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Abstract: We continue the study of the structural stability and the bifurcations of planar bimodal linear dynamical
systems (BLDS) (that is, systems consisting of two linear dynamics acting on each side of a straight line, assuming
continuity along the separating line). Here, we enlarge the study of the bifurcation diagram of saddle/spiral BLDS
to saddle/source BLDS and in particular we study the position of the homoclinic bifurcation with regard to the new

improper node bifurcation.
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1 Introduction

Piecewise linear systems constitute a class of non-
linear systems which have attracted the interest of re-
searchers because of their interesting properties and
the wide range of applications from which they arise.
Even the planar continuous BLDS (planar continuous
bimodal linear dynamical systems, that is, two pla-
nar linear subsystems acting in complementary half-
planes, assuming continuity in the separating straight
line) have complex dynamic behaviors as well as ap-
plications (see, for example, [1], [2], [3] and [5]).

Our aim is a full characterization of the planar
continuous BLDS structurally stable and a system-
atic study of the bifurcations between them, both in
terms of the coefficients of the matrices which define
the system. The structural stability of a system guar-
antees that its qualitative behavior is preserved un-
der small perturbations of their parameters, whereas
qualitative changes occur at the bifurcation points.
We point out that both concepts (structural stability
and bifurcation) depend on the equivalence relation
which precises the idea that two dynamical systems
have the ’same qualitative behavior”. For example,
for the equilibrium point of a single (non degenerate)
planar linear system, those having positive trace and
positive determinant form a unique (structurally sta-
ble) C°-class (sources) whereas they are partitioned in
four C''-classes (spirals and nodes as structurally sta-
ble classes; improper nodes and starred nodes as bifur-
cations). Here we follow [11], where two planar con-
tinuous BLDS are equivalent if there is a homeomor-
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phism of R?2, preserving the separating line, which
maps the orbits of a system into those of the other one
and it is differentiable when restricted to finite peri-
odic orbits (see Definition 3). We maintain also the
nomenclature in [11].

Till now, several partial studies exist concerning
equilibrium points, periodic orbits or homoclinic or-
bits (see [8], [9], [10], [12]). Our aim is a full inte-
gration of these and other behaviors in a complete bi-
furcation diagram, in particular analyzing their persis-
tence under small perturbations. For example, in [6]
it becomes clear that in general the periodic orbits are
structurally stable and that two bifurcations are possi-
ble for disappearing: an ordinary homoclinic bifurca-
tion and a special kind of Hopf bifurcation. Indeed, in
an ordinary Hopf bifurcation the periodic orbit col-
lapses to the equilibrium point inside it. Whereas
in our case, the spiral inside the periodic orbit does
not collapse but change from divergent to convergent,
through a continuum of periodic orbits. In addition, in
[7] we prove that beyond both bifurcations there is not
a zone of structural stability, but a sequence of sad-
dle/tangency or tangency/saddle bifurcations whose
limit is the corresponding bifurcation.

For this global study, the starting point is the re-
duced form of the matrices representing a continu-
ous BLDS obtained in [4]. Then, in [6] we have
specialized the general criteria for structural stability
in [11] and we have pointed out that additional spe-
cific studies (concerning periodic orbits, saddle-loop
(or homoclinic) orbits, saddle/tangency orbits and tan-
gency/saddle orbits) are needed when one of the sub-
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systems is a spiral.

As a first goal, we focus our attention in the sad-
dle/spiral case because it is the only one where all
these elements can appear so that, more complex be-
haviors and applications are expected. Thus, also in
[6], we have studied the periodic orbits and the saddle-
loop orbits for the case of a saddle/spiral system. For
this case, in [12] one specifies the conditions for the
existence of saddle-loop orbits. In general, for pla-
nar continuous BLDS, in [8] it is proved that there ex-
ists at most one saddle-loop orbit or limit cycle, which
then must be attracting or repelling. All these previous
partial results are collected in Section 3. As referred,
in [7] we complete the bifurcation diagram of a sad-
dle/spiral system.

