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Abstract:  In the paper, the infinite horizon LQR problem of linear discrete time systems with nonnegative state 
constraints is studied. The state constraints are defined as a polyhedral cone belonging to the nonnegative orthant.  
It is investigated when the solution of the unconstrained LQR problem coincide with the solution of constrained 
problem, when there is no solution and when there is solution of constrained problem, but it doesn’t coincide 
with the solution of unconstrained LQR problem.  
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 1 Introduction  

In the paper, the infinite horizon LQR 
problem of linear discrete time systems with state 
constraints is studied. The state constraints are 
defined as a polyhedral cone belonging to the 
nonnegative orthant. The solution of the problem is 
based on the work of Kalman that identify an analytic 
expression for optimal control strategy. A number of 
studies in the literature have focused on systems with 
state and /or input constraints. Several approaches, 
methods and algorithms are developed to solve, 
online or offline, the constrained infinite horizon 
LQR problem for discrete, continuous, linear and 
nonlinear systems. Typically in these methods, the 
constraints sets are convex and contain the origin in 
their interior [7].   

When we consider systems with nonnegative 
state restriction, known in the literature as positive 
systems, a question of particular importance is the 
invariance of the nonnegative orthant of the state 
space.  Typical examples of positive systems are 
economic models, age-structured populations, 
sociological processes, etc. An overview of state of 
the art in positive systems theory is given in [5,2]. 
Often a stronger restriction is imposed on the system 
state than nonnegativity, namely the state trajectory 
must stay in the polyhedral cone belonging to the 
nonnegative orthant.  

The motivation for the study of infinite 
horizon LQR problem of linear discrete time systems 
with nonnegative cone constraints on the state is that 
in this type of constraints sets zero is border point. In 
all existing methods, the constraints sets are 

polytopic sets with zero as interior point.  So it was 
interesting to study if and when the solution of the 
unconstrained problem is a solution to the problem 
with nonnegative cone constraints on the state.  
There are some papers studying LQ-optimal control 
of positive linear systems [3,6,10,11], but the 
problem is not solved in general and there are several 
open questions.  

In section 2 we will give some preliminaries 
concerning polyhedral cone and M-matrices. In 
section 3 definition of the problem is given and in 
section 4 we study if and when the solution exists, in 
which cases the solution of our  problem coincide 
with the solution of the unconstrained problem and 
give application of the dual mode approach for 
solving  the problem. Some concluding remarks and 
references are given at the end of the paper. 
 
 2 Preliminaries 
2.1 Polyhedral cones and M-matrices 
Polyhedral cones and M-matrices are basic when 
study positive systems and constraints given as 
polyhedral cones.   
Definition1 [2] A nonempty subset ܥ of ℝ௡is a 
polyhedral cone if and only if ܥ is the intersection 
of a finite number of closed half spaces, each 
containing the origin on its boundary. A polyhedral 
cone is closed convex cone. 
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A polyhedral cone, denoted by ܥୋ ⊆ ℝ௡, can be 
also considered as a special class of polyhedra, and 
it can be defined as: 
ୋܥ  = ሼݔ ∈ ℝ௡|ݔܩ ≥ 0ሽ                                           (1) 
Consider the matrix A with nonpositive off-diagonal 
and nonnegative diagonal entries.  
 

࡭ = ൫ܽ௜௝൯ ∈ ℝ௡×௡, ܽ௜௝ ≤ 0, ݅ ≠ ݆;  ܽ௜௝ ≥ 0, ݅ = ݆ 
The matrix A can be expressed in the form: 
࡭   = ࡵݏ − ;࡮ ࡮ ≥ 0; ݏ > 0   (2) 
Definition 2 [1] Any matrix A in the form (2) for 
which ݏ > ,(࡮)ߩ ߩ −spectral radius of B  is called M-
matrix    
The class of M-matrix have very interesting 
properties, given in [1]. One of the most applicable is 
that for every M-matrix exists ିࡹ૚  and ିࡹ૚ ≥ ૙. 
Using the important property of positive inverse, M-
matrices lead to the construction of polyhedral cones. 
If G is M-matrix, the polyhedral cone defined by  
ீܥ = ሼ࢞ ∈ ℝ௡; ࢞ࡳ ≥ 0ሽ    (3) 
is solid, simplical and interiour of the cone belongs to 
the nonnegative orthant, i.e. ீܥ ݐ݊ܫ ⊂  .ା௡ܴ ݐ݊ܫ
Hence when we consider positive linear discrete time 
systems (PLDS) with cone constraints on the state we 
can add to the system constraints:  
0 ≤ ,࢑࢞ࡳ ݇ = 1,2, … ; ܩ −  matrix ܯ
Note that in case when the matrix G is equal to 
identity matrix we have only nonnegativity 
constraints i.e. the cone  
ீܥ = ሼ࢞ ∈ ℝ௡; ࢞ࡳ ≥ 0ሽ coincide with  nonnegative 
orthant. 
 
