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Abstract: - We propose American football (AF) modeling by means of a context-free grammar (CFG) that 
cores correct combination of players’ actions to algorithmic simulation. For strategic choices, the Nash 
equilibrium (NE) and the Pareto efficiency (PE) are used to select AF strategy profiles having better percentage 
to success games: results from game simulations show that the AF team with a coach who uses NE or PE wins 
more games than teams that not use strategic reasoning. The team using strategic reasoning has an advantage 
that ranges from 30% to 65%. Using a single NE, the corresponding advantage is approximately 60% on 
average. Using a single PE, the corresponding advantage is approximately 35% on average. Feeding 
simulations with National Football League (NFL) statistics for particular teams and specific players, results 
close-fit to the real games played by them. Moreover, statistics confidence intervals and credible intervals 
support conclusions. On the base of CFG modeling and use of statistics (history of teams and players), 
forecasting results on future games is settled. 
 
Key-Words: - American football computer simulation, strategic choices, Nash equilibrium, Pareto efficiency, 
CFG-statistics-based prediction. 
 
1 Introduction 
Formal modeling and strategic analysis have 
recently been applied to team sports such as baseball 
[1-3], [4-6] and American football (AF) [4-6]. In 
multi-player AF game, the team strategic reasoning 
is ever present and the team members are 
encouraged to cooperate for the team best benefit. 
The coach indicates the strategies by discerning on 
each player-role’s profile [7] as well as on the  game 
circumstances [8]. Therefore, an essential aspect to 
be considered for a whole AF automation is the 
selection of strategies that focus this paper.  

Former investigations  in AF are diverse: Song et 
al. [9] forecast the winners but not the score on 
games from National Football League (NFL) in the 
season 2000 – 2001, and the accuracy of the 
predictions is compared by experts and the 
statistical systems. Baker and McHale [10] 
developed a method to forecast the exact scores of 
games in NFL games, using a set of covariates 
based on past game statistics. Gonzalez and Gross 
[5] developed a program that learned to play a game 
based on information that was obtained by 
observing historical database of human opponent’s 
plays. Deutsch and Bradburn [11] developed a 

simulation model for AF plays in which the 
individual football players’ positions and velocities 
were represented as functions of time in a Monte 
Carlo model. Janssen and Daniel [12] developed 
decision criteria using the maximum expected 
utility, based on a von Neumann-Morgenstern utility 
function, with stochastic dominance as an 
alternative criterion. Alvarado et al [4] simulate AF 
gaming by means of finite state automata, and Yee 
et al. [7] outline payoff functions for AF player-role 
to basic selection of strategies. 
 
 
1.1 American Football 
AF sport is played by two teams on a rectangular 
field that is 120 yards long and 53.3 yards wide with 
goalposts at both ends of the field –Canadian 
gaming is slightly different. Each team has 11 
players on the field at one time, and a game is 1 
hour long and played in 4 equal quarters. The 
offensive team’s goal is to advance an elliptical 
shaped ball, by running with or passing the ball 
toward the adversary’s end zone [13-15]. For a team 
to maintain possession of the ball, the ball must be 
advanced at least ten yards in four downs 
(opportunities). If the offensive team fails, ball 
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possession is surrendered so the defensive side takes 
on the offensive role at the position of capture; 
instead, as the usual, ball is kicked or punted to the 
defending team on fourth down. Points are obtained 
when the ball is advanced by passing or running into 
the end zone to score a 6 point touchdown, by 
kicking the ball such that it passes between the 
adversary’s goalposts for 3 points field goal, or by 
the defense tackling the ball carrier in the offensive 
team’s end zone for 2 points safety. Extra point is 
by kicking the ball through the uprights after a 
touchdown, earning 1 point, and 2 points by taking 
the ball into the end zone again. The most common 
circumstances under which a down ends are when a 
pass is not successful, a player is tackled on the 
field, or the ball carrier leaves the field of play.  

The quarterback (QB) is the leader to offensive 
team: the halfbacks/tailbacks carry the ball on 
running plays; the center snaps the ball to the 
quarterback, and with the guards and tackles protect 
the QB from the defensive players; the wide 
receivers, who catch passes thrown by the QB; and 
the tight ends, who function both as tackle and as a 
wide receiver. Every time the offense takes the field, 
QB leads own team to the adversarial team’s end 
zone to score points by touchdown or a field goal. 
QB is directly behind the center receiving the ball, 
and in ball possession turns to handoff to a running 
back, to runs with the ball, or to moves further back 
and sets up to attempt a pass either a 3-, 5-, or 7-step 
drop before throwing the ball. Some typical running 
plays for offensive role follow: 
• Counter:  QB fakes a lateral toss to one back 

heading right, running parallel to the line of 
scrimmage. QB turns and hands off to the 
remaining runner in the backfield, usually a 
fullback, who runs toward the middle of the line 
hoping to find an opening. 

• Blast or dive: The simplest of carries when need 
1-2 yards for a first down, usually led by a 
blocking fullback. The running back takes a 
quick QB handoff and hits a hole between an 
offensive guard and a tackle. The runner lowers 
his head and hopes to move the pile before the 
middle linebacker tackles him. 

• Pitch: QB takes the snap and fakes a handoff to 
the first back (HB) heading directly toward the 
line of scrimmage, but pitches the ball laterally 
to the other runner (FB), who moves to the 
outside and takes the pitch outside or cut back 
toward the inside.   

• Reverse: HB receives the handoff from QB, 
runs laterally behind the line of scrimmage, 
meets up to a wide receiver (WR) or flanker to 
hand him the ball. 

• Veer:  QB hands off to a running back (e.g. 
HB), who veers to the right behind his blockers. 

On the defensive team, the linebackers and the 
defensive tacklers’ principal role is to stop the 
running plays from the offensive team; the 
cornerbacks line up outside the defensive formation 
and cover the wide receivers, and the safeties stop 
the longer passes and the running plays. Some 
typical defensive plays follow: 
• Interception is when a defensive back picks off 

a pass that was intended for a receiver. An even 
bigger thrill is returning the catch for a 
defensive touchdown, which is called a pick six. 

• Pass defense to break up a pass so an 
incompletion for the quarterback. 

• Forced fumble or stripping the ball is when a 
defensive back forces the ball away from a 
receiver after he gains possession of the ball, 
and can happen on running plays. 

• Knockout tackle occurs when a wide receiver is 
putted down for the count. Defensive backs and 
cornerbacks protect their coverage space, as an 
option by bringing an offensive player down. 
Every safety in the league tries a knockout 
tackle. 

In games like AF, team strategic reasoning is 
essential and thought teamwork movements are 
critical to good performance. Positive participation 
by mutual cooperation among players is a strategic 
basis for playing a successful game, else lead to 
poor results [16]. Every player is required under 
certain circumstance to give up part of individual 
self-importance to ensure an efficient cooperation 
strategy for the team [17]. To play a successful 
game, according the game’s rules, a player 
determines the preference of own actions and 
strategies regarding the threat embodied in the other 
players’ strategies [18-20]. Strategies are organized 
and weighted actions to maximize profit by the 
minimum effort [8, 21, 22] in a conflict of. 
Strategies to organize team actions are chosen by 
the team coach based on each player’s profile and 
the specific game circumstances to obtain the 
highest benefit for the team [23]. The players are 
encouraged to perform at their individual best but 
are also required to cooperate with each other to 
maximize the team performance [22].  
 
 
1.2 Normal formal game 
Nash equilibrium (NE) is the formal foundation for 
non-cooperative games [24], and joined to the 
Pareto efficiency (PE) [25] are classical methods in 
economic and engineering analysis to capture the 
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complexities of interactions among specific actors in 
a dynamic context [19], alike in strategic decision 
making in computer baseball game [26]. We use NE 
and PE to mathematical modeling the strategic 
choices in the AF team. In Game Theory, the 
strategies and utility functions of each player are 
jointly modeled by the normal form game. Joint 
actions from all of the players set the strategy 
profile vectors, where the position 𝑖𝑖 it corresponds 
to the action of player  𝑖𝑖 ∈ 𝑃𝑃 = {1, … ,𝑛𝑛}. Let 
𝐺𝐺 = (𝑆𝑆1, … , 𝑆𝑆𝑛𝑛 ;𝑢𝑢1, … ,𝑢𝑢𝑛𝑛  ) be the game in normal 
form [24], where: 
• a strategy is a sequence of actions 𝑠𝑠𝑥𝑥 𝑖𝑖 =

𝑎𝑎1
𝑖𝑖 …𝑎𝑎𝑛𝑛 𝑖𝑖 , 𝑎𝑎𝑥𝑥 𝑖𝑖 ∈  Σ𝑖𝑖  the set of simple plays. 

• a strategy profile  (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) ∈ 𝑆𝑆1 ×  … × 𝑆𝑆𝑛𝑛 , is 
a n-tuple of strategies, one per player. 

• S𝑖𝑖  is the set of strategies for 𝑖𝑖, 𝑠𝑠𝑥𝑥 𝑖𝑖 ∈  S𝑖𝑖 . 
• {𝑢𝑢1, … ,𝑢𝑢𝑛𝑛} is the set of all of the payoff 

functions, one per player, and 
• 𝑢𝑢𝑖𝑖  (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) = 𝑟𝑟, 𝑟𝑟 ∈ ℝ. 

For each player 𝑖𝑖, the strategy profile �⃗�𝑥 is 
deviated by altering the player’s current strategy 
while keeping the strategies of the other 𝑛𝑛 − 1 
players unchanged. If any deviation in the strategy 
profile that is evaluated in 𝑢𝑢𝑖𝑖  dominates 𝑢𝑢𝑖𝑖(�⃗�𝑥), i.e., 
player 𝑖𝑖’s profit is higher than in the deviation 
profile, then �⃗�𝑥  is a dominated profile and may be 
discarded by regarding the aim of the game. Prior to 
identifying the strategy profiles that satisfy the 
condition of NE, every strategy profile is evaluated 
using the payoff functions of each player and is then 
compared with all of the other strategy profiles to 
determine whether it is a dominated strategy profile. 
The non-dominated strategy profiles are identified, 
and some of them will satisfy the condition of NE 
[24] for all of the players. 
 
