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Abstract--A reaction-diffusion system (RDS) as a mutualism model in ecology is studied using finite difference 
method and asymptotic methods. For nonlinear reaction term an explicit method is used and an implicit method for 
linear diffusion term. The numerical solutions are found as traveling wave solutions with no flux Neuman boundary 
conditions and for three different types of initial conditions which represent a common ecological cases. The 
asymptotic solutions are studied for this model when a small  perturbed parameter  𝜆𝜆 ≪ 1  appear from non 
dimensional of (RDS). The traveling wave solutions from the above two methods are compared and shown a good 
agreement.   
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1 Introduction 
A theory of reaction-diffusion equations (RDE) is one of 
the important theorem that attracted different scientists 
from different fields, such as biology, physics, ecology, 
chemistry, etc. [2, 7].   Types of reaction-diffusion 
equations has been studied since 1930, by Fisher [8, 10], 
and the common topic that is attracted the research is a 
traveling wave solution [12]. This concept translated in 
elementary of ecology texts to represent the organism 
interaction, which has three fundamental ways, and 
generally define with names competition, predation, and 
mutualism.  The only interaction that both species get 
benefit is mutualism. Mathematically, mutualism as 
interaction between two species in brief is defined +/+ 
interaction [5].  Finite difference is one of the oldest and 
simplest techniques used to find the numerical solutions 
for partial differential equations and specially (RDE). 
Numerical methods have been an active research area to 
solve reaction-diffusion equations (RDE), and the 
development methods are used widely to deal with this 
problem. Examples on that,  Exponential time difference   
methods [11, 1], integrating factor methods [3, 9], and 
operator splitting methods [3].  A posterior error 
estimates added to operator splitting methods to solve 
this model adaptively [4]. It has been assumed that FDM 
is a  numerical method that can be used to obtain precise 
solution but it  works better when all parameters are of 
order one, whilst there are analytical (asymptotic) 

methods work only when there is a parameter in the 
equation is small or large. Asymptotic or perturbation 
methods give the physical explanation for the problem 
besides the boundary layer in the problem [6,7,8]. We 
study a reaction-diffusion model for a system of two 
species which exhibits mutualism population 
interactions, provided that the population is sufficiently 
small. The model we will study here is 

∂u
∂t

= Du
∂2u
∂x2 + Pu u(1 + Qu u − Ru u2 + Su w) 

∂w
∂t

= Dw
∂2w
∂x2 + Pw w(1 + Qw w − Rw w2 + Sw u)           (1) 

where the diffusion coefficients are described by Du  and 
Dw , in the reaction term both Pu u(1− Ru u2)and 
Pw w(1 − Rw w2) are generalized logistic growth rates 
for the species u and w. In this model, the intra specific 
cooperation has the cooperative parameters Su w and  
Sw u , whilst the terms Suand Swwith positive sign in 
fronts describe that both species get benefits from 
interactions which also called mutualism. 
In this paper, section two describes the model after non 
dimensional the RDS and we show the initial and 
boundary conditions that use to solve this model. In 
section three,  the possible equilibrium solutions and 
their stability are studied. The finite difference method 
in section four is shown for finding the stable traveling 
wave solutions for (1). Asymptotic solutions are studied 
and compared in to the solutions of finite difference 
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method in section 5, and conclusion is discussed in 
section 6. 
 

2 Dimensionless of Reaction-diffusion 
system (1) 

We define dimensionless variables,  

𝑢𝑢 = 𝑈𝑈𝑢𝑢�      ,      𝑤𝑤 = 𝑊𝑊𝑤𝑤�     ,      𝑥𝑥 = (
𝐷𝐷𝑢𝑢
𝑃𝑃𝑢𝑢

)
1
2�̅�𝑥       ,         𝑡𝑡 =

𝑡𝑡̅
𝑃𝑃𝑢𝑢

. 

Substituted this value in equation (1), and using the 
dimensionless parameters  
𝛼𝛼1 = 𝑄𝑄𝑢𝑢𝑈𝑈   ,    𝛾𝛾1 = 𝑆𝑆𝑢𝑢𝑊𝑊  ,    𝛼𝛼2 = 𝑄𝑄𝑤𝑤𝑊𝑊 ,   𝛾𝛾2 =
𝑆𝑆𝑤𝑤𝑊𝑊,𝛽𝛽1 = 𝑅𝑅𝑢𝑢𝑈𝑈2 ,  𝜆𝜆 = 𝑃𝑃𝑤𝑤

𝑃𝑃𝑢𝑢
 , 𝐷𝐷
𝜆𝜆

= 𝐷𝐷𝑤𝑤
𝐷𝐷𝑢𝑢

 ,𝛽𝛽2 = 𝑅𝑅𝑤𝑤𝑊𝑊2, 
 we get after omitting the over bar for convenience,  
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑢𝑢 2 + 𝑢𝑢(1 + 𝛼𝛼1𝑢𝑢 − 𝛽𝛽1𝑢𝑢2 + 𝛾𝛾1𝑤𝑤), 

    𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡

= 𝐷𝐷
𝜆𝜆
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥 2 +  𝜆𝜆𝑤𝑤(1 + 𝛼𝛼2𝑤𝑤 − 𝛽𝛽2𝑤𝑤2 + 𝛾𝛾2𝑢𝑢).        (2) 

The dimensionless parameter 𝜆𝜆 ≪ 1 is very small and 
therefore we will use asymptotic methods to solve (2).  
Three ecologically important initial conditions which 
represent most important cases in ecologically 
population and assume that the initial conditions are 
symmetric about the origin, so we consider the problem 
for 𝑥𝑥 ≥  0 and 𝑡𝑡 ≥  0, 

𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢0(𝑥𝑥), 𝑤𝑤(𝑥𝑥, 0) = 𝑤𝑤0(𝑥𝑥), 
which describe the  
 

• initial condition  A 

𝐴𝐴)         𝑢𝑢0(𝑥𝑥) = �1, 𝑥𝑥 ≤ 𝐿𝐿0
0, 𝑥𝑥 > 𝐿𝐿0

� 

𝑤𝑤0(𝑥𝑥) = 1,            
where 𝐿𝐿0 is a width of step function. The physical 
meaning for this case is that species w is native and 
species u is introduced. 

• initial condition  B 
𝑢𝑢0(𝑥𝑥) = 1. 

𝐵𝐵) 𝑤𝑤0(𝑥𝑥) = �1, 𝑥𝑥 ≤ 𝐿𝐿0
0, 𝑥𝑥 > 𝐿𝐿0

� 
The physical meaning for this case is that 
species u is native and species w is introduced. 

• initial condition  C 

𝐶𝐶)         𝑢𝑢0(𝑥𝑥) = �1, 𝑥𝑥 ≤ 𝐿𝐿0
0, 𝑥𝑥 > 𝐿𝐿0

� 

       𝑤𝑤0(𝑥𝑥) = �1, 𝑥𝑥 ≤ 𝐿𝐿0
0, 𝑥𝑥 > 𝐿𝐿0

� 
and boundary conditions 

𝜕𝜕𝑢𝑢(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥

= 0,
𝜕𝜕𝑤𝑤(0, 𝑡𝑡)
𝜕𝜕𝑥𝑥

= 0. 
We have chosen in the initial condition to have a value  
(𝑢𝑢0   =  1 𝑜𝑜𝑜𝑜 𝑤𝑤0   =  1) . The far field boundary 
conditions are therefore, 𝑢𝑢 →  0 and 𝑤𝑤 →  0 as   

𝑥𝑥 →  ∞. The physical meaning for this case is that 
species 𝑢𝑢 and 𝑤𝑤 are both introduced. 
 
3.  Equilibrium solutions:  
We study the equilibrium solutions of (2) and analysis 
its stability in order to  predict the type of traveling wave 
of solutions that can be constructed, since this type of 
solution connect stable equilibrium point to another one.  
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝑢𝑢(1 + 𝛼𝛼1𝑢𝑢 − 𝛽𝛽1𝑢𝑢2 + 𝛾𝛾1𝑤𝑤)   ≡ 𝑢𝑢(𝑓𝑓(𝑢𝑢) + 𝛾𝛾1𝑤𝑤) 
𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡

=  𝜆𝜆𝑤𝑤(1 + 𝛼𝛼2𝑤𝑤 − 𝛽𝛽2𝑤𝑤2 + 𝛾𝛾2𝑢𝑢) ≡ 𝜆𝜆𝑤𝑤(𝑔𝑔(𝑤𝑤) +
𝛾𝛾2𝑢𝑢)….. (3) 
Where 𝑓𝑓(𝑢𝑢) = 1 + +𝛼𝛼1𝑢𝑢 − 𝛽𝛽1𝑢𝑢2     𝑎𝑎𝑎𝑎𝑎𝑎    𝑔𝑔(𝑢𝑢) = 1 +
𝛼𝛼2𝑤𝑤 − 𝛽𝛽2𝑤𝑤2 … (4) 
The convenient way to analyses these solutions and get a 
qualitative picture of the dynamics of the ordinary 
differential equations (3) is using nullclines. The 
nullclines are  

𝑢𝑢(𝑓𝑓(𝑢𝑢) + 𝛾𝛾1𝑤𝑤) = 0 
                    𝜆𝜆𝑤𝑤(𝑔𝑔(𝑤𝑤) + 𝛾𝛾2𝑢𝑢) = 0         …  (5) 
The intersection of 𝛾𝛾1𝑤𝑤 = 𝑓𝑓(𝑢𝑢) and 𝛾𝛾2𝑢𝑢 = 𝑔𝑔(𝑤𝑤)  or the 
values of u and w for which the time derivatives in (3) 
are equal to zero are the spatially uniform solutions or 
the equilibrium solutions. Thus, the obvious equilibrium 
solutions are 

• ( 𝑢𝑢0 , 0 )  𝑎𝑎𝑎𝑎𝑎𝑎 ( 0 ,𝑤𝑤0 ), which are single 
species equilibrium points. 

