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Abstract: Sparse Subspace Clustering constructs a sparse similarity graph by using the coefficient of sparse rep-
resentation to subspace clustering. Based on sparse representation techniques, the algorithm gets the sparse coef-
ficient by using l1-minimization and gets clusters’ data by spectral clustering algorithm. The spectral clustering
algorithm depends on k-means algorithm for data clustering, while k-means algorithm is sensitive to the choice
of initial starting conditions and it needs iterations. In order to avoid the drawbacks of k-means algorithm, we
propose two modified Sparse Subspace Clustering algorithm, then the results are not be affected by the centers or
the iterations. In one of the method, we get the clusters by comparing the positions of nonzero elements in the
sparse adjacent matrix of similarity graph and the eigenvector. And in the second method, we use SOM algorithm
instead of k-means algorithm. The experiment results show our proposed algorithm outperforms the initial Sparse
Subspace Clustering.
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1 Introduction

Clustering is one of classic problems in pattern
recognition, image processing, machine learning and
statistics [1, 2], which aims to partition a collection
of patterns into disjoint clusters, such that patterns in
the same cluster are similar, however patterns belong
to two different clusters are dissimilar. In many areas
of machine learning, image processing and computer
vision applications require processing and represen-
tation of high-dimensional data. In fact, these high-
dimensional data often can be represented by a low-
dimensional subspace. For example, face images of
a object under varying illumination conditions can be
well approximated by 9-dimensional linear subspace
[3]. Subspace clustering [4] separates data according
to their underlying subspaces and is applied to image
processing [5] and computer vision [6].

Recently, Elhamifar and Vidal [7, 8] have intro-
duced an approach which constructed a sparse similar-
ity graph by using the coefficient of sparse represen-
tation to subspace clustering, called Sparse Subspace
Clustering(SSC). The algorithm based on sparse rep-
resentation techniques and got the sparse coefficient
by using l1-minimization, and clustered data by spec-
tral clustering. The spectral clustering algorithm em-
ployed k-means algorithm for data clustering, how-
ever the k-means algorithm is sensitive to the choice

of initial starting conditions [9, 10] and the process
of the algorithm need iterations. In the literatures,
some modified algorithms are available: Scalable S-
parse Subspace Clustering(SSSC) [11] and Reweight-
ed Sparse Subspace Clustering [12]. Kernel version
[13, 14] can also be gotten. Patel et al. [15] introduces
an algorithm Latent Space Sparse Subspace Cluster-
ing based on SSC.

In this paper, two modified SSC algorithms are
proposed in order to avoid the drawbacks of k-means
which gets uncertain results and needs iterations. We
also improve the efficiency of the algorithm. By ob-
serving the structure of the adjacent matrix, we find
that the nonzero element of columns of matrix is in
the same position as the corresponding eigenvector,
therefore we can get the clusters by comparing nonze-
ro elements in the columns of adjacent matrix and the
eigenvectors. k-means algorithm also can be instead
of by SOM algorithm which can gets better result-
s. We do experiments on synthetic data sets and face
clustering data sets, the results show that our proposed
algorithms are better than original SSC [7, 8].

The rest of paper is organized as follows. We
briefly describe the sparse subspace clustering in sec-
tion 2. In section 3 we analysis SSC algorithm and
propose our algorithms. Experimental evaluation is p-
resented in section 4. Finally section 5 conclude our
work.
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2 SSC
Elhamifar and Vidal [7, 8] proposed the SSC al-

gorithm for subspace clustering based on sparse repre-
sentation technique. The main idea of SSC algorithm
is to solve the optimization problem

min ∥ci∥1, yi = Y ci, cii = 0 (1)

where ci ∈ RN (i = 1, 2, ..., N) is the sparse
representation of data point yi ∈ Rd as a linear com-
bination of Y = [y1, ..., yi, ..., yN ].

After solving the optimization problem, using
the sparse coefficient formes the similarity graph and
then clusters the data by spectral clustering.

Algorithm1 SSC
Step1 Input a set of points yi ∈ Rd(i =

1, 2, ..., N).
Step2 Solve the optimization problem 1 to attain

the sparse coefficient ci(i = 1, 2, ..., N), and normal-
ize ci =

ci
∥ci∥∞ .

Step3 Form a adjacent matrix W of the similarity
graph defined by C, where C = [c1, c2, ..., cN ] and
W = |C|+ |C|T .

Step4 Apply spectral clustering to the similarity
graph.

3 The proposed algorithm

3.1 Analysis of SSC algorithm
In the last step of SSC, it uses spectral clustering

for data cluster. The accurate procedure is as follows.
Algorithm 2 Spectral clustering
Step1 Form Laplacian matrix by L = I −

D− 1
2WD− 1

2 , where D = diag{di} with di =∑N
j=1Wij .

Step2 Calculate multiplicity k of the zero eigen-
value of Laplacian matrix L and get the eigenvector
ui(i = 1, 2, ..., k) of L corresponding to the zero
eigenvalue.