 
1.3 Pareto Efficiency 
Vector �⃗�𝑣 = (𝑣𝑣1, … , 𝑣𝑣𝑘𝑘) is said to dominate �̿�𝑣 =
(�̅�𝑣1, … , �̅�𝑣𝑘𝑘) if and only if �⃗�𝑣 is at least partially better 
off than �̿�𝑣, formally in (1) [27]. 
 
∀𝑗𝑗 ∈ {1, . . . ,𝑘𝑘},𝑣𝑣𝑗𝑗 ≥ �̅�𝑣𝑗𝑗  ∧ ∃𝑖𝑖 ∈ {1, . . . ,𝑘𝑘}:𝑣𝑣𝑖𝑖 > �̅�𝑣𝑖𝑖                                   

(1) 
 

Let 𝑥𝑥 = (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) be a strategy profile, and 
𝑢𝑢�⃗ =  (𝑢𝑢1(𝑥𝑥), … ,𝑢𝑢𝑛𝑛(𝑥𝑥)) be the vector with all of the 
valuations from payoff functions 𝑢𝑢𝑖𝑖 . Vector 𝑢𝑢�⃗  is 
Pareto efficient (PE) if and only if there is not 
another vector 𝑢𝑢� which dominates 𝑢𝑢�⃗ . Thus, one 
strategy profile results in a PE valuation if and only 
if it is not dominated, so there is no other strategy 
profile such that all players are better off and at least 

one player is strictly better off. PE or optimality is 
foundational for comparisons and discussions on 
social welfare and choice functions [25].  

In this paper proposal we use the theoretical PE 
design as a formal alternative to choice collective 
strategies to play an AF game. The PE guarantees 
that each player performs the theoretical optimum 
for team collaboration not only individually. This 
theoretical perspective on each player’s best 
strategies may not always be realized in a real game 
of AF. In spite of this weakness to model a game 
having uncertain occurrences of plays, PE strategy 
profiles are useful as reference on the best option to 
be obtained, which sometimes actually happen. 
 
 
1.4 Nash Equilibrium 
Let 𝑠𝑠𝑖𝑖∗ be the answer from 𝑖𝑖 to the 𝑛𝑛 − 1 strategies 
of the other players, and let (𝑠𝑠1

∗, … , 𝑠𝑠𝑖𝑖∗, … , 𝑠𝑠𝑛𝑛∗) be 
the n-tuple of players’ strategies that maximizes the 
payoff function in equation (2) as follows:  
𝑢𝑢𝑖𝑖( 𝑠𝑠1

∗, … , 𝒔𝒔𝒊𝒊∗, … , 𝑠𝑠𝑛𝑛∗) ≥  𝑢𝑢𝑖𝑖( 𝑠𝑠1
∗, … , 𝒔𝒔𝒊𝒊, … , 𝑠𝑠𝑛𝑛∗)  

∀𝑖𝑖 ∈ 𝑃𝑃, 𝒔𝒔𝒊𝒊  ∈ 𝑆𝑆𝑖𝑖                  (2). 
The strategy profile (𝑠𝑠1

∗, … , 𝑠𝑠𝑛𝑛∗) fits the NE 
condition, which classic interpretation is that each 
player acts in a non-cooperative way and scenario, 
and the player uses a strategy that may be not the 
better for self but the less bad with respect to the 
other players’ strategies –in this senses the better. 
As a theorem, any game in normal form has at least 
one strategy profile that fits the NE [24]. 

In team cooperation analysis, this case for AF, 
question is that if the NE choice may be one better 
strategic choice for all the players as a team. Answer 
is all positive. We will show through computer 
simulations in which NE is applied at opportune 
moments to strengthen the team’s performance 
gaming AF. Moreover, applying the theory of both 
the NE and the PE to situations in real AF game it 
shows the utility to strategic choices.  

The remainder of the paper is organized as 
follows. Section 2 describes the formal and 
algorithmic settings for AF. Section 3 describes the 
strategic analysis using the NE and PE payoff 
functions formulation. The experimental results are 
presented in Section 4 and the statistical analysis by 
confidence and credible intervals in Section 5. 
Results are discussed in Section 6, and conclusions 
are presented in Section 7. 
 
 
 
 

Arturo Yee et al.
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 357 Volume 1, 2016



2 American Football Algorithmic 
Modeling 
In the algorithmic account of AF game any correct 
football play, simple or complex, even an entire 
game, is generated by applying the rules of the 
context-free grammar (CFG). Correct plays means 
that there is not absurd concatenation or sequence of 
basic plays, but grammar’s rules warrants the right 
sequence ever. The CFG rules translate the AF 
rules, so the formal language CFG-generated 
embodies the possible ways to play an AF game, 
from the simplest to the most complex combination 
of plays made in the field by all of the players. May 
too rare complex plays are not CFG generated by 
the absence of the rule as exception.  
 
 
2.1 Context-free Grammar 
Our automation algorithmic fundamentals follow 
CFG (FSM) rules. Starting with an empty string (ε), 
each subsequent play is concatenated into a string 
that describes the occurrence of the plays in a game. 
Let 𝐼𝐼 and 𝐼𝐼′ be different AF teams of player, where 
𝑖𝑖 ∈ 𝐼𝐼 and 𝑖𝑖′ ∈ 𝐼𝐼′ ,  used as superscript in plays to 
indicate the player who performs it.  
The CFG is given by 𝐺𝐺� = (𝛴𝛴,𝑉𝑉 − 𝛴𝛴,𝑅𝑅,𝐵𝐵), where: 
• 𝑉𝑉 is the alphabet of terminals and non-terminals, 
• Ó ⊆ 𝑉𝑉 is the set of terminals,  
• 𝑉𝑉 − Ó is the set of non-terminal elements,  
•  𝑅𝑅 ⊆ (𝑉𝑉 − Ó) × 𝑉𝑉∗ is the set of rules, and 
• 𝐵𝐵 ∈ 𝑉𝑉 − Σ is the initial symbol. 

In a multi-player game, we express the available 
actions of all of the players at a specific time in the 
strategy profiles, which are vectors for position 𝑖𝑖 
that describe the action for player 𝑖𝑖. The terminal 
symbols are shown in Table 1. The non-terminal 
symbols are shown in Table 2. Some of the CFG 
rules are shown in Table 3.  
 
Table 1: Σ = Terminal symbols 
Offensive movements 
kfbi: Kick the ball  
cbi: Catch the ball  
rbi: Run with the ball  
dbi: Pass the ball 
adbi: Advance with the 
ball  
tdi: Touchdown 
pi: Punt 
gai: Field goal    
rei: Conversion 
si: Snap 

Defensive movements 
tli: Tackle the player  
sfi: Safety 
obi: Stop the ball 
beoi: Stop the 
adversary for a loss of 
yards  
 
Penalty moves 
hi: Holding  
fsi: False start 
dgi: Delay game 

 

Table 2: Non-terminal symbols 
B: Initial symbol 
M: Movement after kick 
off 
M1: Movement for 
catching the ball 
M2: Movement for 
running with the ball 
M3: Movement for 
passing the ball 
𝐷𝐷𝑦𝑦
𝑜𝑜𝑖𝑖 : Downs 

M5: Auxiliary symbol 
M6: Auxiliary symbol 
M7: Auxiliary symbol  
T: Options after 
touchdown  
PA: Extra point for 
kicking the ball 

RE: Conversion of two 
points 
Mre: After conversion of 
two points 
Mre2: Auxiliary symbol 
Rre: Auxiliary symbol 
Mre3: Auxiliary symbol 
Prela: Auxiliary symbol 
P: Team changes from 
defensive to offensive 
Pla: Auxiliary symbol 
R: Auxiliary symbol 
Ax: Yard count 

 
Table 3: 𝑅𝑅 ⊆ (𝑉𝑉 − Ó) × 𝑉𝑉∗ Selected grammar rules 
𝐵𝐵 → 𝑘𝑘𝑘𝑘𝑏𝑏𝑖𝑖′ 𝑀𝑀: Ball kick off 
𝑀𝑀 → cbi𝑀𝑀1: Offensive team catches the ball and 
makes a move 
𝑀𝑀1 → 𝑟𝑟𝑏𝑏𝑖𝑖𝑀𝑀2|𝑑𝑑𝑏𝑏𝑖𝑖𝑀𝑀3| j

'
𝑡𝑡𝑙𝑙𝑖𝑖𝐷𝐷𝑦𝑦=10

𝑜𝑜1 : Run or pass the 
ball, or player i is tackled by player j 
𝑀𝑀2 →  j

'
𝑡𝑡𝑙𝑙𝑖𝑖𝐷𝐷𝑦𝑦=10

𝑜𝑜1 �𝑡𝑡𝑑𝑑𝑖𝑖𝑇𝑇�𝑜𝑜𝑏𝑏𝐷𝐷𝑦𝑦=10
𝑜𝑜1 : Player i is tackled 

by player j, scores a touchdown, or the team is 
stopped  
M3 → 𝑐𝑐𝑏𝑏𝑖𝑖𝑀𝑀1�𝑜𝑜𝑏𝑏𝐷𝐷𝑦𝑦=10

𝑜𝑜1 �𝑐𝑐𝑏𝑏𝑗𝑗 ′ 𝑀𝑀1
′  : Catch the ball, the 

team is stopped, or the ball is intercepted 
𝐷𝐷𝑦𝑦=10
𝑜𝑜1 → 𝐷𝐷𝑦𝑦

𝑜𝑜𝑖𝑖 : First down 
𝐷𝐷𝑦𝑦
𝑜𝑜𝑖𝑖 → 𝑠𝑠𝑀𝑀5|𝑝𝑝𝑖𝑖𝑀𝑀′ : Options at the beginning of the 

down 
𝐷𝐷𝑦𝑦>0
𝑜𝑜5 → 𝐷𝐷𝑦𝑦=10

′𝑜𝑜1 : First down of the other team 
𝐷𝐷𝑦𝑦≤0
𝑜𝑜𝑖𝑖<5 → 𝐷𝐷𝑦𝑦=10

𝑜𝑜1 : Advance 10 or more yards and 
obtain the first down 
𝑀𝑀5 →
𝑑𝑑𝑏𝑏𝑖𝑖𝑃𝑃�𝑟𝑟𝑏𝑏𝑖𝑖𝑅𝑅�𝑔𝑔𝑎𝑎𝑃𝑃𝑃𝑃| j