 2.2. Positive invariant sets  
Positive invariant sets play a central role in the theory 
and applications of dynamical systems. Stability, 
control and preservation of constraints of dynamical 
systems can be formulated, somehow in a 
geometrical way, with the help of positively invariant 

sets. For a given dynamical system, a set is called a 
positively invariant set of the system if for any initial 
state the complete trajectory of the state vector 
remains in the set [8]. Consider the discrete 
autonomous system: 
ା૚࢑࢞  =  (4)              ,࢑࢞࡭
 
Definition 3 A set ܥ ⊆ ℝ௡ is an positively invariant 
set for the discrete system (4) if ࢑࢞ ∈ ା૚࢑࢞ implies ܥ ∈ ݇ for all ,ܥ ∈ ℕ. 
 
Corollary [9] A polyhedral cone ீܥ  given as in (3) is 
an positive invariant set for the discrete system (4) if 
and only if there exists a nonnegative matrix ࡴ ∈ ℝ௡×௡, such that  ࡭ࡳ =   (5)   ࡳࡴ
For a given polyhedral cone and a discrete system, 
according to Corollary1, to determine whether the set 
is an invariant set for the system is equivalent to 
verify the existence of a nonnegative matrix ࡴ, which 
is actually a linear optimization problem. Rather than 
computing ࡴ directly, it is more efficient to 
sequentially solve some small subproblems [9]. 
 
Find ࢏ࢎ ∈ ℝ௡ , such that ࡳ࢏ࢎ = ,࡭࢏ࡳ ࢏ࢎ ≥ ૙.  
 
If all of these linear optimization problems are 
feasible, then their solutions forms such a 
nonnegative matrix ࡴ. Otherwise, we can conclude 
that the set is not an invariant set for the system, and 
the computation is terminated at the first infeasible 
subproblem. 
 
2.3  Matrices that leave given polyhedral 

cone invariant  
 
It is important to know if the closed loop matrix ࡭ belongs to the set of all system matrices, Δ(ܥ), that 
leave the polyhedral cone ܥ invariant, i.e.  
 Δ(ܥ) ≔ ሼ࡭ ∈ ℝ௡×௡|∆(ܥ) ∈  ሽ,  (6)ܥ
 
 As it is mentioned in the Corollary 1, a polyhedral 
cone ீܥ  given as in (3) is an invariant set for a given 
matrix A if and only if there exists a nonnegative 
matrix ࡴ ∈ ℝ௠×௠, such that  ࡭ࡳ =  .i.e ,ࡳࡴ
 
Δ෩(ீܥ) ≔ ൜ ࡭ ∈ ℝ௡×௡|

∋ ࡴ ∃ ℝା௡×௡ such that ࡭ࡳ =  ൠ      (7)ࡳࡴ
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Since the polyhedral cone (3) is finitely generated, it 
can be represented by its generator matrix N, namely: 
 

ேܥ ≔ ൛࢞ ∈ ℝ௡|∃ ࢒ ∈ ℝ+݊, such that ࢞ =   ൟ࢒ࡺ
 ሼீܥ = ேሽܥ ⇒ ሼࡺ࡯ ≥ 0ሽ  
  A representation ܥே can be found from a 
representation ீܥ  by applying known from the 
literature algorithms.  
Analogous to (7) let define the set of all matrices that 
leave the polyhedral cone ܥே invariant as: 
 
∆ത(ܥே):= ൜ ࡭ ∈ ℝ௡×௡|

∋ ࡴ ∃ ℝା௡×௡ ܿݑݏℎ ݐℎܽࡺ࡭ ݐ =  ൠࡴࡺ
 
The following proposition [ ] provides us with 
necessary and sufficient conditions for a polyhedral 
cone to be a positively invariant set of a given 
autonomous system (4). 
 