Here we enlarge this study to the transformation
of the considered spiral into a node, through an im-
proper node. More precisely, we consider a saddle
(with negative trace 7T') as left subsystem and a source
as right subsystem, that is, having positive both the de-
terminant A and the trace 7. It is well-known that the
right subsystem will be an improper divergent node
forT =19 = 2VA, a divergent node for 7 > 71y and
a divergent spiral for 7 < 79. We present figures of
these transformation.

For the spiral case, Theorem 6 says that an homo-
clinic orbit appears for an unique value 0 < 77 < 79,
and that there is a finite periodic hyperbolic orbit for
each 0 < 7 < 7g. Here we prove that 7y — 07,
when ' — 0~ and that 7y — 75, when T'" —
—o0. Thus the interval 7 €]0, 7| of structurally sta-
ble systems having a finite periodic orbit increases to
the whole ]0, 79[ when the trace of the spiral in the
right decreases to —oo. As a consequence, the in-
terval |77, 79[ containing the tangency/saddle bifurca-
tion decreases to zero length.

Throughout the paper, R will denote the set of
real numbers, M, ,(R) the set of matrices hav-
ing n rows and m columns and entries in R (in the
case where n = m, we will simply write M,,(R))
and Gl,(R) the group of non-singular matrices in
M, (R). Finally, we will denote by €1, . . ., e, the nat-
ural basis of the Euclidean space R".

2 Structural stability of planar bi-
modal linear systems
Let us consider a bimodal linear dynamical system

(BLDS) given by two subsystems each one acting in a
halfspace:
a:(t) = Alx(t) + Bi if Cx(t) <0,

.’L‘(t) = AzSU(t) + Bo if Cl‘(t) >0,
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where Al,AQ € Mn(R), Bi,By € Mnxl(R);
C € Miyn(R). We assume that the dynamics is con-
tinuous along the separating hyperplane H = {z €
R"™ : Cz = 0}; namely, that both subsystems coin-
cide for Cz(t) = 0.
By means of a linear change in the state variable z(t),
we can consider C'= (1 0...0) € Mix,(R). Hence
H = {z € R" : 1 = 0} and continuity along H is
equivalent to:

BQ = Bl, Agei = Alei, 2 < /) <n.

We will write from now on B = By = Bs.

Definition 1 In the above conditions, we say that the
triple of matrices (A1, As, B) defines a continuous bi-
modal linear dynamical system. (BLDS.)

The placement of the equilibrium points will play
a significative role in the dynamics of a BLDS. So, we
define:

Definition 2 Ler us assume that a subsystem of a
BLDS has a unique equilibrium point, not lying in
the separating hyperplane. We say that this equilib-
rium point is real if it is located in the halfspace cor-
responding to the considered subsystem. Otherwise,
we say that the equilibrium point is virtual.

Our goal is to characterize the planar continuous
BLDS which are structurally stable in the sense of
[11] in terms of the coefficients A1, A and B, and
to analyze the bifurcations appearing in the boundary
values between them.

Definition 3 A triple of matrices (A1, Aa, B) defin-
ing a continuous BLDS is said to be (regu-
larly) structurally stable if it has a neighbor-
hood V (A1, As, B) such that for every triplet
(A}, Ay, B") € V(Ay, Ay, B) there is a homeomor-
phism of R? preserving the hyperplane H which
maps the oriented orbits of (A}, Ay, B') into those of
(A, Ao, B) and it is differentiable when restricted to
finite periodic orbits.

A natural tool in the study of BLDS is simplify-
ing the matrices A;, Ay, B by means of changes in
the variables () which preserve the qualitative be-
havior of the system (in particular, the condition of
structurally stability). So, we consider linear changes
in the state variables space preserving the hyperplanes
x1(t) k, which will be called admissible basis
changes. Thus, they are basis changes given by a ma-
trix S € Gl,(R),

1 0
S_<U w

) W e Gln_l(R),U € Mn—lxl(R)'
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See [4] for the resulting reduced forms.
Also, translations parallel to the hyperplane H are
allowed.

3 Preliminaries

By specializing to BLDS the general necessary and
sufficient conditions in [11], in [6] one proves the fol-
lowing results.

Theorem 4 [6] Let us consider planar continuous
BLDS.