’
𝑡𝑡𝑙𝑙𝑖𝑖𝑃𝑃𝑥𝑥 |ℎ𝐷𝐷𝑦𝑦=𝑦𝑦+10

𝑜𝑜𝑖𝑖+1 �𝑘𝑘𝑠𝑠𝐷𝐷𝑦𝑦=𝑦𝑦+5
𝑜𝑜𝑖𝑖+1 �𝑑𝑑𝑔𝑔𝐷𝐷𝑦𝑦

: Moves after a play including penalty moves 
𝑇𝑇 → 𝑘𝑘𝑘𝑘𝑏𝑏𝑖𝑖𝑃𝑃𝑃𝑃|𝑑𝑑𝑏𝑏𝑖𝑖𝑅𝑅𝐸𝐸: Kick off or pass the ball  
𝑃𝑃𝑃𝑃 → 𝑔𝑔𝑖𝑖𝐵𝐵′ |𝑜𝑜𝑏𝑏𝑖𝑖𝐵𝐵′ : After a touchdown, the extra 
point is successful or stopped  
𝑅𝑅𝐸𝐸 → 𝑠𝑠𝑞𝑞𝑀𝑀𝑟𝑟𝑒𝑒  : Two-point conversion 
𝑀𝑀𝑟𝑟𝑒𝑒 → 𝑑𝑑𝑏𝑏𝑖𝑖𝑃𝑃𝑟𝑟𝑒𝑒�𝑟𝑟𝑏𝑏𝑖𝑖𝑅𝑅𝑟𝑟𝑒𝑒� j

’
𝑡𝑡𝑙𝑙𝑖𝑖𝐵𝐵′ : Movements after a 

two-point conversion 
𝑃𝑃𝑟𝑟𝑒𝑒 → 𝑐𝑐𝑏𝑏𝑖𝑖𝑀𝑀𝑟𝑟𝑒𝑒2|𝑜𝑜𝑏𝑏𝐵𝐵′ |𝑐𝑐𝑏𝑏𝑖𝑖′ 𝑀𝑀2

′  : Catch the ball or stop 
the team  
𝑀𝑀𝑟𝑟𝑒𝑒2 → 𝑟𝑟𝑏𝑏𝑖𝑖𝑅𝑅𝑟𝑟𝑒𝑒�𝑑𝑑𝑏𝑏𝑖𝑖𝑃𝑃𝑟𝑟𝑒𝑒𝑙𝑙𝑎𝑎 � j

’
𝑡𝑡𝑙𝑙𝑖𝑖𝐵𝐵′ |𝑟𝑟𝑒𝑒𝐵𝐵′ : Run, pass 

the ball, player i is tackled by player j, or a two-
point conversion 
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𝑅𝑅𝑟𝑟𝑒𝑒 →  j
’
𝑡𝑡𝑙𝑙𝑖𝑖𝐵𝐵′ |𝑟𝑟𝑒𝑒𝐵𝐵′ |𝑜𝑜𝑏𝑏𝑖𝑖𝐵𝐵′ |𝑑𝑑𝑏𝑏𝑖𝑖𝑃𝑃𝑟𝑟𝑒𝑒𝑙𝑙𝑎𝑎 : Player i is 

tackled by player j, a conversion, stop the team, or 
pass the ball     
𝑀𝑀𝑟𝑟𝑒𝑒3 → 𝑟𝑟𝑏𝑏𝑖𝑖𝑅𝑅𝑟𝑟𝑒𝑒�𝑑𝑑𝑏𝑏𝑖𝑖𝑃𝑃𝑟𝑟𝑒𝑒𝑙𝑙𝑎𝑎 � j

’
𝑡𝑡𝑙𝑙𝑖𝑖𝐵𝐵′ |𝑜𝑜𝑑𝑑𝐵𝐵′ : Run, pass 

the ball, or player i is tackled by player j 
𝑃𝑃𝑟𝑟𝑒𝑒𝑙𝑙𝑎𝑎 → 𝑐𝑐𝑏𝑏𝑖𝑖𝑀𝑀𝑟𝑟𝑒𝑒3|𝑜𝑜𝑏𝑏𝐵𝐵′ |𝑐𝑐𝑏𝑏𝑖𝑖′ 𝑀𝑀2

′  : Catch the ball or 
stop the team  
𝑀𝑀6 → 𝑟𝑟𝑏𝑏𝑖𝑖𝑅𝑅�𝑑𝑑𝑏𝑏𝑖𝑖𝑀𝑀7� j

’
𝑡𝑡𝑙𝑙𝑖𝑖𝑃𝑃𝑥𝑥 |𝑜𝑜𝑑𝑑𝑃𝑃𝑥𝑥 |𝑡𝑡𝑑𝑑𝑇𝑇 : Run, player 

i is tackled by player j, or a touchdown 
𝑃𝑃𝑙𝑙𝑎𝑎 → 𝑟𝑟𝑏𝑏𝑖𝑖𝑅𝑅�𝑑𝑑𝑏𝑏𝑖𝑖𝑀𝑀7� j

’
𝑡𝑡𝑙𝑙𝑖𝑖𝑃𝑃𝑥𝑥 |𝑜𝑜𝑑𝑑𝑃𝑃𝑥𝑥  : Run, pass the 

ball, or player i is tackled by player j 
𝑀𝑀7 → 𝑐𝑐𝑏𝑏𝑖𝑖𝑃𝑃𝑙𝑙𝑎𝑎 |𝑜𝑜𝑏𝑏𝑃𝑃𝑥𝑥 |𝑐𝑐𝑏𝑏𝑖𝑖′ 𝑀𝑀2

′ | j
’
𝑡𝑡𝑙𝑙𝑖𝑖𝑃𝑃𝑥𝑥 : Actions after 

kick off following a touchdown 
𝑃𝑃 → 𝑐𝑐𝑏𝑏𝑖𝑖𝑀𝑀6�𝑜𝑜𝑏𝑏𝐷𝐷𝑦𝑦

𝑜𝑜𝑖𝑖+1 �𝑐𝑐𝑏𝑏𝑖𝑖′ 𝑀𝑀2
′   𝑀𝑀2

′ : Defensive team 
changes to offensive team 
𝑅𝑅 → 𝑑𝑑𝑏𝑏𝑖𝑖𝑀𝑀7| j

’
𝑡𝑡𝑙𝑙𝑖𝑖𝑃𝑃𝑥𝑥 �𝑡𝑡𝑑𝑑𝑖𝑖𝑇𝑇�𝑜𝑜𝑏𝑏𝑖𝑖𝑃𝑃𝑥𝑥  : Pass, player i is 

tackled by player j, touchdown, or stop the team 
𝑃𝑃𝑥𝑥 → 𝑎𝑎𝑑𝑑𝑏𝑏𝑥𝑥𝐷𝐷𝑦𝑦=𝑦𝑦−𝑥𝑥

𝑜𝑜𝑖𝑖+1  |𝑏𝑏𝑒𝑒𝑜𝑜𝑥𝑥𝐷𝐷𝑦𝑦=𝑦𝑦+𝑥𝑥
𝑜𝑜𝑖𝑖+1 : Sum or 

subtraction of yards 
 
 
2.2 Finite State Machine 
The CFG language that formal describes AF is read 
by the corresponding finite state machine (FSM). 
Let (Ó, S, s0,𝛿𝛿,𝐻𝐻) be a push-down automata, where  
• Ó is the alphabet;  
• 𝑆𝑆 = {𝐵𝐵,𝑀𝑀,𝑀𝑀1,𝑀𝑀2,𝑀𝑀3,𝐷𝐷𝑦𝑦

𝑜𝑜𝑖𝑖 ,𝑀𝑀5,𝑀𝑀6,𝑀𝑀7,𝑇𝑇,𝑃𝑃𝑃𝑃, 
𝑅𝑅𝐸𝐸,𝑀𝑀𝑟𝑟𝑒𝑒 ,𝑃𝑃𝑟𝑟𝑒𝑒 ,𝑀𝑀𝑟𝑟𝑒𝑒 ,𝑀𝑀𝑟𝑟𝑒𝑒2, 
𝑅𝑅𝑟𝑟𝑒𝑒 ,𝑀𝑀𝑟𝑟𝑒𝑒3,𝑃𝑃𝑟𝑟𝑒𝑒𝑙𝑙𝑎𝑎 , 𝑃𝑃,𝑃𝑃𝑙𝑙𝑎𝑎 ,𝑅𝑅,𝑃𝑃𝑥𝑥 ,𝑀𝑀1

′ ,𝑀𝑀′ ,𝐵𝐵′ } is the set 
of states; 

• 𝛿𝛿: 𝑆𝑆 × Ó → S is the transition function;  
• 𝐵𝐵 ∈ 𝑆𝑆 is the initial state; and 
• 𝐻𝐻 = {𝑀𝑀1

′ ,𝑀𝑀′ ,𝐵𝐵′ } ⊆ 𝑆𝑆 is the set of halt states. 
The FSMs for (a) the game start, (b) the 

touchdown annotation, and (c) the execution of the 
plays in the field are illustrated in Figs. 1 (a), (b) 
and (c), respectively.  
 

 
Fig. 1 (a) FSM for the game start 
 

 
Fig. 1 (b) FSM for a touchdown 
 

 
Fig. 1 (c) FSM to describe plays in the field 
 

The set of FSMs is the mathematical device to 
read the language describing AF game. The parsing 
of strings starts at the FSM initial state then 
following through intermediate states to end in one 
FSM halt state [28], similar to the baseball 
algorithmic scheme in [26]. 
 
 
2.3 Statistics and Probability Function to 
Real Simulations 

We add the statistical frequency of real plays 
occurrence to get real simulations. We use statistics 
of empirical human plays to define the distribution 
function of probability to games simulation. Hence, 
a play with higher statistical frequency is higher 
probability of occurrence, so more likely included in 
the simulation that the plays with low frequency or 
probability of occurrence. Realism to computer 
simulations is warranted this way. 

As happens in modeling under uncertain 
circumstances likewise in AF, in order to learn on 
the parameter values about the uncertainties, the 
statistics confidence or credible intervals allow 
dealing with. Confidence interval regards frequentist 
statistics [29] whereas credible intervals regard 
Bayesian statistics approach. The interval is 
constructed on the base of data samples and can 
vary from sample to sample. To learn about win 
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option for teams in AF games, we define both 
confidence and credible interval to 95% of 
confidence so the right value can be in the interval 
up to this chance. We construct statistics confidence 
and credible intervals on the base of one thousand 
game simulations in Section 5.  
 