• ( 𝑢𝑢,𝑤𝑤 )  =  ( 0,0 ) , which is an extinction of 
both species. 

In addition, there is a coexistence equilibrium solution 
given by the intersections of the quadratic curves,  

𝑤𝑤 =  𝑓𝑓 ( 𝑢𝑢 ) /𝛾𝛾1  ,𝑢𝑢 =  𝑔𝑔 ( 𝑤𝑤 ) /𝛾𝛾 2. 
where 0 < 𝛼𝛼1,𝛼𝛼2 < 1   ,𝛽𝛽1 > 1 − 𝛼𝛼1 ,𝛽𝛽2 > 1 − 𝛼𝛼2    
        𝛾𝛾1 = 𝛽𝛽1 − (1 + 𝛼𝛼1), 𝛾𝛾 2 = 𝛽𝛽2 − (1 + 𝛼𝛼2). 
Thus there is a positive coexistence equilibrium solution 
namely (1,1). The stability analysis of the equilibrium 
points is shown that 
•  ( 0,0 ) : has two positive eigenvalues 1 and  𝜆𝜆, 

therefore its unstable 
•   (1,1): The eigenvalues have the general form                                                                 

 

𝛼𝛼1−2𝛽𝛽1+𝜆𝜆(𝛼𝛼2−2𝛽𝛽2)+�(𝛼𝛼1−2𝛽𝛽1+𝜆𝜆(𝛼𝛼2−2𝛽𝛽2))2−4𝜆𝜆(𝛽𝛽1𝛽𝛽2+𝛽𝛽1+𝛽𝛽2−1−𝛼𝛼1−𝛼𝛼2)
2

,  

𝛼𝛼1−2𝛽𝛽1+𝜆𝜆(𝛼𝛼2−2𝛽𝛽2)−�(𝛼𝛼1−2𝛽𝛽1+𝜆𝜆(𝛼𝛼2−2𝛽𝛽2))2−4𝜆𝜆(𝛽𝛽1𝛽𝛽2+𝛽𝛽1+𝛽𝛽2−1−𝛼𝛼1−𝛼𝛼2)
2

,  

Shaker M. Rasheed, Faraj Omar
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 394 Volume 1, 2016



    therefore it is a stable node. 
• (𝑢𝑢0, 0) has the eigenvalues: 

1+2𝛼𝛼1𝑢𝑢0−3𝛽𝛽1𝑢𝑢2
0+𝜆𝜆𝛾𝛾2𝑢𝑢0+�(1+2𝛼𝛼1𝑢𝑢0−3𝛽𝛽1𝑢𝑢20+𝜆𝜆𝛾𝛾2𝑢𝑢0)2−4𝜆𝜆(1+2𝛼𝛼1𝑢𝑢0−3𝛽𝛽1𝑢𝑢2 0)(𝛾𝛾2𝑢𝑢0)

2
,  

1+2𝛼𝛼1𝑢𝑢0−3𝛽𝛽1𝑢𝑢2
0+𝜆𝜆𝛾𝛾2𝑢𝑢0−�(1+2𝛼𝛼1𝑢𝑢0−3𝛽𝛽1𝑢𝑢20+𝜆𝜆𝛾𝛾2𝑢𝑢0)2−4𝜆𝜆(1+2𝛼𝛼1𝑢𝑢0−3𝛽𝛽1𝑢𝑢2 0)(𝛾𝛾2𝑢𝑢0)

2
,  

• (0,𝑤𝑤0) has the eigenvalues: 

1+2𝛼𝛼2      𝑤𝑤0−3𝛽𝛽2𝑤𝑤2
0+𝜆𝜆𝛾𝛾1𝑤𝑤0+�(1+2𝛼𝛼2𝑤𝑤0−3𝛽𝛽2𝑤𝑤20+𝜆𝜆𝛾𝛾1𝑤𝑤0)2−4𝜆𝜆(1+2𝛼𝛼2𝑤𝑤0−3𝛽𝛽2𝑤𝑤2 0)(𝛾𝛾2𝑢𝑢0)

2
,  

1+2𝛼𝛼2    𝑤𝑤0−3𝛽𝛽2𝑤𝑤2
0+𝜆𝜆𝛾𝛾1𝑤𝑤0−�(1+2𝛼𝛼2𝑤𝑤0−3𝛽𝛽2𝑤𝑤2 0+𝜆𝜆𝛾𝛾1𝑤𝑤0)2−4𝜆𝜆(1+2𝛼𝛼2𝑤𝑤0−3𝛽𝛽2𝑤𝑤2 0)(𝛾𝛾2𝑢𝑢0)

2
.  