Proposition1 [9] For the autonomous system with 
system matrix A and the polyhedral cone, given with 
two representations ீܥ  and  ܥே , the following holds  
 

i. Δ(ீܥ) = Δ෩(ீܥ) = ∆ത(ܥே) 
 

ii. ࡭ ∈  Δ(ீܥ) if and only if ࡺ࡭ࡳ ≥ 0 
 
 
3 Problem formulation 
Consider infinite horizon LQR problem for positive 
linear discrete time system with cone state 
constraints, denoted with ܴܳܮା௖௢௡௘ and described as: 
 ା௖௢௡௘ PROBLEMܴܳܮ 
 
ܬ = ∑ ࢑࢞ࡽࢀ࢑࢞) + ஶ௞ୀ଴ࡾࢀ࢑࢛ ࢑࢛ ⇒ ݉݅݊  (8) 
ା૚࢑࢞ = ࢑࢞࡭ +  (9)    ࢑࢛࡮
࢑࢞ࡳ ≥ ૙ 
࡭ ∈ ℝା࢔×࢔, ࡮ ∈ ℝା࢓; (૙)࢞ = ;૙࢞ ૙࢞ࡳ ≥ ૙ 
૙ ≤ ࢞ࡳ ⊂  ା௡ܴݐ݊ܫ
 
The matrix ࡳ is such that the polyhedral cone defined 
by inequality ࢑࢞ࡳ ≥ ૙, ீܥ = ሼ࢞ ∈ ℝ௡|࢞ࡳ ≥ 0ሽ 
belongs to the nonnegative orthant. According to the 
properties of M-matrix, G is M-matrix. 

For the unconstraint case the following theorem gives 
the solution of the above problem: 
Theorem [12] 
If the pair (A, B) is stabilizable and the pair (M, A) 
(Q =МТМ) is detectable then the optimal control (10)   
which minimizes (8) is determined by  
࢛ =  (10)    ࢞ࡷ−

,)( 1 PABPBBRK TT    (11)  
where P is the unique positive definite solution to the 
Discrete time Algebraic Riccati Equation (DARE) 

0)( 1   QPABPBBRPBAPPAA TTTT

 
Then the optimal discrete-time closed-loop system 

kc xAxBKAx  kk )(1   (12) 
is asymptotically stable and the quadratic cost (8) has 
the minimum value  

0
T PxxxRKKQx

RuuQxx
T

k
k

T
k

k
T
kk

k
T
kJ

0
0

0

)(

)(














 

 
The important question is how to use the above 
results for the positive systems with state constraints 
defined by a polyhedral cone. The answer to this 
question depends on the properties of the closed 
matrix ࢉ࡭, obtained from (12) and the matrix of 
constraints ࡳ.  
 
In the next we will investigate how the existence of 
solution of ܴܳܮା௖௢௡௘, depends on the closed-loop 
matrix ࢉ࡭ and the constrained matrix ࡳ. We will 
remember that matrix ࢉ࡭, obtained from ܴܳܮ, is 
stable (maximal eigenvalue of ࢉ࡭  is less than one) 
and the  matrix of constraints ࡳ is an M-matrix. 
 
 4 Problem solution 
In this section we will investigate if and when the 
solution of the ܴܳܮା௖௢௡௘ problem exists, in which 
cases the solution of the problem coincide with the 
solution of the unconstrained problem and 
application of dual mode approach for solving the ܴܳܮା௖௢௡௘ problem will be proposed. 
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4.1 The solutions of the constrained and 
unconstrained system coincide for 
every initial state ࢞૙ ∈  ୋܥ

 
If the matrices ࢉ࡭ ,  and the generator matrix N of  ࡳ
polyhedral cone ீܥ  is such that  ࡺ࡭ࡳ ≥ 0 then the 
matrix ࢉ࡭ makes ீܥ  positively invariant set of a 
closed loop system (12).  This guarantee that the ܴܳܮ 
solution of the unconstrained system is the solution 
of ܴܳܮା௖௢௡௘  problem.  
Example 
Let the matrix ࢉ࡭, which is found from the 
unconstrained ܴܳܮ problem and the M-matrix, 
defining polyhedral cone ீܥ  in the nonnegative 
orthant are: 
 
ࢉ࡭ = ቂ0.4802 0.060.2599 0.53ቃ; ࡳ = ቂ 2 −0.2−1 3 ቃ 
 
It is easy to find the generator matrix N of the 
cone ீܥ ,  

ࡺ = ቂ 1 310 1ቃ 
 
and to check that  ࡺ࡭ࡳ ≥ 0. 
  
Hence, according to Proposition1 the cone ீܥ  is 
positively invariant set of a closed - loop system (12) 
and any trajectory beginning from ீܥ  remains in ீܥ . 
Then the solution of unconstrained ܴܳܮ problem and 
constrained ܴܳܮା௖௢௡௘ problem coincide.  
 
