
0 0 1



 ,

and The coupling configuration matrices are given re-
spectively as follows:

A =

























−5 1 1 0 1 0 1 1
1 −3 0 1 0 0 1 0
1 0 −4 0 1 1 0 1
0 1 0 −2 1 0 0 0
0 0 1 0 −2 0 0 1
0 1 0 0 1 −3 0 1
1 1 0 1 0 1 −4 0
1 0 1 0 0 1 0 −3

























,

B =

























−4 0 1 0 1 0 1 1
1 −3 0 0 1 0 0 1
0 1 −4 0 1 1 1 0
1 0 0 −3 0 1 0 1
0 0 1 0 −2 0 1 0
0 1 0 1 0 −3 1 0
1 0 1 0 1 0 −3 0
0 1 0 0 0 1 0 −2

























,

C =

























−1 0 0 0 0 1 0 0
0 −3 0 1 0 1 0 1
0 0 −1 0 0 0 1 0
0 1 0 −3 0 1 0 1
0 0 1 0 −2 0 0 1
1 0 0 1 0 −3 1 0
0 1 0 0 0 0 −2 1
1 0 0 0 0 0 0 −1

























.

Solution: From the conditions (7)-(9) of Theorem 6
and there exist positive constantsε1 = 0.86, ε2 =
0.75, ε3 = 0.90, ε4 = 1.20, ε5 = 1.10, ε6 = 0.70,
one can check that the last three conditions in Theo-
rem 6. are satisfied. From the conditions of Theorem
6, we can obtaind∗1 > 15.5354, d∗2 > 2.7727 and
d∗3 > 2.9643

The numerical simulations are carried out using
the explicit Runge-Kutta-like method (dde45), inter-
polation and extrapolation by spline of the third order.
Figure 2. shows the function projective synchroniza-
tion errors between the states of isolate nodeα(t)s(t)
and nodexi(t), whereeij(t) = xij(t) − αj(t)sj(t)
for i = 1, ..., 8, j = 1, 2, 3 without hybrid adap-
tive control. Figure 3. shows the function projec-
tive synchronization errors between the states of iso-
late nodeα(t)s(t) and nodexi(t), whereeij(t) =
xij(t)−αj(t)sj(t) for i = 1, ..., 8, j = 1, 2, 3 with hy-
brid adaptive control. We see that the synchronization
errors converge to zero under the above conditions.
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Figure 2: Shows the function projective synchroniza-
tion errors between the states of isolate nodeα(t)s(t)
and nodexi(t), whereeij(t) = xij(t)−αj(t)sj(t) for
i = 1, ..., 8, j = 1, 2, 3 without adaptive controller
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Figure 3: Shows the function projective synchroniza-
tion errors between the states of isolate nodeα(t)s(t)
and nodexi(t), whereeij(t) = xij(t)−αj(t)sj(t) for
i = 1, ..., 8, j = 1, 2, 3 with adaptive controller

5 Conclusion
This paper investigated function projective synchro-
nization (FPS) for complex dynamical network with
mixed time-varying and hybrid coupling delays,
which is composed of state coupling, time-varying de-
lay coupling and distributed time-varying delay cou-
pling. In contrast to previous results, the coupling
configuration matrix need not be symmetric or irre-
ducible. The designed controller ensures that the FPS
of delayed complex dynamical network are proposed
via hybrid error adaptive control, which contains er-
ror term, time-varying delay error term and distributed
time-varying delay error term. By using new methods
to deal with asymmetric coupling matrix and a new
class of Lyapunov-Krasovskii functional, improved
PFS criteria are obtained. Simulation results have
been given to illustrate the effectiveness of the pro-
posed method.
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