 
The expected type of traveling wave solutions can be 
classified to the following: 
• Type (𝐼𝐼𝑎𝑎), The traveling wave connects (1,1) to 

(𝑢𝑢0, 0). 
•  Type (𝐼𝐼𝑏𝑏), The traveling wave connects (1,1)  to 

(0,𝑤𝑤0). 
•  Type  (𝐼𝐼𝑐𝑐), The traveling wave connects (1,1)  to  

(0,0). 
 
4 Finite difference method 
In this section, we solve (2) numerically and try to find 
the different types of travelling wave solutions that are 
generated by the different initial conditions. An implicit 
method is used to discretize the diffusion operator. For 
the nonlinear reaction part we use an explicit method. 
Finite difference method can be derived using a Taylor 
series expansion for 𝑢𝑢(𝑥𝑥0 + ∆𝑥𝑥) and 𝑢𝑢(𝑥𝑥0 −  ∆𝑥𝑥), 
where ∆x is the step size of x 
          
𝑢𝑢𝑖𝑖,𝑗𝑗+1 − 𝑢𝑢𝑖𝑖,𝑗𝑗

∆𝑡𝑡
=
𝑢𝑢𝑖𝑖+1,𝑗𝑗+1 − 2𝑢𝑢𝑖𝑖,𝑗𝑗+1 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1

(∆𝑥𝑥)2 + 𝑢𝑢𝑖𝑖,𝑗𝑗 (1

+ 𝛼𝛼1𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝛽𝛽1�𝑢𝑢𝑖𝑖,𝑗𝑗 )2 + 𝛾𝛾1𝑤𝑤𝑖𝑖,𝑗𝑗 �       (6) 
 
𝑤𝑤𝑖𝑖,𝑗𝑗+1−𝑤𝑤𝑖𝑖,𝑗𝑗

∆𝑡𝑡
= �𝐷𝐷

𝜆𝜆
� 𝑤𝑤𝑖𝑖+1,𝑗𝑗+1−2𝑤𝑤𝑖𝑖,𝑗𝑗+1+𝑤𝑤𝑖𝑖−1,𝑗𝑗+1

(∆𝑥𝑥)2 + 𝜆𝜆𝑤𝑤𝑖𝑖,𝑗𝑗    �1 +

𝛼𝛼2𝑤𝑤𝑖𝑖,𝑗𝑗 − 𝛽𝛽2�𝑤𝑤𝑖𝑖,𝑗𝑗 �
2 + 𝛾𝛾2𝑢𝑢𝑖𝑖,𝑗𝑗 � .       (7) 

These equations simplify to give us 
𝑢𝑢𝑖𝑖,𝑗𝑗+1 − 𝑢𝑢𝑖𝑖,𝑗𝑗 = � ∆𝑡𝑡

(∆𝑥𝑥)2� �𝑢𝑢𝑖𝑖+1,𝑗𝑗+1 − 2𝑢𝑢𝑖𝑖,𝑗𝑗+1 +

𝑢𝑢𝑖𝑖−1,𝑗𝑗+1) + ∆𝑡𝑡 𝑢𝑢𝑖𝑖,𝑗𝑗 (1 + 𝛼𝛼1𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝛽𝛽1�𝑢𝑢𝑖𝑖,𝑗𝑗 )2 +
𝛾𝛾1𝑤𝑤𝑖𝑖,𝑗𝑗 �… … (8)  
𝑤𝑤𝑖𝑖,𝑗𝑗+1 −𝑤𝑤𝑖𝑖,𝑗𝑗 = � 𝐷𝐷∆𝑡𝑡

𝜆𝜆(∆𝑥𝑥)2� �𝑤𝑤𝑖𝑖+1,𝑗𝑗+1 − 2𝑤𝑤𝑖𝑖,𝑗𝑗+1 +

𝑤𝑤𝑖𝑖−1,𝑗𝑗+1) + ∆𝑡𝑡 𝜆𝜆 𝑤𝑤𝑖𝑖 ,𝑗𝑗 �1 + 𝛼𝛼2𝑤𝑤𝑖𝑖,𝑗𝑗 − 𝛽𝛽2�𝑤𝑤𝑖𝑖,𝑗𝑗 �
2 +

  𝛾𝛾2𝑢𝑢𝑖𝑖,𝑗𝑗 �.         (9) 
 