The probability this case to be valid is very low, so 
we will discuss other approaches to solve the 
problem.  
 
4.2  The solutions of constrained and 

unconstrained system coincide only for 
initial states ࢞૙ ∈ ષ࢞૙ ∈  ࡳ࡯

 
Let matrix ࢉ࡭ doesn’t make ீܥ  positively invariant 
set of a closed loop system (12), i.e.  the condition for 
positive invariance  of ீܥ ࡺ࡭ࡳ  , ≥ ૙ is not fulfilled, 
but there exists set of initial states Ω௫బ ∈ ீܥ   such that 
for every ࢞૙ ∈ Ω௫బ   ⇒ ࢑࢞  ∈ ீܥ , ݇ = 1,2, …. Hence 
the solutions of ܴܳܮା௖௢௡௘ and ܴܳܮ problem coincide 
for every initial state from  Ω௫బ  . 
 There are two main questions in this case: 
 

1) How to obtain set Ω, if exists? 

2) If the initial set is such that                     
૙࢞ ∉ Ω௫బ  but ܠ૙ ∈ ீܥ , how to find finite 
number of controls ࢛૚, ,૛࢛ … ,  ૚, suchିࡺ࢛
that after N-1 steps system trajectory enter 
in Ω௫బ,i.e.  ࡺ࢞ ∈ Ω௫బ? 

 
Determination of the set ષ࢞૙  
 
The set Ω௫బ  is described as: 
 

Ω௫బ ≔ ൜࢞૙|࢞࢑ࢉ࡭૙ ∈ ீܥ  ݅. ݁. ૙࢞࢑ࢉ࡭ࡳ ≥ 0,
 ݇ = 1,2, … ൠ 

 
 
The set Ω௫బ is defined with: 
 

ተ
૙࢞ࢉ࡭ࡳ  ≥ ૙
૙࢞૛ࢉ࡭ࡳ  ≥ ૙… … … … ૙࢞࢑ࢉ࡭ࡳ . ≥ ૙

 

 ݇ = 1,2, … 
If the initial state belongs to this set, all states in the 
future remain inside and the constraints will not be 
violated. For every ࢞૙ ∈ Ω௫బ , ࢑࢞ ∈ ீܥ , ݇ = 1,2, …    
and system trajectory lie in ீܥ . The solution exists 
and the solutions of the unconstrained ܴܳܮ problem 
and the constrained ܴܳܮା௖௢௡௘ problem coincide.  
Both sets are given in the following figure. 

  
 
 
 
 
 
 
4.3 Тhe initial states ࢞૙ ∉ ષ࢞૙ ∈   ࡳ࡯
If the set  Ω௫బ exists and belongs to  ீܥ  , but the 
initial state ࢞૙ ∉ Ω0ݔ , we can apply the well-
known from the literature dual mode approach [ 
] until the trajectory enters the set  Ω௫బ  and after 
that we proceed as in 4.2. 
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4.3.1  Dual mode approach to meet the 
constraints   

In this approach the optimization on the infinite 
horizon is divided into two pairs. 
In order to meet the state constraints the prediction 
horizon was splitted into two intervals, defining two 
modes – one from 0 to N-1 and the second from N to 
infinity.

min

J

k
N

k Nk
Tk

kTkk
k

Tk





 













)()(

)(
1

0

0

kTkkTkkTk RuuQxxRuuQxx

RuuQxx

 For the second part of the sum we have  

LLkTkk
Nk

TkJ PxxRuuQxx T )(1
  

A variety of methods guarantee  that the constraints 
are satisfied on the infinite horizon by checking a 
finite number of stages Nk  . It is proved that if 
the unconstrained model is stabilizable, there is an 
index N such that after N steps, the system trajectory 
enters the invariant set (the state constraints are 
satisfied) and after that for k=N, N+1,…, the state will 
be inside the invariant set  (constraints will not be 
violated). We will use this idea for solving our 
problem, when the zero is border point  of admissible 
set of states. 
 
