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Abstract:The finite element metod (FEM) is widely used numerical method for numerical computation of different
physical problems. The sequence of finite element method solutions with increasing the number of finite elements
converge to analytical solutions. The idea for implementation of Richardson extrapolation is to get better solutions
with less computation and without further increasing of number of finite elements what leads to larger systems of
equations. The Richardson extrapolation is applied on finite element method solution in elastostatics. An algorithm
for new solution calculated by Richardson method is given. The solutions calculated by applying Richardson
extrapolation show more efficiency and accuracy with much less computation than solution with finite element
method over more finite elements.
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1 Introduction

The finite element method (FEM) is widely used
for numerical computation of different physical prob-
lems. The method is based on the discretization of
the domain on the finite elements. After calculation
of elementary stiffness matrices and the implemen-
tation of elementary matrices in the stiffness matrix
of system (structure, beam, plate) and involving the
boundary conditions, the method leads finally to large
system of linear equations. The number of unknowns
and equations depends on the number and type of fi-
nite elements and degrees of freedom at each knot of
elements. The sequence of numerical solutions cal-
culated by finite element method converges with dis-
cretization on more finite elements but followed with
much more computation and much larger system of
equations.

Richardson extrapolation, explained in [1], is re-
cursive method that uses former solutions calculated
with less computation to calculate improved numeri-
cal approximation. The metodology gives improved
results with increasing order of accuracy of numer-
ical solutions by using former solutions with less
numwrical computations. Linear combination of for-
mer solutions would result with improved solution.
The coefficients of linear combination depend on the
convergence order of sequence of solutions. By com-
bining the results from different mesh sizes, the lead-
ing order error terms would be removed. This ex-
trapolation is widely used in numerical integration

(Romberg method). Further application to partial dif-
ferential equations is introduced in [2]. There is also
some application in numerical analysis of nonlinear
integral equations, as in [3]. In this paper, Richard-
son extrapolation is introduced to calculate improved
solution as linear combination of finite element solu-
tions.

2 Richardson extrapolation applied
on numerical integration

We can approximate needed integral,I, with numer-
ical result Im(h) calculated by numerical integra-
tion with steph and order of the convergence of the
methodk

I = Im(h) + Chk , (1)

and with numerical resultIm(h/2) calculated with
steph/2 and same order of convergence

I = Im(h/2) + C

(

h

2

)k

. (2)

With widely used numerical integration algorithm,
called Romberg integration, we have now procedure
for getting improved numerical solution for given in-
tegral as

Im+1(h) =
2kIm(h/2) − Im(h)

2k − 1
(3)
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with order of convergence equal tok + 2. The proce-
dure for improvement of numerical integration solu-
tion according Richardson extrapolation is described
in Table 1.

Table 1: The procedure for Richardson extrapolation
applied on numerical integration

m Im(h) Im

(

h
2

)

Im

(

h
4

)

Im

(

h
8

)

Im

(

h
16

)

1 I1(h) I1

(

h
2

)

I1

(

h
4

)

I1

(

h
8

)

I1

(

h
16

)

↓ ւ↓ ւ↓ ւ↓ ւ

2 I2(h) I2

(

h
2

)

I2

(

h
4

)

I2

(

h
8

)

↓ ւ↓ ւ↓ ւ

3 I3(h) I3

(

h
2

)

I3

(

h
4

)

↓ ւ↓ ւ

4 I4(h) I4

(

h
2

)

↓ ւ

5 I5(h)

3 Richardson extrapolation applied
to improve finite element solutions

We can approximate displacement field,w, in elas-
tostatics (bars, beams, walls, plates) with numerical
resultw(h) calculated by finite element method over
n equal finite elements of lengthh in 1D or n × n fi-
nite elements of dimensionhx × hy, (hx ≈ hy ≈ h),
in 2D problems. The order of the convergence of the
sequence of solutions is equal tok and analytical so-
lution could be expressed by using approximated so-
lutions and order of convergence,

w = w(h) + Chk . (4)

The order of convergence depends on the choice of fi-
nite element. The same displacement field could be
also approximated with numerical resultw(h/2) cal-
culated with finite elements of lengthh/2 and same
order of convergence,

w = w(h/2) + C

(

h

2

)k

. (5)

By multiplying equation (5) with2k and distracting
with equation (4), the leading error terms is removed.
We get now solution with order of convergence equal
to k + 1. With this numerical procedure, called
Richardson extrapolation, we have now the procedure
for getting improved finite element method solution as
linear combination of former finite element solutions,

wm+1(h) =
2kwm(h/2) − wm(h)

2k − 1
, (6)

with order of convergence equal tok + 1. The proce-
dure of Richardson extrapolation consists of succes-
sively eliminating terms in the error expansion to pro-
duce approximation of higher order. The application
of described algorithm on FEM solution sequence is
given in Table 2.