Put   𝑜𝑜1 = � ∆𝑡𝑡
(∆𝑥𝑥)2�    and  𝑜𝑜2 = � 𝐷𝐷∆𝑡𝑡

𝜆𝜆(∆𝑥𝑥)2� 
−𝑜𝑜1𝑢𝑢𝑖𝑖+1,𝑗𝑗+1 + (1 + 2𝑜𝑜1)𝑢𝑢𝑖𝑖,𝑗𝑗+1 − 𝑜𝑜1𝑢𝑢𝑖𝑖−1,𝑗𝑗+1 =
∆𝑡𝑡 𝑢𝑢𝑖𝑖,𝑗𝑗 (1 + 𝛼𝛼1𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝛽𝛽1�𝑢𝑢𝑖𝑖,𝑗𝑗 )2 + 𝛾𝛾1𝑤𝑤𝑖𝑖,𝑗𝑗 � + 𝑢𝑢𝑖𝑖 ,𝑗𝑗 ,  
−𝑜𝑜2𝑤𝑤𝑖𝑖+1,𝑗𝑗+1 + (1 + 2𝑜𝑜2)𝑤𝑤𝑖𝑖,𝑗𝑗+1 − 𝑜𝑜2𝑤𝑤𝑖𝑖−1,𝑗𝑗+1 =
∆𝑡𝑡 𝜆𝜆 𝑤𝑤𝑖𝑖 ,𝑗𝑗 �1 + 𝛼𝛼2𝑤𝑤𝑖𝑖,𝑗𝑗 − 𝛽𝛽2�𝑤𝑤𝑖𝑖,𝑗𝑗 �

2 + 𝛾𝛾2𝑢𝑢𝑖𝑖,𝑗𝑗 � + 𝑤𝑤𝑖𝑖 ,𝑗𝑗   .  
A three point formula boundary conditions are used 

𝑢𝑢𝑥𝑥 = −3𝑢𝑢𝑎𝑎𝑡𝑡+∆𝑡𝑡+4𝑢𝑢𝑎𝑎+∆𝑥𝑥
𝑡𝑡+∆𝑡𝑡 −𝑢𝑢𝑎𝑎+2∆𝑥𝑥

𝑡𝑡+∆𝑡𝑡

2∆𝑥𝑥
= 0, 

𝑤𝑤𝑥𝑥 =
−3𝑤𝑤𝑎𝑎𝑡𝑡+∆𝑡𝑡 + 4𝑤𝑤𝑎𝑎+∆𝑥𝑥

𝑡𝑡+∆𝑡𝑡 − 𝑤𝑤𝑎𝑎+2∆𝑥𝑥
𝑡𝑡+∆𝑡𝑡

2∆𝑥𝑥
= 0. 

From discretization we get a system of algebraic 
equations which can be written in the form 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

3 −4 1
−𝑜𝑜1 (1 + 2𝑜𝑜1) −𝑜𝑜1
⋱ ⋱ ⋱

           −𝑜𝑜1 (1 + 2𝑜𝑜1) −𝑜𝑜1
              1 −4 3

⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑢𝑢1,𝑗𝑗+1
𝑢𝑢2,𝑗𝑗+1
⋮

𝑢𝑢𝑁𝑁−1,𝑗𝑗+1
𝑢𝑢𝑁𝑁−1,𝑗𝑗+1⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0
∆𝑡𝑡 𝑢𝑢2,𝑗𝑗 (1 + 𝛼𝛼1𝑢𝑢2,𝑗𝑗 − 𝛽𝛽1�𝑢𝑢2,𝑗𝑗 )2 + 𝛾𝛾1𝑤𝑤2,𝑗𝑗 �+ 𝑢𝑢2,𝑗𝑗

⋮
∆𝑡𝑡 𝑢𝑢𝑁𝑁−1,𝑗𝑗 (1 + 𝛼𝛼1𝑢𝑢𝑁𝑁−1,𝑗𝑗 − 𝛽𝛽1�𝑢𝑢𝑁𝑁−1,𝑗𝑗 )2 + 𝛾𝛾1𝑤𝑤𝑁𝑁−1,𝑗𝑗 � + 𝑢𝑢𝑁𝑁−1,𝑗𝑗

0 ⎦

⎤
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

3 −4 1
−𝑜𝑜2 (1 + 2𝑜𝑜2) −𝑜𝑜2
⋱ ⋱ ⋱

           −𝑜𝑜2 (1 + 2𝑜𝑜2) −𝑜𝑜2
              1 −4 3

⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑤𝑤1,𝑗𝑗+1
𝑤𝑤2,𝑗𝑗+1
⋮

𝑤𝑤𝑁𝑁−1,𝑗𝑗+1
𝑤𝑤𝑁𝑁−1,𝑗𝑗+1⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0
∆𝑡𝑡 𝑤𝑤2,𝑗𝑗 (1 + 𝛼𝛼1𝑤𝑤2,𝑗𝑗 − 𝛽𝛽2�𝑤𝑤2,𝑗𝑗 )2 + 𝛾𝛾1𝑢𝑢2,𝑗𝑗 � + 𝑤𝑤2,𝑗𝑗