 
3 Payoff Functions by Roles and Plays  
To selection of strategies NE or PE is applied by 
introducing payoff matrices that incorporates the AF 
quantitative analysis by including the game 
conditions for the third and fourth downs. For each 
down, the strategies are to kick the ball to the other 
team (punt), play the ball (either pass or run), or 
attempt a field goal. The matrices for the respective 
representation of the strategies for the downs are 
given below. 
 
 
3.1 PE and NE Matrices 
The payoff matrices consist of the payoff function 
valuations of the strategy profiles. Each matrix entry 
contains a player’s strategy profile valuation. The 𝑀𝑀 
payoff matrix for the 𝑛𝑛 players is built from the set 
of 𝑀𝑀𝑖𝑖  payoff matrices for each player 𝑖𝑖. The 𝑀𝑀 
entries are the strategy profiles that are joint to the 
profile payoff value 𝑟𝑟𝑧𝑧: hence, 
((𝑠𝑠1, … , 𝑠𝑠𝑖𝑖 , … , 𝑠𝑠𝑛𝑛), 𝑟𝑟𝑧𝑧). The profile (𝑠𝑠1, … , 𝑠𝑠𝑖𝑖 , … , 𝑠𝑠𝑛𝑛) 
represents the strategies that the players can perform 
under specific AF game conditions, and 𝑟𝑟𝑧𝑧  is the 
payoff value that the player 𝑖𝑖 receives for this 
profile. The payoff matrix data can support the 
coach’s decision-making over the course of a game. 
The payoff matrix represents the quantitative 
analysis for an entire AF game, considering the AF 
game conditions described above.  

As we mentioned, the values of the payoff 
matrices are given from the payoff functions 
valuations on the strategy profiles. In order to 
illustrate this process, we introduce in the normal 
form game description of American football, 
general payoff functions that evaluate the strategy 
profiles and return payoff values. These payoff 
function values are the players’ payoffs to the 
strategy profiles. To define the payoff functions we 
characterize the AF plays by each player-role. We 
classify AF plays according to defensive /offensive 
roles and then state the payoff functions of the 
players. AF plays and the general payoff functions 
follow. 
 
 
 

3.2 Prayer-Roles 
The AF player-roles are the base to define the utility 
function for valuing the strategy profiles. We 
present some AF player-roles according to the 
offensive or defensive team’s position during the 
game. For offensive the player-roles are: offensive 
linemen, quarterback, backfield and receivers. For 
defensive the player-roles are: defensive linemen, 
linebacker and defensive backfields. For the special 
team, the player-roles are: kicker and kicker return, 
punter and punter-return. Each player-role or role 
for short, mostly use a set of plays, see Table 4. 
 
Table 4: Offensive and defensive plays  
Offensive plays  Defensive plays 

Abb. Description Abb. Description 

kb Kick the ball  𝑡𝑡𝑙𝑙 Tackling 
cb Catch the ball  

by product of a 
pass 

𝑠𝑠𝑘𝑘 Safety 

rb Run with the 
ball 𝑠𝑠𝑏𝑏 Stop the ball 

pb Pass the ball 𝑖𝑖𝑛𝑛 Interception 
fd Scoring yards 𝑞𝑞𝑠𝑠 Tackling the 

quarterback 
td Touchdown 𝑦𝑦𝑏𝑏 Roll back the 

contraries 
p Extra point (1 

point by product 
of a kick) 

𝑘𝑘𝑏𝑏 Fumble the 
ball 

re Conversion (2 
points) 𝑘𝑘𝑟𝑟 Turnover the 

ball 
fg Field goal 𝑡𝑡𝑏𝑏 Touchback 
 
Offensive roles  
• Offensive linemen players 𝑂𝑂𝐿𝐿 have two major 

tasks: 1) block the defensive team members 
which try to tackle quarterback (𝑄𝑄𝐵𝐵), and 2) 
open ways in order to runners can pass the ball.  
The 𝑂𝑂𝐿𝐿 players are, the center, left guard, right 
guard, left tackle, and right tackle. We defined 
these players as 𝑂𝑂𝐿𝐿  and the plays to consider 
are 𝑂𝑂𝐿𝐿pl ays = {𝑡𝑡𝑙𝑙,𝑦𝑦𝑏𝑏}. The 𝑂𝑂𝐿𝐿 main function is 
tackling the adversary to allow 𝑄𝑄𝐵𝐵 send pass; as 
well, open space for receiver runs with the ball, 
or, in some cases, push back the opposing team. 

• The quarterback (𝑄𝑄𝐵𝐵) is the offensive leader, 
whose set of plays is 
𝑄𝑄𝐵𝐵pl ays = {𝑟𝑟𝑏𝑏,𝑝𝑝𝑏𝑏,𝑘𝑘𝑑𝑑, 𝑡𝑡𝑑𝑑, 𝑟𝑟𝑒𝑒, 𝑡𝑡𝑏𝑏}. 𝑄𝑄𝐵𝐵′s major 
action is quite pass the ball to receivers, to score 
so many yards and touchdown.  
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• The backfield players 𝐵𝐵𝐹𝐹 are: the halfback, 
tailback the fullback. The BF plays follow, 
𝐵𝐵𝐹𝐹pl ays = {𝑟𝑟𝑏𝑏, 𝑘𝑘𝑑𝑑, 𝑡𝑡𝑑𝑑, 𝑟𝑟𝑒𝑒, 𝑡𝑡𝑏𝑏, 𝑡𝑡𝑙𝑙}. The 𝐵𝐵𝐹𝐹 
preferred score is touchdown or conversion, and 
should run to get there. As well, get a first 
down, or tackling an adversary player. 

• Receiver’s role 𝑅𝑅𝐶𝐶 is to catch the ball passed by 
the 𝑄𝑄𝐵𝐵; 𝑅𝑅𝐶𝐶 players are the tight end and wide. 
The RC plays follow, 
𝑅𝑅𝐶𝐶pl ays = {𝑐𝑐𝑏𝑏, 𝑟𝑟𝑏𝑏,𝑘𝑘𝑑𝑑, 𝑡𝑡𝑑𝑑, 𝑟𝑟𝑒𝑒}. The basic action 
of 𝑅𝑅𝐶𝐶 is to receive the ball and run to try to 
reach to the touchdown line. 

 
Defensive roles  
• The defensive linemen players 𝐷𝐷𝐿𝐿 are: the 

defensive end, defensive tackle and nose tackle, 
their main task is to stop running plays on the 
inside and outside, respectively, to pressure the 
𝑄𝑄𝐵𝐵  on passing plays. The 𝐷𝐷𝐿𝐿 plays follow, 
𝐷𝐷𝐿𝐿pl ays = {𝑡𝑡𝑙𝑙, 𝑠𝑠𝑘𝑘, 𝑠𝑠𝑏𝑏, 𝑞𝑞𝑠𝑠,𝑦𝑦𝑏𝑏, 𝑘𝑘𝑏𝑏, 𝑘𝑘𝑟𝑟}. The 𝐷𝐷𝐿𝐿’s 
major actions is to try to tack the opposing 𝑄𝑄𝐵𝐵, 
roll back yards to the opposing team or get a 
safety; in descent order of importance the next is 
to stop the ball, tackling and cause fumbles and 
try to recover it by the opponent. 

• The linebacker players 𝐿𝐿𝐵𝐵′s tasks are: defend 
passes in shortest paths, stop races that have 
passed the defensive line or on the same line 
and attack the 𝑄𝑄𝐵𝐵  plays penetration; they can 
be three or four. The 𝐿𝐿𝐵𝐵 plays follow, 
𝐿𝐿𝐵𝐵pl ays = {𝑡𝑡𝑙𝑙, 𝑠𝑠𝑘𝑘, 𝑠𝑠𝑏𝑏, 𝑞𝑞𝑠𝑠,𝑘𝑘𝑏𝑏,𝑘𝑘𝑟𝑟}. The main 
function of 𝐿𝐿𝐵𝐵 is to recover a lost ball and then 
could be to generate a safety. 

• The defensive backfield players 𝐷𝐷𝑆𝑆 are: the 
cornerbacks and safeties, which major task is to 
cover the receivers. The 𝐷𝐷𝑆𝑆 plays follow, 
𝐷𝐷𝑆𝑆plays = {𝑡𝑡𝑙𝑙, 𝑖𝑖𝑛𝑛,𝑘𝑘𝑏𝑏,𝑘𝑘𝑟𝑟}. For 𝐷𝐷𝑆𝑆 is important 
to intercept a pass or get the other team loses 
control of the ball. 

 
Special team roles 
• Kicker player 𝐾𝐾 kicks off the ball and do field 

goals and extra points. The kicker’s plays 
follow,  𝐾𝐾pl ay s = {𝑘𝑘𝑏𝑏,𝑝𝑝,𝑘𝑘𝑔𝑔}. For 𝐾𝐾, the most 
important is to make a field goal, followed by an 
extra point and typically perform the 
corresponding kicks. 

• The kickoff returner 𝑅𝑅 is the player on the 
receiving team who catches the ball. The plays 
are 𝑅𝑅pl ays = {𝑟𝑟𝑏𝑏, 𝑡𝑡𝑑𝑑, 𝑡𝑡𝑏𝑏}. For 𝑅𝑅, the best choice 
is to score a touchdown with the return of the 
kick, but usually just run until stopped, or 
perform touchback for time. 

 
3.3 Payoff Functions 
The payoff function for each of the roles mentioned 
above value the strategy profiles considering 
relevant skills of the role. Each role is qualified on 
the base of its performance on certain plays, and the 
statistics of the role resumes these qualifications. 
Let (𝑥𝑥1, … , 𝑥𝑥𝑖𝑖  , … , 𝑥𝑥𝑛𝑛) the strategy profile such that 
𝑥𝑥𝑖𝑖  is one play of role 𝑖𝑖; let 𝑉𝑉𝑖𝑖(𝑥𝑥𝑖𝑖) be the role 𝑖𝑖’s 
preference on 𝑥𝑥𝑖𝑖 , and  𝜌𝜌(𝑥𝑥𝑖𝑖) be the average statistics 
of occurrence of 𝑥𝑥𝑖𝑖  from role 𝑖𝑖 regarding the 
statistics (may be NFL). The payoff functions by the 
role 𝑖𝑖 is: 
 𝑢𝑢𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖  , … , 𝑥𝑥𝑛𝑛) = 𝑉𝑉1(𝑥𝑥1) × 𝜌𝜌(𝑥𝑥1) +⋯+
𝑉𝑉𝑖𝑖(𝑥𝑥𝑖𝑖) × 𝜌𝜌(𝑥𝑥𝑖𝑖) + ⋯+ 𝑉𝑉𝑛𝑛(𝑥𝑥𝑛𝑛) × 𝜌𝜌(𝑥𝑥𝑛𝑛).   