Table 2: The algorithm for Richardson extrapolation
applied on FEM solutions

m wm(h) wm

(

h
2

)

wm

(

h
4

)

wm

(

h
8

)

wm

(

h
16

)

1 w1(h) w1

(

h
2

)

w1

(

h
4

)

w1

(

h
8

)

w1

(

h
16

)

↓ ւ↓ ւ↓ ւ↓ ւ

2 w2(h) w2

(

h
2

)

w2

(

h
4

)

w2

(

h
8

)

↓ ւ↓ ւ↓ ւ

3 w3(h) w3

(

h
2

)

w3

(

h
4

)

↓ ւ↓ ւ

4 w4(h) w4

(

h
2

)

↓ ւ

5 w5(h)

The generalization of procedure could be intro-
duced for the cases with uncorelated meshes,h/n1

andh/n2 and with order of convergence equal tok.
Let we definewap as improved solution. We can de-
fine it by using both solutions respectively as

wap = w(h/n1) + C

(

h

n1

)k

, (7)

or

wap = w(h/n2) + C

(

h

n2

)k

. (8)

After some algebra we loose coefficientC,

wap − wh/n1

wap − wh/n2

=
nk

2

nk
1

, (9)

what leads to equation that gives expression for im-
proved solution

wap =
nk

2w(h/n2) − nk
1w(h/n1)

nk
2 − nk

1

, (10)

which is generalization of equation (6).

4 Numerical examples
First example is fixed bar with concentrated force
on its free edge. Cross-section area of the bar
is defined with linear distribution of cross-sectional
areaA(x) = A2L−x

L , (A(0) = 2A, A(L) = A).
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Analytical solution of displacement at free edge is
w(L) = KL ln 2

EA = 0.69314KL
EA . After discretization

on 1, 2 and 4 linear finite elements, FE solution are
0.66667KL

EA , 0.68571KL
EA , 0.69116KL

EA respectively
with order of convergence equal to 2. Richardson ex-
trapolation of first two solution (with 1 and 2 linear
finite elements) gives new solution of displacement at
free edge,

w(L) = 0.69206
KL

EA
. (11)

Numerical value at free edge calculated by Richard-
son extrapolation of values with 1 and 2 finite ele-
ments with itserr = 0.16% is more accurate than
value with 4 finite elements witherr = 0.28%.

Second example is fixed bar with concentrated
force on its free edge. Cross-section area of this
bar is defined with exponential distribution of cross-
sectional areaA(x) = A2

L−x

L , (A(0) = 2A, A(L) =
A). Analytical solution of displacement of free edge
is w(L) = KL

EA2 ln 2
= 0.721348KL

EA . After discretiza-
tion on 1, 2 and 4 linear finite elements, FE solu-
tion are 0.707107KL

EA , 0.717750KL
EA , 0.720344KL

EA
respectively with order of convergence equal to 2.
Richardson extrapolation of first two solution (with 1
and 2 linear finite elements) gives improved solution
of displacement at free edge,

w(L) = 0.721298
KL

EA
. (12)

Numerical value at free edge calculated by Richard-
son extrapolation of values with 1 and 2 finite ele-
ments with itserr = 0.007% is more accurate than
value with 4 finite elements witherr = 0.125%.

Third example is simply supported square plate
under uniformly distributed load calculated with Her-
mite bicubic finite elements with four degrees of free-
dom at each knot. The presented algorithm, 2, is ap-
plied for improving numerical solution calculated by
different mesh size. Table 3 shows numerical results
of the displacement at mid-point calculated according
the presented algorithm. The results after Richardson
extrapolation are more accurate than results with more
finite elements. Analytical solution for displacement
at mid-point isw = 0.004062353qL4/D, whereD is
flexural rigidity of the plate. We can find out that the

Table 3: Displacement at mid-point of square plate
under uniform load

m wm

(

L
4

)

wm

(

L
8

)

wm

(

L
16

)

1 0.004394822 0.004152497 0.004087584
2 0.004071722 0.004065967
3 0.004065145

calculated values by applying Richardson extrapola-
tion ,w2(L/16) with err = 0.09% andw3(L/8) with
err = 0.07%, on finite element solution over less fi-
nite elements are much more accurate than finite ele-
ment solution over more finite elements,w1(L/32) =
0.004069953qL4/D with err = 0.19%.

Fourth example is simply supported square plate
under concentrated force at mid-point calculated with
Hermite bicubic finite elements with four degrees of
freedom at each knot. The presented algorithm, 2,
is applied for improving numerical solution calcu-
lated by different mesh size. Table 4 shows nu-
merical results of the displacement at mid-point cal-
culated according the presented algorithm. The re-
sults after Richardson extrapolation are more accu-
rate than results with more finite elements. Analyt-
ical solution for displacement at mid-point isw =
0.0116004KL2/D. The calculated value by applying

Table 4: Displacement at mid-point of square plate
under concentrated force at mid-point

m wm

(

L
4

)

wm

(

L
8

)

wm

(

L
16

)

1 0.0114870 0.0115692 0.0115928
2 0.0115967 0.0116007

Richardson extrapolation,w2(L/16) with error equal
to 0.003%, on finite elements over8 × 8 and16 × 16
finite elements is much more accurate than finite el-
ement solution over more (32× 32) finite elements,
w1(L/32) = 0.0115988KL2/D with error equal to
0.013%.

5 Conclusion

The extension of Richardson extrapolation to finite el-
ement method solution is developed. The proposed
algorithm gives more accurate and efficient numeri-
cal results without discretization over more finite el-
ements. The numerical solutions with increased ac-
curacy are calculated according the algorithm based
on recursive relations with less computation than so-
lutions with discretization over more finite elements.
Richardson extrapolation is used to improve order of
accuracy of finite element solutions in elastostatics
without further increasing of number of finite ele-
ments. The proposed method has been veryfied on
1D and 2D exaples through comparison to the known
exact soliutions. As further research, the modified al-
gorithm will be developed for nonlinear finite element
solution and for problems in elastodynamics.
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