Step3 Set U = (u1, u2, ..., uk) and normal-
ize the rows of U to norm 1, that is set uij =

uij/(
∑k

l=1 u
2
il)

1/2.
Step4 Get the clusters of data by performing k-

means algorithm on the row of U .
The k-means algorithm is applied in the last step

of the spectral clustering.
From literatures [7, 8] we knew that in a prop-

er order adjacent matrix W can be written as a block
diagonal form

W =


W1 0 · · · 0
0 W2 · · · 0
...

...
...

...
0 0 · · · Wk

 (2)

The eigenvector ui(i = 1, 2, ..., k) of L cor-
responding to the zero eigenvalue can be written as
ui = [0, 0, ..., 1TNi

, 0, ..., 0] for i ∈ {1, 2, ..., k} in a
proper order and it is clear to see that nonzero ele-
ments of ui locating at the position of Ni is in keeping
with Wi.

3.2 MSSC
Through above discussion, we find that the

nonzero value in eigenvector is relative to the block
of adjacent matrix W . Therefore, in a proper order,
we can estimate which cluster the data should be in
by the positions of nonzero element of W . Hence we
use nonzero position for clusters instead of k-means
algorithm.

Given a set of data points yNi=1 drawn from a in-
dependent linear subspace Sn

i=1, where di, Ni are
the unknown dimension and number of the subspace
Si respectively. Let Y = [y1, ..., yi, ..., yN ] and in
a proper order, Y can be represent in the form of
Y = [Y1, Y2, ..., Yn] where Yi ∈ Si. Each yi has a rep-
resentation by Y , and SSC algorithm needs the most
sparse representation, that is

min ∥ci∥0, yi = Y ci, cii = 0 (3)

where ∥ci∥0 is the l0 norm of c, i.e. the number of
nonzero elements. Since 2 is an NP-hard problem, as
the Basis Pursue (BP) [16] algorithm, it is replaced by
l1 optimization problem 1 based on the Basis Pursue
(BP) [16] algorithm.

After getting solution C of 1, we form a sim-
ilarity graph G, whose adjacent matrix is W , and
W = |C| + |C|T . The Laplacian matrix of G is
L = I − D− 1

2WD− 1
2 , where D = diag{di} with

di =
∑N

j=1Wij . As the proposition in [7], the mul-
tiplicity of the zero eigenvalue of the Laplacian ma-
trix L corresponding to the graph G is equal to the
number of connected components of the graph. Al-
so, the components of the graph can be determined
from the eigenspace of the zero eigenvalue. More pre-
cisely, if the graph has n connected components, then
ui = [0, 0, ..., 1TNi

, 0, ..., 0] is the i− th eigenvector of
L corresponding to the zero eigenvalue and it is easy
to see that the position of Ni nonzero elements of ui
is in keeping with Wi. Therefore we use the eigen-
vectors as the center of clusters and cluster data by
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just calculating the number of nonzero elements at the
same position between the data and the centers.

Algorithm 3 Modified Sparse Subspace Cluster-
ing(MSSC)

Step1 Input a set of points yi ∈ Rd(i =
1, 2, ..., N).

Step2 Solve the optimization problem1 to attain
the sparse coefficient ci(i = 1, 2, ..., N), and normal-
ize ci =

ci
∥ci∥∞ .

Step3 Form a adjacent matrix W of the similarity
graph defined by C, where C = [c1, c2, ..., cN ] and
W = |C|+ |C|T .

Step4 Form Laplacian matrix by L = I −
D− 1

2WD− 1
2 , where D = diag{di} with di =∑N

j=1Wij .
Step5 Calculate multiplicity k of the zero eigen-

value of Laplacian matrix L and get the eigenvector
ui(i = 1, 2, ..., k) of L corresponding to the zero
eigenvalue.

Step6 Set U = (u1, u2, ..., uk) and calculate the
number of nonzero elements at the same position be-
tween the data and the centers.

Step7 Get the clusters of data by the maximum
number of nonzero elements at the same position be-
tween the data and the centers.

3.3 SSCSOM
In this section, we modify the SSC based on self-

organizing map(SOM). SOM algorithm was original-
ly devised by Teuvo Kohonen [18, 19]. SOM operates
in two phases: training and mapping. Training phase
builds the map using input examples. It is a compet-
itive process, also called vector quantization. Map-
ping automatically classifies a new input vector. SOM
consists of components called nodes or neurons. Each
node is associated with a weight vector of the same di-
mension as the input data vectors and a position in the
map space. The procedure for placing a vector from
data space onto the map is to first find the node with
the closest weight vector to the vector taken from data
space. Once the closest node is located it is assigned
the values from the vector taken from the data space.

Algorithm 4 SOM
Step1 Initialize the map’s nodes’ weight

vectors(wij) and the maximum iteration T .
Step2 Input training vector(X).
Step3 Use Euclidean distance formula to find

similarity between the input vector and the map’s n-
ode’s weight vector.

Step4 Track the node that produces the smallest
distance(this node is the best matching unit, BMU).