⋮
∆𝑡𝑡 𝑤𝑤𝑁𝑁−1,𝑗𝑗 (1 + 𝛼𝛼1𝑤𝑤𝑁𝑁−1,𝑗𝑗 − 𝛽𝛽2�𝑤𝑤𝑁𝑁−1,𝑗𝑗 )2 + 𝛾𝛾1𝑢𝑢𝑁𝑁−1,𝑗𝑗 � +𝑤𝑤𝑁𝑁−1,𝑗𝑗

0 ⎦
⎥
⎥
⎥
⎤

(10) 
We solve the linear system (10 ) at each time step using 
the backslash operator in MATLAB.  Three types of 
traveling wave solution are shown in figure (1-3) for 
specific type of initial condition and specific values of 
parameters.  
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Fig. 1: With initial condition A .The travelling wave that 
develops (𝐼𝐼𝑎𝑎 ) when 𝛼𝛼1 = 0.5  , 𝛽𝛽1 = 2  ,𝛼𝛼2 = 0.5  , 𝛽𝛽2 =
3  , 𝜆𝜆 = 0.05   𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 1   

 
Fig. 2: With initial condition B .The travelling wave that 
develops (𝐼𝐼𝑏𝑏 ) when 𝛼𝛼1 = 0.5  , 𝛽𝛽1 = 2  ,𝛼𝛼2 = 0.5  , 𝛽𝛽2 =
3  , 𝜆𝜆 = 0.05  𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 1   

 
Fig. 3: With initial condition C .The travelling wave that 
develops (𝐼𝐼𝑐𝑐 ) when  𝛼𝛼1 = 0.5  , 𝛽𝛽1 = 2  ,𝛼𝛼2 = 0.5  , 𝛽𝛽2 =
3  , 𝜆𝜆 = 0.05   𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 1.     
 
5 Asymptotic solutions for 𝜆𝜆 ≪  1 
We have seen that a variety of travelling waves develops 
as solutions of the initial value problem. We define   
𝑧𝑧 =  𝑥𝑥 −  𝑐𝑐𝑡𝑡, and seek permanent form travelling wave 
solutions 𝑢𝑢� = 𝑢𝑢(𝑧𝑧)𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤� = 𝑤𝑤(𝑧𝑧) with wave speed 
𝑐𝑐 >  0. 
Substituting the new variable  𝑧𝑧  in the reaction diffusion 
system (2), we get 

𝑎𝑎2𝑢𝑢
𝑎𝑎𝑍𝑍2 + 𝑐𝑐

𝑎𝑎𝑢𝑢
𝑎𝑎𝑍𝑍

+ 𝑢𝑢(1 + 𝛼𝛼1𝑢𝑢 − 𝛽𝛽1𝑢𝑢2 + 𝛾𝛾1𝑤𝑤)  =  0 
𝐷𝐷
𝜆𝜆
𝑎𝑎2𝑤𝑤
𝑎𝑎𝑍𝑍2 + 𝑐𝑐 𝑎𝑎𝑤𝑤

𝑎𝑎𝑍𝑍
+  𝜆𝜆𝑤𝑤(1 + 𝛼𝛼2𝑤𝑤 − 𝛽𝛽2𝑤𝑤2 + 𝛾𝛾2𝑢𝑢) =0 

….(11) 
5.1   Regular perturbation solutions for type (𝑰𝑰𝒂𝒂) 
At leading order, provided that 𝑈𝑈 ↛  0 as 𝑍𝑍 →  ± ∞, 
this is a regular perturbation problem, with the leading 
order equations 
𝐷𝐷 𝑎𝑎2𝑊𝑊

𝑎𝑎𝑍𝑍2 + 𝑐𝑐 𝑎𝑎𝑊𝑊
𝑎𝑎𝑍𝑍

+ 𝑊𝑊(1 + 𝛼𝛼2𝑊𝑊− 𝛽𝛽2𝑊𝑊2 + 𝛾𝛾2𝑈𝑈) =0… 
(12) 
𝑈𝑈(1 + 𝛼𝛼1𝑈𝑈 − 𝛽𝛽1𝑈𝑈2 + 𝛾𝛾1𝑊𝑊)  =  0, … (13) 
or equivalently 
Let                               𝑎𝑎𝑊𝑊

𝑎𝑎𝑧𝑧
= 𝑉𝑉, 

𝑎𝑎𝑉𝑉
𝑎𝑎𝑍𝑍

= 𝑐𝑐
𝐷𝐷
𝑉𝑉 + 1

𝐷𝐷
𝑊𝑊(1 + 𝛼𝛼2𝑊𝑊− 𝛽𝛽2𝑊𝑊2 + 𝛾𝛾2𝑈𝑈) =0      (14) 