The payoff function should consider as well the 
contributions of the other roles that are directly 
involved with the execution of 𝑥𝑥𝑖𝑖 .  
 
Offensive team  
We define the strategy profile for the offensive 
roles. Let (𝑤𝑤, 𝑥𝑥,𝑦𝑦, 𝑧𝑧) be a strategy profile with 𝑤𝑤 ∈
𝑄𝑄𝐵𝐵pl ays  ,𝑥𝑥 ∈ 𝑅𝑅𝐶𝐶pl ays  ,𝑦𝑦 ∈ 𝑂𝑂𝐿𝐿pl ays  , 𝑧𝑧 ∈ 𝐵𝐵𝐹𝐹pl ays . 
• For the 𝑄𝑄𝐵𝐵 payoff function, the 𝑄𝑄𝐵𝐵 and the 𝑂𝑂𝐿𝐿 

plays are considered, so the payoff function 
follows: 

𝑢𝑢𝑄𝑄𝐵𝐵(𝑤𝑤, 𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑉𝑉𝑄𝑄𝐵𝐵(𝑤𝑤) ×  𝜌𝜌(𝑤𝑤) + 𝑉𝑉𝑂𝑂𝐿𝐿(𝑦𝑦) ×
 𝜌𝜌(𝑦𝑦). 

• For the 𝑅𝑅𝐶𝐶 payoff function, the 𝑅𝑅𝐶𝐶, 𝑄𝑄𝐵𝐵 and 𝑂𝑂𝐿𝐿 
plays should be considered, so the payoff 
function follows: 

𝑢𝑢𝑅𝑅𝐶𝐶(𝑤𝑤, 𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑉𝑉𝑅𝑅𝐶𝐶(𝑥𝑥) ×  𝜌𝜌(𝑥𝑥) + 𝑉𝑉𝑄𝑄𝐵𝐵(𝑤𝑤) ×
 𝜌𝜌(𝑤𝑤) + 𝑉𝑉𝑂𝑂𝐿𝐿(𝑦𝑦) ×  𝜌𝜌(𝑦𝑦). 

• For the 𝐵𝐵𝐹𝐹 payoff function, the 𝐵𝐵𝐹𝐹, 𝑄𝑄𝐵𝐵 and 𝑂𝑂𝐿𝐿 
plays should be considered, so the payoff 
function follows: 

𝑢𝑢𝐵𝐵𝐹𝐹(𝑤𝑤, 𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑉𝑉𝐵𝐵𝐹𝐹(𝑧𝑧) ×  𝜌𝜌(𝑧𝑧) + 𝑉𝑉𝑄𝑄𝐵𝐵(𝑤𝑤) ×
 𝜌𝜌(𝑤𝑤) + 𝑉𝑉𝑂𝑂𝐿𝐿(𝑦𝑦) ×  𝜌𝜌(𝑦𝑦). 

• For the 𝑂𝑂𝐿𝐿 payoff function, the 𝑂𝑂𝐿𝐿 plays are the 
only considered, so the payoff function follows: 

𝑢𝑢𝑂𝑂𝐿𝐿(𝑤𝑤, 𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑉𝑉𝑂𝑂𝐿𝐿(𝑦𝑦) ×  𝜌𝜌(𝑦𝑦). 
 
Defensive team 
We define the strategy profile for defensive roles. 
Let (𝑥𝑥,𝑦𝑦, 𝑧𝑧) be a strategy profile with 𝑥𝑥 ∈
𝐷𝐷𝐿𝐿pl ays  ,𝑦𝑦 ∈ 𝐿𝐿𝐵𝐵pl ays  , 𝑧𝑧 ∈ 𝐷𝐷𝑆𝑆pl ays . 
• For the 𝐷𝐷𝐿𝐿 and 𝐿𝐿𝐵𝐵 payoff function, the 𝐷𝐷𝐿𝐿 and 

𝐿𝐿𝐵𝐵 plays should be considered, so the payoff 
function follows: 
𝑢𝑢𝐷𝐷𝐿𝐿|𝐿𝐿𝐵𝐵(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

= 𝑉𝑉𝐷𝐷𝐿𝐿(𝑥𝑥) ×  𝜌𝜌(𝑥𝑥) +  𝑉𝑉𝐿𝐿𝐵𝐵(𝑦𝑦)
×  𝜌𝜌(𝑦𝑦). 
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• For the 𝐷𝐷𝑆𝑆 payoff function, the 𝐷𝐷𝑆𝑆 plays are the 
only considered, so the payoff function follows: 

𝑢𝑢𝐷𝐷𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑉𝑉𝐷𝐷𝑆𝑆(𝑧𝑧) ×  𝜌𝜌(𝑧𝑧). 
 
Special team  
• For 𝐾𝐾, the payoff function  follows: 
𝑢𝑢𝐾𝐾(𝑥𝑥) = 𝑉𝑉𝐾𝐾(𝑥𝑥) ×  𝜌𝜌(𝑥𝑥) where 𝑥𝑥 ∈ 𝐾𝐾pl ays .                             
• For 𝑅𝑅, the payoff function  follows: 
𝑢𝑢𝑅𝑅(𝑥𝑥) = 𝑉𝑉𝑅𝑅(𝑥𝑥) ×  𝜌𝜌(𝑥𝑥) where 𝑥𝑥 ∈ 𝑅𝑅pl ays .                              
 
 
4 Experiments: Statistics and 
Strategic Choices 
The benefit of strategic choices is measured on the 
base of game simulations’ results regarding the next 
circumstances in experiments:  
• When a team sole use NFL statistics compared 

with the same team that uses NFL statistics and 
the NE or the PE.  

• When statistics of a team are used alone and the 
other team simulations are with using its 
statistics and some strategic choices by the NE 
or the PE method.  

To simulate the players’ actions regarding their 
history, we use NFL statistics for the Denver (DEN) 
team and the Oakland (OAK) team in the 2012 
season. Each play’s frequency of occurrence in the 
NFL statistics is used in the computer simulation. 
We compare the results in AF games simulation: by 
one hand games that use NFL statistics without any 
strategic analysis, comparing them to games that use 
NFL statistics combined with strategic choices by 
PE and or NE. Let Team 1 (T1) and Team 2 (T2) be. 
One thousand computer simulations are conducted 
for each of the next conditions.  
1) T1 with DEN’ statistics versus T2 with OAK’ 

statistics. 
2) T1 with DEN’ statistics versus T2 with OAK’ 

statistics and using the NE to the strategic 
analysis.  

3) T1 with DEN’ statistics versus T2 with OAK’ 
statistics and using the PE to the strategic 
analysis. 

Results from games between Oakland and 
Denver AF teams, under circumstance described 
there, are reported in Table 5. Fig. 2 shows the 
simulation results when only DEN statistics are used 
for T1 and only OAK statistics are used for T2 and 
when either the PE or the NE are also used for T2. 
Statistically, when DEN statistics are used for T1, 
and OAK statistics are used for T2, the performance 
of T1 is superior to that of T2, because the DEN 
team performed better than the OAK team in the 
NFL 2012 season. However, using either the PE or 

the NE to select strategies for T2 improves the 
performance of T2, and T2 outperforms T1. Using 
either strategy selection approach increases the 
team’s level of play and enables the team to select 
the most appropriate strategies under the given AF 
circumstances, even when the team is statistically 
inferior to its opponents. 
 

 
Fig. 2 Using only statistics for T1 and statistics, PE 
or NE for T2 
 

Now, to measure the impact of the different 
strategic choices, NE or alternatively PE, on equally 
behave AF teams, we experiment on teams that use 
the same statistics, so equal characteristics to 
playing, but different strategic choices to observe 
the impact on their proficiency. One thousand 
computer simulations are performed for games in 
which DEN statistics are used for both T1 and T2 
under the following conditions:  
4) using the NE for  T1 and only using DEN 

statistics for T2, 
5) using the PE for T1 and only using DEN 

statistics for T2. 
Rows 4-5 in Table 5 (items 4-5), show that using 

the NE or the PE to select strategies for T1 and only 
statistics for T2 gives T1 an advantage over T2.  

Figs. 3 to 5 compare the results for simulations 
of teams with the same playing characteristics but 
different strategy selection methods. Fig. 3 shows 
the simulation results when only DEN statistics are 
used for T1 and DEN statistics are used for T2 in 
addition to the PE or the NE. The results show that 
using only DEN statistics for T1 and changing the 
strategic approach for T2 improves the performance 
of T2. 

Fig. 4 shows the simulation results when only 
the PE is used for T1 and DEN statistics are used for 
T2 along with the PE or the NE. In these 
simulations, the performance of T1 is inferior to that 
of T2 when only the NE is used to select strategies 
for T2.  
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Fig. 3 Using only statistics for T1 and statistics, PE 
or NE for T2 
 

 
Fig. 4 Using PE for T1 and statistics, PE or NE for 
T2 

The last set of experiments is without use of 
statistic but sole strategic choices, NE or PE, as 
follows:  
6) using the NE for T1 and using the NE for T2, 
7) using the NE for T1 and using the PE for T2, 
8) using the PE for T1 and using the NE for T2, and 
9) using the PE for T1 and using the PE for T2. 

The results in Table 5 row 6 (item 3) show that 
T1 and T2 are equally balanced (477 wins to 472 
wins) when the NE is used for both teams. Row 7 
(item 4) shows that using the NE for T1 results in 
superior abilities to using the PE for T2 by 681 wins 
to 259 wins. Row 8 (item 5) shows that using the PE 
for T1 produces an inferior performance to using the 
NE for T2 by 302 wins to 622 wins. Row 9 (item 6) 
shows that when the PE is used for both teams, their 
performances are balanced at 481 wins to 471 wins. 
Without loss of generality, this set of experiments 
confirms that a team can positively impact its own 
abilities by using the NE or the PE to choose 
strategies in playing an AF game.   