Step5 Update the nodes in the neighbourhood of
BMU by pulling them closer to the input vector

wij(t+ 1) = wij(t) + η(Xi − wij)
Step6 Let t = t + 1. Repeat from Step2 while

t < T .
Algorithm5 SSCSOM
Step1 to Step5 are the same as Algorithm3.
Step6 Set U = (u1, u2, ..., uk). Let each row of

U as a input vector of SOM.
step7 Get clusters of data by SOM algorithm.

4 Experiment Evaluation
In the following subsections we provide experi-

mental results comparing the SSC algorithm with our
algorithms.

4.1 Synthetic data sets
Four synthetic data sets S1, S2, S3, S4 are tested

in this section. The results are compared from MSS-
C to SSC. They are all generated from pseudo ran-
dom values drawn from the standard uniform distri-
bution on the open interval(0,1). Generated a matrix
of 10 ∗ 36 by function of rand, divided the matrix for
three components and each 12 columns as a block em-
bedded in a large matrix of 500 ∗ 36. The first block
is in row 1 to row 10, the second is in row 101 to row
110, and the third is in row 301 to row 310, the oth-
er elements in the large matrix are zero. Regard each
column of the matrix as a data point belonging to S1,
hence all columns in the large matrix composed data
set of S1. Clearly, there are three classes in S1. S2

data set has the same data as S1, but the data are in a
random orders.

Generated a matrix of 15 ∗ 120 by function of
rand, divided the matrix for three components and
each 20 columns as a block embedded in a large ma-
trix of 1000 ∗ 120 and there are 6 blocks. The first
block is in row 1 to row 15, the second is in row 101
to row 115, and the third is in row 201 to row 315,
the i − th block is in row (i − 1) ∗ 100 + 1 to row
(i− 1) ∗ 100+15, the other elements in the large ma-
trix are zero. Regard each column of the matrix as a
data point belonging to S3, hence all columns in the
large matrix composed data set of S3. S4 data set has
the same data point as S3, but the data points are in a
random orders.

4.2 Face clustering
In this section, we evaluate the clustering perfor-

mance on the Extended Yale B database [17]. The da-
ta set contains of 192×168 pixel cropped face images
of 38 individual, where there are 64 images for each
subject acquired under various lighting conditions. In
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Table 1: Comparative results on Synthetic data set

data set method clustering error time
S1 SSC 0 2.87± 0.93
S1 MSSC 0 1.72
S2 SSC 0 2.06± 0.07
S2 MSSC 0 1.73
S3 SSC 0 18.07± 1.87
S3 MSSC 0 14.88
S4 SSC 0 14.99± 0.17
S4 MSSC 0 14.79

order to reduce the computational cost, we downsam-
ple the images to 48× 42 pixel, then each face image
is a 2016 dimension data. We do experiments on two
and three subjects for five different groups.

Table 2: Comparative results on Extended Yale B

group No. of subject method mean error time
1 2 SSC 0 53.28
1 2 SSCSOM 0 51.91

2 2 SSC 0 53.93
2 2 SSCSOM 0 53.80

3 2 SSC 0 55.21
3 2 SSCSOM 0 54.08
4 2 SSC 0 58.42
4 2 SSCSOM 0 54.73

5 2 SSC 3.9 55.41
5 2 SSCSOM 1.6 55.17

4.3 Performance analysis
The comparison of the algorithms across the data

sets is shown in Table 1-3. In Table 1, we find that
both SSC algorithm and MSSC algorithm can attain
the correct clustering, however, SSC algorithm is time
consuming. In Table 2 and 3, the mean error of the
SSCSOM algorithm is less than SSC algorithm, and
also the time consuming. From the experiments, we
see that our proposed algorithms can perform well in
synthetic data sets and face clustering data sets than
SSC algorithm.

5 Conclusions
We modify the SSC algorithm and the experi-

ments show MSSC algorithm can get the same cor-
rect rate and costs little time than original algorithm;

Table 3: Comparative results on Extended Yale B

group No. of subject method mean error time
1 3 SSC 6.8 83.43
1 3 SSCSOM 5.7 82.86
2 3 SSC 1.0 83.06
2 3 SSCSOM 1.0 81.71

3 3 SSC 3.1 83.78
3 3 SSCSOM 1.5 83.05

4 3 SSC 0.5 83.35
4 3 SSCSOM 0.5 82.11

5 3 SSC 0 82.50
5 3 SSCSOM 0 82.31

the SSCSOM algorithm can both get more accurate
and little time than SSC algorithm. However, the real
data sets may not satisfy the conditions of the disjoin-
t sets, the MSSC algorithm will not perform well in
those data sets. In SSCSOM algorithm, when we do
experiments on five subjects, the mean error is big-
ger than SSC. Hence the SSCSOM is not suitable for
more clusters.

As for future work, we plan to find a method to
circumvent the uncertainty in SSC algorithm and save
time as well. Another side, we would like to apply the
MSSC algorithm into real data sets.
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