𝛾𝛾1𝑤𝑤 = 𝑓𝑓(𝑢𝑢). 
In the ( 𝑊𝑊,𝑉𝑉 ) phase plane, this system has equilibrium 
points at ( 0,0 ),  which corresponds to the equilibrium 
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solutions ( 𝑢𝑢0 ,0 ) , We can use the Matlab routine  
‘ode45’ to find traveling wave solutions of (14), which 
connect two equilibrium points of the system. In the 
(W, V) phase plane, this system has equilibrium points at 
(0,0), which corresponds to the steady state 𝑈𝑈 =
𝑢𝑢0   ,𝑊𝑊 = 0,  and (1,0) where is such that (1,1) is a 
coexistence equilibrium state. Possible traveling wave 
solutions with this structure therefore connect these two 
equilibria. We will focus on traveling wave solutions 
that satisfy (W, V) → (1,0) as 𝑍𝑍 → −∞ and (W, V) →
(0,0) as 𝑍𝑍 → ∞. By linearizing about (1,0) we find that 
the stable coexistence equilibrium point corresponds to a 
saddle point in (14). If a traveling wave solution exists it 
is therefore represented by the unstable separatrix of 
(1,0) those points into 𝑍𝑍 < 0. The other equilibrium 
point  (0,0)  is a stable node provided that  𝑐𝑐2 >
4𝐷𝐷 (1 + γ2U0) , and a stable focus for  𝑐𝑐2 <
4𝐷𝐷 �1 + γ2U0�. Since we require W > 0, this provides a 

lower bound, 𝑐𝑐 ≥  𝑐𝑐𝑙𝑙𝑏𝑏   ≡ 2 �𝐷𝐷�1 + γ2�, on the 

wavespeed. In figure (4), we see traveling wave 
develops and connect (1,1) to ( 𝑢𝑢0 ,0 ).  In figure (5), we 
have compared the traveling wave solution which are 
found by two methods, finite difference and regular 
perturbation methods, and shown a good agreement 
between both.  

 
Fig. 4: The travelling wave that develops, when  𝛼𝛼1 = 0.5 ,
𝛽𝛽1 = 2, 𝛼𝛼2 = 0.5 ,   𝛽𝛽2 = 3 ,  𝜆𝜆 = 0.05   𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 1.   

 
Fig. 5: Comparison between travelling wave solutions that 
develops using finite difference method and regular 
perturbation method. The solutions are for type   (𝐼𝐼𝑎𝑎),   and 
when  𝛼𝛼1 = 0.5 , 𝛽𝛽1 = 2,  𝛼𝛼2 = 0.5,  𝛽𝛽2 = 3, 𝜆𝜆 = 0.05 and 
𝐷𝐷 = 1. 
5.2 Singular perturbation solutions 
When one of the equilibrium solutions connected by the 
travelling wave solution has   𝑈𝑈 =  0, we most solve a 
singular perturbation problem. The leading order 
problem in the outer region has, from as in (13):  
𝑈𝑈(1 + 𝛼𝛼1𝑈𝑈 − 𝛽𝛽1𝑈𝑈2 + 𝛾𝛾1𝑊𝑊)  =  0. 
The solution must smoothly connect a state with 𝑈𝑈 =  0 
to one with 
(1 + 𝛼𝛼1𝑈𝑈 − 𝛽𝛽1𝑈𝑈2 + 𝛾𝛾1𝑊𝑊)  =  0, so an inner asymptotic 
region is required. Both types 𝐼𝐼𝑏𝑏  and 𝐼𝐼𝑐𝑐  
Are singular perturbation problems and for convenience 
we solve only type 𝐼𝐼𝑐𝑐  to avoid repetition of process. 
5.2.1 Outer solutions for type ( 𝑰𝑰𝒄𝒄 ) 
For this type of travelling wave, 𝑈𝑈 →  𝑈𝑈0 as 𝑍𝑍 →  − ∞ 
and 𝑈𝑈 →  0 as 𝑍𝑍 →  ∞, so for 𝑍𝑍 <  0, 
solution must satisfy (12) and (13), whilst for 𝑍𝑍 >  0,  
and W satisfies 
𝑎𝑎𝑤𝑤
𝑎𝑎𝑧𝑧

= 𝑉𝑉, 
𝑎𝑎𝑉𝑉
𝑎𝑎𝑧𝑧

=
−𝑐𝑐
𝐷𝐷

 𝑉𝑉 −
1
𝐷𝐷

 𝑔𝑔(𝑊𝑊) ,           … (15) 
where  𝑔𝑔(𝑊𝑊) = 𝑊𝑊(1 + 𝛼𝛼2𝑊𝑊 −𝛽𝛽2𝑊𝑊2) 
In the ( 𝑊𝑊,𝑉𝑉 ) phase plane, this system has equilibrium 
points at ( 1,0 ) , which corresponds to the equilibrium 
solution 𝑈𝑈 =  0,𝑊𝑊 =  1, and ( 0,0 ) , which correspond 
to theequilibrium solution 𝑈𝑈 =  0,𝑊𝑊 =  0. The stability 
of equilibrium points are shown as follows;  
• (0,0) is a stable  (If  𝑐𝑐 > 2 then (0,0) is a stable node 

and if   𝑐𝑐 > 2 then (0,0) is a stable spiral). 
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• (1,0)  is a saddle point. 