Fig. 5 shows the simulation results when only 
the NE is used for T1 and DEN statistics are used for 
T2 along with the PE or the NE. In this case, the 
performances of T1 and T2 are balanced, except 
when the NE is used for both teams. 

 
Fig. 5 Using only NE for T1 and statistics, PE or NE 
for T2 
 

Data in the last two columns in Table 5 is the 
base to the statistical analysis in 5.3. Theoretically, 
the Pareto-efficient profiles are the most profitable; 
however, we find that, these profiles in a real match 
are unlikely to occur than others, therefore 
impractical. PE profiles are Pareto-efficient which 
means, PE profiles even be efficient but they are 
unlikely to occur than NE profiles, as we showed 
through the set of computer simulations. 
 
 
5 Results and Statistical Analysis 
In classic parametric statistics the confidence 
interval is the range of values statistically consistent 
with the current observed value in the study [29]. 
The effect of the used strategy is meaningful 
described using the ratio of proportions that is an 
alternative in Bayesian statistics to the difference in 
the sample proportions. 
 
5.1 Confidence intervals 
We use the confidence interval at 95% regarding the 
difference of probability that each team wins in each 
scenario following the formula in (3) [30]: 
 

𝑝𝑝𝑇𝑇1 − 𝑝𝑝𝑇𝑇2 ∈ �̂�𝑝𝑇𝑇1 − �̂�𝑝𝑇𝑇2 ± 1.96�𝑝𝑝�𝑇𝑇1 +𝑝𝑝�𝑇𝑇2−�𝑝𝑝�𝑇𝑇1−𝑝𝑝�𝑇𝑇2�
2

𝑛𝑛
                                                                                                      

                                                                               (3) 
 

with  �̂�𝑝𝑇𝑇𝑥𝑥 = Number of Winnings  for 𝑇𝑇𝑥𝑥
𝑛𝑛

, 𝑥𝑥 ∈ {1, 2} and 
𝑛𝑛 the number of played games. For positive 
confidence interval, (𝑎𝑎, 𝑏𝑏) ⊆ ℝ+,  𝑝𝑝𝑇𝑇1 − 𝑝𝑝𝑇𝑇2 > 0, so 
𝑝𝑝𝑇𝑇1 > 𝑝𝑝𝑇𝑇2 , with significance level 0.05. 
Symmetrically, by (𝑎𝑎, 𝑏𝑏) ⊆ ℝ−, 𝑝𝑝𝑇𝑇1 < 𝑝𝑝𝑇𝑇2 .  In the 
equation (3), the confidence interval depends on the 
number of observations: with few observations the 
interval  𝑝𝑝𝑇𝑇1 − 𝑝𝑝𝑇𝑇2 ∈ (−0.1,0,2) could be got, then 
cannot reject the hypothesis  𝑝𝑝𝑇𝑇1 − 𝑝𝑝𝑇𝑇2 ≤ 0 nor 
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𝑝𝑝𝑇𝑇1 − 𝑝𝑝𝑇𝑇2 ≥ 0. In our problem, 1000 simulation 
times are enough to get confidence intervals not 
having the cero, so reject the hypothesis 𝑝𝑝𝑇𝑇1 −
𝑝𝑝𝑇𝑇2 ≥ 0 when the confidence interval (𝑎𝑎, 𝑏𝑏) ⊂ 𝑅𝑅−, 
or reject the hypothesis 𝑝𝑝𝑇𝑇1 − 𝑝𝑝𝑇𝑇2 ≤ 0 when the 

confidence interval (𝑎𝑎, 𝑏𝑏) ⊂ 𝑅𝑅+, both with 0.05 
significance level. Henceforth, 𝑝𝑝𝑇𝑇1 < 𝑝𝑝𝑇𝑇2  with 95% 
confidence in the first case, and 𝑝𝑝𝑇𝑇1 > 𝑝𝑝𝑇𝑇2  in the 
second one, are given. These are the cases for 
conclusive results. 

 
Table 5: Confidence interval from computer simulation results 
 

strategic choices method used       

Confidence 
Interval  at 
95%  for   

T1 T2 

 
Winning 
games 
T1 

Winning 
games 
T2 

Tied 
Games 

𝑝𝑝𝑇𝑇1
𝑦𝑦−𝑧𝑧 −
𝑝𝑝𝑇𝑇2
𝑦𝑦−𝑧𝑧   Conclusion 

1 
DEN stat. OAK stat.  

610 355 35 
(0.19,0.31) 

 𝑝𝑝𝑇𝑇1
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 >

𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

2 
DEN stat. 

OAK stat. and 
NE 

305 668 27 
(-0.41,-0.3) 

 𝑝𝑝𝑇𝑇1
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸 <

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸 

3 
DEN stat. 

OAK stat. and 
PE 

469 511 20 
(-0.1,0.01) 

 𝑝𝑝𝑇𝑇1
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 ≈

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸   

DEN’ statistics for both teams, so equally behave gaming but use of different strategic choices 

4 DEN stat. and 
NE OAK stat.  

812 166 22 
(0.59,0.69) 

 𝑝𝑝𝑇𝑇1
𝑁𝑁𝐸𝐸−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 >

 𝑝𝑝𝑇𝑇2
𝑁𝑁𝐸𝐸−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

5 DEN stat. and 
PE OAK stat. 

536 422 42 
(0.05,0.17) 

 𝑝𝑝𝑇𝑇1
𝑃𝑃𝐸𝐸−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 >

 𝑝𝑝𝑇𝑇2
𝑃𝑃𝐸𝐸−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

6 DEN stat. and 
NE 

OAK stat. and 
NE 

477 472 51 
(-0.05,0.06) 

 𝑝𝑝𝑇𝑇1
𝑁𝑁𝐸𝐸−𝑁𝑁𝐸𝐸 ≈

 𝑝𝑝𝑇𝑇2
𝑁𝑁𝐸𝐸−𝑁𝑁𝐸𝐸 

7 DEN stat. and 
NE 

OAK stat. and 
PE 681 259 60 (0.36,0.47)  𝑝𝑝𝑇𝑇1

𝑁𝑁𝐸𝐸−𝑃𝑃𝐸𝐸 >  𝑝𝑝𝑇𝑇2
𝑁𝑁𝐸𝐸−𝑃𝑃𝐸𝐸 

8 DEN stat. and 
PE 

OAK stat. and 
NE 302 622 76 (-0.37,-

0.26)  𝑝𝑝𝑇𝑇1
𝑃𝑃𝐸𝐸−𝑁𝑁𝐸𝐸 <  𝑝𝑝𝑇𝑇2

𝑃𝑃𝐸𝐸−𝑁𝑁𝐸𝐸 

9 DEN stat. and 
PE 

OAK stat. and 
PE 481 471 48 (-0.05,0.07)  𝑝𝑝𝑇𝑇1

𝑃𝑃𝐸𝐸−𝑃𝑃𝐸𝐸 ≈  𝑝𝑝𝑇𝑇2
𝑃𝑃𝐸𝐸−𝑃𝑃𝐸𝐸  

 
Let 𝑥𝑥 ∈ {1, 2} be the team and 𝑧𝑧,𝑦𝑦 ∈
{𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡,𝑁𝑁𝐸𝐸,𝑃𝑃𝐸𝐸}; 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 means team uses only 
statistics, 𝑁𝑁𝐸𝐸 or 𝑃𝑃𝐸𝐸 team uses statistics and NE or 
PE as strategic choice method. Let 𝑝𝑝𝑇𝑇𝑥𝑥

𝑦𝑦−𝑧𝑧  be the 
probability of team 𝑥𝑥 wins, when T1 uses 𝑦𝑦 and T2 
uses 𝑧𝑧. In Table 5, we summarize the computer 
simulation results illustrated since Fig. 2 to Fig. 10, 
describing the winning games for each team, the 
confidence interval and the probability of winning 
for each team. When both teams use statistics, the 
probability of winning T1 is greater than the one of 
T2  (rows 1 in Table 5). Main conclusion is that up 
to the confidence interval at 95%, when OAK 
statistics are used for T2 uses with NE, and DEN 
statistics are sole used for T1, the probability of 
winning T2 is greater than the one of T1. So, in this 
strategic choice T2 performance is better (rows 2 

from Table 5) regardless that is statistically inferior 
than T1. 
 
5.2 Credible Intervals 
We calculate the Bayesian credible interval of this 
quantity with non-informative priors since its 
expressive properties [31].  

For decision-making to know that the probability 
𝑃𝑃𝑇𝑇1  of winning with strategy A is better than the 
probability 𝑃𝑃𝑇𝑇2 of winning with strategy B, is useful. 
Even more useful is to know the proportion   

𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

, so, 

as an instance, if 
𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

= 2, 𝑃𝑃𝑇𝑇1  is twice the 

probability of winning with 𝑃𝑃𝑇𝑇2 . 
A credibility interval using Bayesian statistics is 

required for this kind of analysis.  We define a non-
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informative prior distribution for random vector 
(𝑃𝑃𝑇𝑇1 ,𝑃𝑃𝑇𝑇2 ),  assuming independence for the two 
random variables.  Then, using Bayes Theorem, the 
posterior distribution for �𝑃𝑃𝑇𝑇1 ,𝑃𝑃𝑇𝑇2�, it combines the 
prior distribution with the got simulations results. 
Using the posterior distribution we transform 
(𝑃𝑃𝑇𝑇1 ,𝑃𝑃𝑇𝑇2 ) → 𝑃𝑃𝑇𝑇1

𝑃𝑃𝑇𝑇2
   in order to obtain a credible 

interval for  
𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

  . 1000 times simulation is enough 

to get credible intervals without the number one, so 
rightly quantify   

𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

.  