4.3.2 Constraints on two modes 
We add the constants  1nkc as a degree of 
freedom for cone constraints handling during 
transient, on the control horizon .1,,0  Nk   Furthermore, the fixed state feedback K affects the 
asymptotic behavior. 
Hence, the control law that will be used in 
optimization of future performance, subject to these 
constraints is:  Nk

Nk
kk

kkk



,

1,,0,
Kxu

cKxu 

 
The constraints satisfaction over MODE1 is ensured 
by solving the QP problem with constraints 
 
  ૙ ≤ ,࢑࢞ࡳ ݇ = 0, 1,2, … , ܰ − 1

ା૚࢑࢞  = ࡭) − ࢑࢞(ࡷ࡮ +  ;࢑ࢉ࡮

૙ ≤ ࡭)ࡳ  − ࢑࢞(ࡷ࡮ +  Following the approach, described in [4] for ࢑ࢉ࡮ࡳ
constraints satisfaction we define the augmented state 
vector ࢑ࢠ as: 
࢑ࢠ = ࢀା૚࢑ࢉ  ࢀ࢑ࢉ  ࢀ࢑࢞]   ⋯ ࢀ૚ିࡺା࢑ࢉ    ࢀ[
Let us denote the sequence 
ା૚࢑ࢉ  ࢑ࢉ]   ⋯ [૚ିࡺା࢑ࢉ =  ሬሬሬሬԦ࢑ࢉ
Then the predicted dynamics will be: 
ା૚࢑ࢠ = ઴෩  ࢑ࢠࡺ
࢑࢛ =  ࢑ࢠ෩ࡷ 

઴෩ ࡺ =
ێۏ
ێێ
࡭ۍ − ࡷ࡮ ࡮ ૙ ⋯ ૙૙ ૙ ૙ ⋯ ૙⋮ ⋮ ⋮ ⋱ ⋮૙ ૙ ૙ ⋯ ૙ࡵ ૙ ૙ ⋯ ૙ۑے

ۑۑ
ې
 

෩ࡷ = ࡷ−] ࡵ ૙ ⋯ ૙] 
Using the augmented state space model, the 
constraints on the MODE1 are: 

ࡵ]ࡳ ૙ … ૙]࢑ࢠ ≥ ૙  
Next, if in MODE 1 we are able to find the sequence ࢑ࢉሬሬሬሬԦ so that the constraints are not violated and the end 
of the state trajectory (at the end of prediction 
horizon) falls into the invariant set, we continue with 
MODE 2. 
   
MODE 2 
For the constraints satisfaction over the MODE 2,  the 
system is controlled under the feedback law ࢑࢛  :and the constraints can be expressed as ࢑࢞ࡷ−=
࢑࢞ࡳ ≥ ૙;   ݇ = ܰ, ܰ + 1, … 
૙࢞࢑ࢉ࡭ 4.4 ∈ ࢑ only for ࡳ࡯ = ૚, ૛, …    ࡺ
 
If the matrices  ࢉ࡭, ૙࢞࢑ࢉ࡭  ૙ are such that࢞ and ࡳ ∈
݇ only for ࡳ࡯ = 1,2, … ܰ  and  ࢞࢑ࢉ࡭૙ ∉ ݇ , ீܥ =ܰ + 1, ܰ + 2, …the solution exists, but it is not 
equal to the solution of the unconstraint problem. 
In this case we define the new set  
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Ω௫బ
ே ≔ ൜࢞૙|࢞࢑ࢉ࡭૙ ∈ .݅ ࡳ࡯ ݁. ૙࢞࢑ࢉ࡭ࡳ ≥ ૙,

࢑  = ૚, ૛, … ,  ൠ ࡺ
and proceed as in 4.2 or 4.3 depending on if ࢞૙ ∈
Ω௫బ

ே  or not. The procedure stop at ࢑ =  and  ࡺ
after that we have ࢞ேାଵ = ேାଶ࢞ =. . ..  This case 
in described in [11] when the cone ܩ஼ coincide 
with nonnegative orthant, i.e. for ܩ =  .ܫ
4.5. There is no solution to the problem 
If the set Ω௫బ

ே  is empty, i.e. for all initial states ࢞૙ ∈
ீܥ   but  ࢞ࢉ࡭૙ ∉ ீܥ ૙࢞૛ࢉ࡭ ,  ∉ ீܥ …, there is no 
solution of the problem. 
 
 5 Conclusion 
In the paper, the solution of the infinite horizon LQR 
problem of positive linear discrete time systems with 
state restrictions, given as polyhedral cone belonging 
to nonnegative orthant, is studied. The existing of a 
solution strongly depends on the properties of the 
closed-loop matrix and matrix of constraints. It is 
investigated when (a) the solution of the 
unconstrained ܴܳܮ problem coincide with the 
solution of ܴܳܮା௖௢௡௘problem, (b) there is no solution 
and (c) there is solution of ܴܳܮା௖௢௡௘ problem, but it 
doesn’t coincide with the solution of unconstrained 
problem.  
Future research will focus on estimating the 
necessary and sufficient conditions on the system and 
the restriction matrices for the solution  ܴܳܮା௖௢௡௘ 
problem.  
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