 In figure (6), two outer regions are plots by solving 
eq. (12, 13, 15) using Matlab codes

 
Fig. 6: Outer solutions of type ( 𝐼𝐼𝑐𝑐   ), when 𝛼𝛼1 = 0.5  , 𝛽𝛽1 =
2  ,𝛼𝛼2 = 0.5  , 𝛽𝛽2 = 3  , 𝜆𝜆 = 0.05   𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 1   
5.2.2 Inner solution for ( 𝑰𝑰𝒄𝒄  ) 
In the inner region, 𝑧𝑧 =  𝑂𝑂 ( 1 ) and  𝑤𝑤(𝑧𝑧) = 𝑊𝑊(𝑧𝑧) is 
constant at leading order, with value 𝑤𝑤0 determined by 
matching with the outer solution. At leading order, (11) 
is reduced to an ordinary differential equation for 
 𝑢𝑢(𝑧𝑧) = 𝑊𝑊(𝑧𝑧).  
At  o(1), 

𝑎𝑎2𝑈𝑈
𝑎𝑎𝑧𝑧2 + 𝑐𝑐

𝑎𝑎𝑈𝑈
𝑎𝑎𝑧𝑧

+ 𝑈𝑈(𝐿𝐿 + 𝛼𝛼1𝑈𝑈 − 𝛽𝛽1𝑈𝑈2)    
= 0 ,         … . (16)     

𝑎𝑎2𝑊𝑊
𝑎𝑎𝑧𝑧2 = 0, 

where 𝐿𝐿 = 1 + 𝛾𝛾1𝑊𝑊0. By integration W with respect to   
𝑧𝑧, we get  
𝑊𝑊 = 𝑎𝑎𝑧𝑧 + 𝑏𝑏.      (17) 
Applying the principle of matching between inner and 
outer regions, and since 𝑧𝑧 in the outer region is of order  
1
𝜆𝜆
, thus,   

𝑊𝑊 = 𝑎𝑎
1
𝜆𝜆

+ 𝑏𝑏 
As 𝜆𝜆 → 0, 𝑊𝑊 → ∞ .  Therefore the only accept form for 
(17) is 𝑊𝑊 being a constant. 
This system (16) will be solved subject to the boundary 
conditions 
𝑈𝑈 → 0     𝑎𝑎𝑎𝑎   𝑧𝑧 → ∞, 

𝑈𝑈 → 𝛼𝛼1+�𝛼𝛼21+4𝛽𝛽1𝐿𝐿
2𝛽𝛽1

         𝑎𝑎𝑎𝑎   𝑧𝑧 → −∞.  

Figure (7) shows the inner and outer region than can be 
formulated for the type ( 𝐼𝐼𝑐𝑐   ),

 
Fig. 7: Travelling wave from the inner and outer solutions 
( 𝐼𝐼𝑐𝑐   ), when 𝛼𝛼1 = 0.5  , 𝛽𝛽1 = 2  ,𝛼𝛼2 = 0.5  , 𝛽𝛽2 = 3  , 𝜆𝜆 =
0.05   𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 1   

 
Fig.   8: Travelling wave from Matching principle inner with 
outer and Numerical of( 𝐼𝐼𝑐𝑐   ), when 𝛼𝛼1 = 0.5  , 𝛽𝛽1 = 2  ,𝛼𝛼2 =
0.5  , 𝛽𝛽2 = 3  , 𝜆𝜆 = 0.05   𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 1   
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Fig. 9: Comparison between the wave of the asymptotic and 
numerical solutions for different values of (𝐼𝐼𝑐𝑐), when 𝛼𝛼1 =
0.5 ,   𝛽𝛽1 = 2 , 𝛼𝛼2 = 0.5  , 𝛽𝛽2 = 3 , 𝜆𝜆 = 0.05   𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 = 1.   
 
6. Conclusion 
It can be seen that three types of traveling wave 
solutions can be developed in the RDS (2). There is only 
one regular type of solutions and two types of singular 
perturbation solutions can be found from asymptotic 
methods. A semi-implicit method is used as a numerical 
method for solving (2) and we find the traveling wave 
solutions. The traveling wave solutions are always 
connecting a stable coexistence equilibrium solution 
namely (1, 1) to another equilibrium solution. The 
comparison between numerical and asymptotic methods 
shows a good agreement. 
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