For instance, if  
𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

∈ (2,3) with credibility 

95%, then,  𝑃𝑃𝑇𝑇1  is at least twice than 𝑃𝑃𝑇𝑇2   because   
𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

∈ (2,3) ⟺ 2 < 𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

< 3 ⟺ 2𝑃𝑃𝑇𝑇2 < 𝑃𝑃𝑇𝑇1 < 3𝑃𝑃𝑇𝑇2  

with 0.95 probability. Conversely, if  
𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

∈ (0,0.5), 

with credibility 95%, then 
𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

∈ (0,0.5) ⟺ 0 <
𝑃𝑃𝑇𝑇1
𝑃𝑃𝑇𝑇2

< 0.5 ⟺ 0 < 𝑃𝑃𝑇𝑇1 < 0.5𝑃𝑃𝑇𝑇2 ⟺ 0 < 2𝑃𝑃𝑇𝑇1 < 𝑃𝑃𝑇𝑇2   

with 95% probability, then PT2  is at least twice 
greater than 𝑃𝑃𝑇𝑇1   with probability 0.95. Notice that if 
the credible interval contains number one then we 
are not able to obtain such conclusions. 

See Appendix A Table A.1 is related to T1 
(DEN) and Table A.2 is related to T2 (OAK) 
provide credible intervals of the ratio of the 
probability of winning of each team for all the 
possible combinations of strategies used by each 
team.  

Let 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸 be the probability of winning T2 

when uses OAK statistics and NE, and T1 uses only 
DEN statistics. Let 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 be the probability of 
winning from team T2 when uses OAK statistics and 
PE, and T1 uses only DEN statistics. Let 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  
be the probability of winning T2 when uses only 
OAK statistics and T1 uses only DEN statistics. The 
probability of winning T2 versus T1 in this 
circumstance follows. 
• Using the confidence interval reported in cell 

(2,1) Table A.2 in Appendix A, the percentage 
of wining comparing 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸 versus 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

follows: 
 1.71 < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸  𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  � < 2.07 

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 × 1.71 < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸  < 2.07 ×
𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 × (1 + 0.71) < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸  <
(1 + 1.07) × 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

The percentage of wining from 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸 versus 

𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡  is from 71 % to 107 %. 

 
• Using the confidence interval reported in cell 

(3,1) Table A.2 in Appendix A, the percentage 
of wining comparing 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 versus 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

follows: 
 1.3 < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡� < 1.6 

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 × 1.3 < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 < 1.6 ×
𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 × 1.3 < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 < 1.6 ×
𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 × (1 + 0.3) < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 < (1 +
0.6) × 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  

The percentage of wining from 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 versus 

𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  is from 30 % to 60 %. 

 
• Using the confidence interval reported in cell 

(2,3) Table A.2 in Appendix A, the percentage 
of wining comparing 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸 versus 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 

follows: 
 1.21 < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸  𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸� < 1.41 

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 × 1.21 < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸  < 1.41 ×
𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 × 1.21 < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸  < 1.41 ×
𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 

 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸 × (1 + 0.21) < 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸  < (1 +
0.41) × 𝑝𝑝𝑇𝑇2

𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸  

The percentage of wining from 𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑁𝑁𝐸𝐸  versus 

𝑝𝑝𝑇𝑇2
𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡−𝑃𝑃𝐸𝐸  is from 21 % to 41 %. 

 
From the previous analysis the conclusion is that 

when T2 uses own statistics with NE or PE, while T1 
sole uses own statistics, the probabilities that win T2 
are greater than the ones of T1, in spite of T2 is 
inferior statically to T1. The team score of T2 is still 
improved by using NE than PE, which percentage of 
profit is from 21 % to 41 %. Analyses like this may 
be by using Tables reported in Appendix A.  

Theoretically, the Pareto-efficient profiles are the 
most profitable. However, these profiles in a real 
game are low likely to occur than others. On the 
other hand, more likely to occur are NE profiles as 
results from the results of computer simulations. 

In our analysis, a meaningful fact is that Nash 
equilibrium is used to identify relevant circumstance 
of cooperation in an AF game. When some players 
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should sacrifice their ambitious to ensure a better 
team result: theoretical best actions, touchdown by 
long ball pass, is low probably to occur so give a 
major chance to more probably play, step by step 
ball carrying, is need. In the context of an AF game, 
Pareto efficiency identifies the best actions for the 
whole team, beyond their plausibility of occurrence. 
Nash equilibrium can be used to identify team 
actions with more realistic plausibility of 
occurrence. Cooperation passes by the players’ 
ambitious sacrifice to practice a more probably play.  
 
 
5.3 Score Forecasting  
Former investigations in forecasting AF games are 
resuming in Table 6. 
 
Table 6: Forecasting methods in AF games 
Team Description 

Song et al. 
[9] 

Forecast the winners but not the 
score on games from National 
Football League (NFL) in the season 
2000 – 2001 and the accuracy of the 
predictions is compared by experts 
and the statistical systems. 
 

Baker and 
McHale [10] 

Forecast the exact scores of games 
in NFL games, using a set of 
covariates based on past game 
statistics. 

Gonzalez 
and Gross 
[5] 

Developed a program that learned to 
play a game based on information 
that was obtained by observing 
historical database of human 
opponent’s plays. 

 
Deutsch and 
Bradburn 
[11] 

 
Developed a simulation model for 
AF plays in which the individual 
football players’ positions and 
velocities were represented as 
functions of time in a Monte Carlo 
model. 

 
Janssen and 
Daniel [12] 

 
Developed decision criteria using 
the maximum expected utility, based 
on a von Neumann-Morgenstern 
utility function, with stochastic 
dominance as an alternative 
criterion. 

 
Due to lack of information of methods described 

above, we could not make fair comparisons among 
them versus our proposal. With our approach the 
results forecasting allows predict the exact scores. 

Reliable and realistic results are obtained from the 
computer simulations of AF games using a formal 
language, a FSM and a generator for American 
football plays (see Section 2). Within our approach, 
all of the possible ways to play AF are considered 
from the start to the end of a game: real games 
among NFL teams are simulated by basing all of the 
players’ actions on their own NFL statistics. The 
complex scoring plays presented by Baker and 
McHale [10] is a functions-based approach so 
included in our formal language model that use 
transition functions for modeling AF. Next 
examples illustrate the forecasting general approach: 
• A touchdown with kickoff return: T2 kicks the 

ball, and the kick returner from T1 scores a 
touchdown:  

𝑘𝑘𝑘𝑘𝑏𝑏4𝑡𝑡𝑒𝑒𝑎𝑎𝑎𝑎2 𝑐𝑐𝑏𝑏9𝑟𝑟𝑏𝑏9𝑡𝑡𝑑𝑑9. 
• A touchdown with a one-point conversion: the 

quarterback makes two passes to score a 
touchdown, followed by a one-point conversion: 
𝑠𝑠𝑞𝑞𝑏𝑏𝑑𝑑𝑏𝑏1 𝑐𝑐𝑏𝑏1  1𝑡𝑡𝑙𝑙12 𝑠𝑠𝑞𝑞𝑏𝑏𝑑𝑑𝑏𝑏4 𝑐𝑐𝑏𝑏4 𝑟𝑟𝑏𝑏4𝑡𝑡𝑑𝑑4 𝑠𝑠10𝑟𝑟𝑒𝑒1. 

• A touchdown with a two-point conversion: the 
quarterback makes two passes to score a 
touchdown, followed by a two-point conversion: 

𝑠𝑠𝑞𝑞𝑏𝑏𝑑𝑑𝑏𝑏1 𝑐𝑐𝑏𝑏1  1𝑡𝑡𝑙𝑙12 𝑠𝑠𝑞𝑞𝑏𝑏𝑑𝑑𝑏𝑏4 𝑐𝑐𝑏𝑏4 𝑟𝑟𝑏𝑏4𝑡𝑡𝑑𝑑4 𝑠𝑠𝑞𝑞𝑏𝑏𝑑𝑑𝑏𝑏2 𝑐𝑐𝑏𝑏2 𝑟𝑟𝑒𝑒2

. 
• A safety, i.e., a ball carrier is tackled in his own 

end zone: T2 kicks the ball, and the kick returner 
1 of T1  is tackled in his own end zone by player 
6:  

𝑘𝑘𝑘𝑘𝑏𝑏3𝑡𝑡𝑒𝑒𝑎𝑎𝑎𝑎2 𝑐𝑐𝑏𝑏1  1𝑡𝑡𝑙𝑙6 𝑠𝑠𝑘𝑘1. 
• A field goal: after three plays towards the 

opponent’s end zone, the team decides to kick a 
field goal: 

𝑠𝑠𝑞𝑞𝑏𝑏𝑘𝑘𝑠𝑠1 𝑠𝑠𝑞𝑞𝑏𝑏𝑑𝑑𝑏𝑏4 𝑐𝑐𝑏𝑏4  4𝑡𝑡𝑙𝑙12 … 𝑠𝑠10𝑔𝑔𝑎𝑎2. 
The aforementioned strings describe particular 

routes to score points, although other routes are 
possible. Recall that to perform one part of the 
experiments described in the previous section, one 
thousand computer simulations are conducted on 
games between the Denver team and the Oakland 
team using only the NFL statistics for the 2012 
season and without making any strategic choices. 
The winning percentage and the average points that 
are obtained in one thousand computer simulations 
are reported and compared with the real scores for 
the games in the 2012 season (Table 7). The results 
show a high degree of accuracy for the forecasting 
of the exact scores with a difference of  ±1.21 
points between the actual and predicted scores.  
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Table 7: Forecasting game results using computer 
simulations 

Team Winning 
percentage 

Average 
points 

Actual 
score 

Denver 62% 27.21 26 

Oakland 38% 12.25 13 
 

Song et al. [9] have stated that statistical models 
may yield more accurate forecasts than human 
judgment because objective criteria are employed in 
models to guard against bias and the non-rational 
interpretation of data. However, statistical models 
sometimes cannot capture non-quantitative factors; 
hence, forecasts are not completely accurate. Our 
model produces a high precision for forecasting 
winning teams and exact scores. 
 
 
6 Discussion 
Our approach results in correct algorithmic 
simulations of AF games, so the possible ways to 
play an AF game. Reliable games are obtained for 
computer simulations of AF games using the 
context-free-language and the state machine, and 
realistic results by the distribution of statistics-
probabilities of plays.  