(1) If such a BLDS is structurally stable, then the
triples of matrices representing it can be reduced
(by means of an admissible basis change and a
translation parallel to the separating line) to the
form:

a=(Bo)m=(G0),
B:(S)J#O

In particular, the only tangency point is (0, 0).

(2) If one of the subsystems is a center, a degenerate
node, an improper node or a starred node, then
the BLDS is not structurally stable.

(3) For the remainder BLDS, if none subsystem is a
real spiral then the BLDS is structurally stable.
Explicitly (for b > 0; when b < 0, we obtain the
symmetric ones) when:
the left subsystem is a real saddle, a virtual node
or a virtual spiral
the right subsystem is a virtual saddle or a real
node

(4) Additional conditions must be verified if one of
the subsystems is a real spiral (in the right half-
plane if b > 0):

(4.1) A BLDS real saddle/real spiral is struc-
turally stable if and only if:

(a) the finite periodic orbits are hyper-
bolic

(b) there are not saddle-loop orbits

(c) there are not finite orbits connecting a
saddle and a tangency point

(4.2) A BLDS virtual node/real spiral is struc-
turally stable if and only if condition (a)
holds
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(4.3) A BLDS virtual spiral/real spiral is struc-
turally stable if and only if condition (a)
holds and also:

(a’) the infinite periodic orbit at infinity is
hyperbolic

Remark 5 In (1) of the above Theorem one can take
b = 1 (by means of a change of scale and a symme-
try, if necessary), but we will consider general b # 0
because of the homogeneity in the obtained formulas.

In [6] one focuses on conditions (a), (b) of case
(4.1) for divergent spirals (7 > 0). Thus, let us assume
a BLDS as in (1) of Theorem 4, verifying:

- The left subsystem is a (real) saddle, i.e.: D <
0,b > 0. In particular, its equilibrium point is
(&,-T%), and the invariant manifold cut the
separating line at (0, —/\%) and (0, —%), where
Ao < 0 < Ap are the eigenvalues of A1 (A1 +
X =T, MA=D.))

- The right subsystem is a (real) spiral, i.e.: A >

0,72 < 4A,b > 0. In particular, its equilibrium
point is (%, —7‘%). We write o = 13, 8 > 0 the
eigenvalues of Ay 2a =7, + 2 = A)

We summarize the results in [6] concerning this
case (4.1). Moreover, we precise the uniqueness of
the finite periodic orbit in (2.c) (see [8]).

Theorem 6 [6] Let us assume the case (4.1) above,
that is:

b>0,D<0,A>0,7%<4A
in (1) of Theorem 4, and let be
A2 < 0 < A1 the eigenvalues of A;
a=+1i8,8 >0,
Then, for T > O:

(1) If T > 0, then there are not homoclinic orbits
nor finite periodic orbits.

(2) If T' < O, the only homoclinic (i.e., saddle-loop)
orbit appears for the value Ty of T verifying

)\7% )\% —TAM+ A

NN -1+ A

the eigenvalues of Ao

1
t = —In(

~;
being

3
expl(at) sin(Bt— )+ - = 0,7+ < Bt < ?ﬂﬂj

M
where M > 0 and 0 < ¢ < 7 are defined by

M cos(p) = a — A

" M sin(p) = 3.

Moreover, T < %.
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(3) If T < 0, a unique finite periodic orbit exists
for 0 < 1 < T, being attractive hyperbolic
(and transverse to the separating axis). No sad-
dle/tangency orbits exist.

Corollary 7 [6] The systems in case (4.1) withT' < 0
and 0 < T < Ty are structurally stable.

The following theorem specifies the value of 7.

Theorem 8 [12] In the conditions of Theorem 6, Ty
is the value of T verifying

lln()\—%)\%_T)\l—’—A _
2 )\%)\%—7)\2+A

AT 4
Ao f3

Remark 9 For v < 0 one has symmetric results:

A—)\la

A

- % (2m —arctan —arctan ) =0.

(1’) If T < 0, there are not homoclinic orbits nor
finite periodic orbits.

(2°) If T' > 0, the only homoclinic orbit appears for
a unique value Tir < 0 of T verifying T > %.