For decades Pareto efficiency has been a 
benchmark to select from a population of solutions, 
the optimal solutions for problem in economic, 
scientific and engineering fields. In evolutionary 
algorithms allows selecting the next best generation 
of individuals. PE formalism supports the design of 
models to identify theoretical optimal strategy 
profiles. We use PE to choice the theoretical 
optimum cooperative profiles for team 
collaboration, by assuming that a team cooperation 
mindset is operational, i.e., mutual confidence is an 
assumed condition for a successful team. The 
abilities of each group member are considered in a 
collective procedure for the deployment of a 
complex task, i.e., a theoretical Pareto-efficient 
design of collective strategies is used to plan a 
complex task. However, this theoretical perspective 
on each member’s best strategies may not always be 
realized in a real (non-theoretical) game. A NE 
strategy profile can be or not Pareto optimal. In both 
cases it can be applied to get a best decision for a 
team. When NE strategy profile is not optimal it can 
be useful to identify highly frequent combinations 
of plays. On the other hand, the NE optimal strategy 
profiles can be useful to identify combinations of 
plays of low frequency but of high benefit to the 
team.  

Games among NFL teams are reproduced using 
NFL statistics describing the players’ history of 
actions. The use of NFL statistics to feed the 
players’ actions in thousands of computer 
simulations set to accuracy forecast the futures 
scores of game results. Baker and McHale [10] used 
a forecasting model with a continuous-time Markov 
birth process to analyze the ways in which points 
could be scored in NFL games. The authors focused 
on an unconverted touchdown (6 points), a 
touchdown with a one-point conversion (7 points), a 
touchdown with a two-point conversion (8 points), a 
safety (2 points), and a field goal (3 points). For 
each type of score, various hazard functions were 
used for each team, home and away, that depended 
on the state of play. As previously described, our 
developed approach can be used to formally score 
these particular circumstances by substituting a 
probabilistic generator for the hazard functions and 
finite state automata for the Markov process 
developed for scoring plays, So this approach is 
generalized in our model within an elegant 
algorithmic setting. 

Although baseball and AF differ considerably in 
terms of respective game rules and play methods, 
there are considerable similarities between these 
games formal account. Both games are multi-player 
sport games in which each player has a specific role 
to perform in strategies during the offensive and 
defensive plays that are directed by the coach [26, 
32, 33]. CFG is also used in the formal modeling 
and the algorithmic setting for both games to 
simulate an entire game. In both sport games, 
strategic analysis using statistics is a determining 
factor in making correct decisions [26, 32], [7].  

The design and use of collective strategies has an 
impact far beyond the field of multi-player sports or 
multi-agent systems. Coen [34] studied the multiple-
team social dilemma by integrating empirical 
studies of actual human behavior with behavioral 
predictions from simulations. Coen examined the 
findings from each approach to the single-team 
social dilemma and then combined elements of each 
approach for application to the multiple-team social 
dilemma. These empirical studies were used to 
reveal the decision-making process, and computer 
simulations were used to determine the most 
effective decisions. Our approach is similar to 
Coen’s study in the use of computer simulations for 
social interactions. In addition, we consider the 
circumstances of a multi-player game in the 
application of mathematical methods to explore 
different players’ actions. Our strategic analysis is 
quantitatively accurate because the NE and PE are 

Arturo Yee et al.
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 367 Volume 1, 2016



used to choose an appropriate strategy to increase 
team performance. 
 
 
7 Conclusion 
In AF as a collective sport game wherein strategic 
analysis is essential for success, strategic decision 
based on NE or PE analytical methods strengthens 
the team performance, thereby increasing the 
expectations of winning. The results of computer 
simulations showed that using the NE for strategy 
selection improved the team performance over using 
the PE, even though the PE fits the theoretical 
Pareto-efficient selection of the strategy profiles, 
thereby incorporating each member’s best strategies. 
However, in a real (non-theoretical) game, these 
strategies are low likely to occur and are therefore 
low practical.  
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Appendix A 
Let define pTx

y−z as the probability of wining of team 
x when T1 (DEN) uses y and T2 (OAK) uses z, 

x ∈ {1,2} and y, z ∈ {stat, NE, PE}, where stat 
means team uses only statistics,  NE or PE team uses 
statistics and NE or PE as strategic choice method. 
 

Table A.1: Credible interval for 𝑝𝑝𝑇𝑇1
𝑎𝑎−𝑏𝑏 𝑝𝑝𝑇𝑇1

𝑐𝑐−𝑑𝑑�  at 95%. 

    1 2 3 4 5 6 7 8 9 

  a-b           c-d  stat-stat stat- NE stat- PE NE-stat PE-stat NE- NE NE- PE PE- NE PE- PE 

1 stat.-stat - (1.8,2.22) (1.2,1.41) (0.71,0.8) (1.05,1.23) (1.18,1.39) (0.84,0.96) (1.82,2.25) (1.17,1.38) 

2 stat- NE (0.45,0.56) - (0.58,0.73) (0.34,0.41) (0.51,0.63) (0.57,0.72) (0.4,0.5) (0.88,1.15) (0.57,0.71) 

3 stat- PE (0.71,0.83) (1.37,1.72) - (0.54,0.62) (0.8,0.95) (0.9,1.08) (0.64,0.74) (1.38,1.74) (0.89,1.07) 

4 NE-stat (1.26,1.41) (2.42,2.94) (1.61,1.86) - (1.42,1.62) (1.59,1.83) (1.13,1.26) (2.44,2.97) (1.57,1.81) 

5 PE-stat (0.81,0.95) (1.58,1.96) (1.05,1.25) (0.62,0.7) - (1.03,1.23) (0.73,0.85) (1.59,1.98) (1.02,1.22) 

6 NE- NE (0.72,0.85) (1.4,1.75) (0.93,1.12) (0.55,0.63) (0.82,0.97) - (0.65,0.76) (1.41,1.77) (0.91,1.09) 

7 NE- PE (1.05,1.19) (2.02,2.48) (1.34,1.57) (0.8,0.88) (1.18,1.37) (1.32,1.54) - (2.03,2.5) (1.31,1.53) 

8 PE- NE (0.44,0.55) (0.87,1.13) (0.57,0.72) (0.34,0.41) (0.5,0.63) (0.56,0.71) (0.4,0.49) - (0.56,0.7) 

9 PE- PE (0.73,0.86) (1.41,1.77) (0.94,1.12) (0.55,0.64) (0.82,0.98) (0.92,1.1) (0.65,0.76) (1.42,1.79) - 

Table A.2: Credible interval for 𝑝𝑝𝑇𝑇2
𝑎𝑎−𝑏𝑏 𝑝𝑝𝑇𝑇2

𝑐𝑐−𝑑𝑑�  at 95%. 

    1 2 3 4 5 6 7 8 9 

  a-b           c-d stat-stat stat- NE stat- PE NE-stat PE-stat NE- NE NE- PE PE- NE PE- PE 

1 stat.-stat - (0.48,0.58) (0.63,0.77) (1.82,2.52) (0.75,0.94) (0.68,0.84) (1.2,1.57) (0.52,0.63) (0.68,0.84) 

2 stat- NE (1.71,2.07) - (1.21,1.41) (3.48,4.66) (1.46,1.72) (1.31,1.53) (2.3,2.89) (1.01,1.15) (1.31,1.54) 

3 stat- PE (1.3,1.6) (0.71,0.82) - (2.65,3.58) (1.1,1.33) (0.99,1.18) (1.75,2.23) (0.76,0.89) (0.99,1.19) 

4 NE-stat (0.4,0.55) (0.21,0.29) (0.28,0.38) - (0.34,0.46) (0.3,0.41) (0.54,0.76) (0.23,0.31) (0.3,0.41) 

5 PE-stat (1.06,1.33) (0.58,0.69) (0.75,0.91) (2.17,2.97) - (0.81,0.99) (1.43,1.85) (0.62,0.74) (0.81,0.99) 

6 NE- NE (1.2,1.48) (0.65,0.76) (0.84,1.01) (2.44,3.32) (1.01,1.23) - (1.61,2.06) (0.7,0.82) (0.91,1.1) 

7 NE- PE (0.64,0.83) (0.35,0.43) (0.45,0.57) (1.31,1.86) (0.54,0.7) (0.48,0.62) - (0.37,0.47) (0.49,0.62) 

8 PE- NE (1.59,1.93) (0.87,0.99) (1.13,1.32) (3.24,4.34) (1.35,1.61) (1.22,1.43) (2.14,2.7) - (1.22,1.43) 

9 PE- PE (1.19,1.48) (0.65,0.76) (0.84,1.01) (2.43,3.31) (1.01,1.23) (0.91,1.09) (1.61,2.06) (0.7,0.82) . 

 
In the perspective of multi-agent systems, 

Capraro et al proposed an Iterated Cooperative 
Equilibrium (ICE) [35]. In each round the players 
forecast how the game would be played if they form 
coalitions, and select their actions accordingly; up to 
the reward to be obtained the participants’ behavior 
change and the Nash equilibrium convergence is not 

mandatory, but cooperation behavior can be 
observed.  

Dual equilibrium (DE) with respect to NE for 
two players is studied in the so called prescriptive 
games, Corley et al. [36].  In DE each player acts 
motivated by the others’ best interest and non-
selfish behavior influence the outcomes. The 
concept in DE formalizes an optimal team 
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collaboration and is a particular instance of the 
cooperation in PE. The altruism and envy behavior 
in contests for two players is formally analyzed by 
Kai Konrad [37]. Share in outcomes, at which 
altruists and envious players have identical payoffs 
in the games are observed; Konrad claims that the 
presence of altruism and envy behavior provide 
stability to the whole population dynamic. We 
emphasize the relevance of both, cooperation and 
non-cooperation behavior in human relationships. In 
our AF analysis both attitudes cooperation and non-
cooperation, result in a complementary advantage 
for the team.  

In Roy [38], collective strategies in businesses 
define the conditions under which this type of 
strategy can emerge and stabilize and demonstrated 
the endogenous nature of the dissolution of the 
strategy. Viguier et al. [39] deal with the modeling 
of the strategic allocation of greenhouse gases 
emission allowances in the EU-wide trading. Flåm 
[40] studies balanced environmental games, on 
coalitional games among economic agents plagued 
by aggregate pollutions of diverse sorts. Dornhaus 
[41] analyzed the behavior of social insects, such as 
ants and bees, and showed that individual-based 
models can be used to identify non-intuitive benefits 
of different mechanisms of communication and 
division of labor. Dornhaus also found that these 
benefits may depend on the external environment 
and concluded that individual-based models are 
useful for testing hypotheses about the benefits of 
different collective strategies under varying 
ecological conditions. 
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