(3’) If T > 0, a unique finite periodic orbit exists for
each Tg < T < 0, being hyperbolic (and trans-
verse to the separating axis). Hence, the system
is structurally stable.

The bifurcation at an improper
node

Let us consider a BLDS (A1, Ay, B) as in (1) of The-
orem 4, with

T<0,D<0,7>0,A>0,b>0,

that is, the left subsystem is a real saddle and the right
one is a real source. From Theorem 4, we have

Proposition 10 [n the above conditions, let Ty
2\/E. Then:

(1) For T > 1 one has a structurally stable system
saddle/node.

(2) For T 70 one has a bifurcation sad-
dle/improper node.

(3) For T < 79 one has a system saddle/spiral, which
is structurally stable if Ty < T and no tan-
gency/saddle orbit appears.
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Remark 11 When 1y < 7 < 19 as in (3) above, in
[7] one proves that tangency/saddle orbits appear just
for a decreasing sequence (11,2, ...) — T7;. Thus, in
(3) above the system is structurally stable for all 7| <
T < 19. In particular, the tangent orbit intersects the
separating line in just one additional point.

Example 12 We include figures of the transition T <
T0,T = T9, 7 > 1o forT = —-1,D = —1,A =5 and
b =1, so that 1o = 2v/5 = 4.4721.

More precisely, Figure 1 and Figure 2 correspond
to T = 179 — 1. Notice that the tangent orbit (as well
as the ones under the spiral/saddle orbit) intersects
the separating line in just an additional point. The
remainder orbits intersect twice in the main quadrant
of the saddle and a third time under it.

Figure 3 corresponds to T = 19. Now the tangent
orbit does not intersect the separating line because it
cannot cross the new invariant line arising from the
equilibrium point of the improper node.

In Figure 4, corresponding to T = 19 + 1, this in-
variant line splits into two of them, giving an ordinary
node.

tau= 3.4721
1 T T

o | \\ q

Figure 1: Fig. corresponding to Example 12, 7 < 7

Our main goal is to determine the variation of 7x
with regard to 79 when O > 1" > —oo0. In other words,
the variation of the interval |0, 77[C]0, 79[ where the
structurally stable finite periodic orbits appear. Or
equivalently, the variation of the interval |7, 70[C
10, 7o[ where the tangency/saddle bifurcations appear.

Theorem 13 In the above conditions, we fix D, A
and b. Then:

(1) 7g — 0", when T — 0.

(2) Ty — 1y, whenT' — —oc.
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tau=3.4721
T

Figure 2: Fig. corresponding to Example 12, 7 < 7

1

tau= 4.4721
T T

-5

-2.5 -2 -15 -1 -0.5 0 05 1 15 2 25 3

Figure 3: Fig. corresponding to Example 12, 7 = 7

Proof:

From Theorem 6, we know that, for each

value of T' < 0, 7g is the unique value of 7 > 0
verifying the condition in (2) of Theorem 6, or equiv-
alently, the equation in Theorem 8.

ey

2

Clearly, for T' = 0 (that is, A\ = V=D, Ay =
—+/—D), the value 7 = 0 (thatis, « = 0,5 =
\/Z) verifies the equation in Theorem 8.

Now, we consider 7' — —oo. We must prove
that, then, the equation in Theorem 8 is verified
if and only if 7 — 2v/A.

In order to that, we write

x S y = V4A — 72

:Az’
so that
r<0, 0<y<2A
As
T=A4+MX, A<0<)
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tau= 54721
T T T

Figure 4: Fig. corresponding to Example 12, 7 > ¢

when T' — —oo, necessarily Ay — —oo and

x — 0~. We must prove that, then, y — 0.

With the above notation, we have
T

)\1:DZE,6:%,OZ:*

AN — y?
5 Y

T =

so that the equation in Theorem 8 results

11( 1 D? 2—D\/4A—y2x+A)
— n =
2 "D2x?2 1 — /AN — 2z + Az?

VAA — y? VAA —y? — Az
)

= —— (27 — arctan
Y

2A — D\4AA — y2x

Daxy

0 < \/4A —y2 < 2VA

when x — 07, for the left term we have
D%2? — D\/AA — 2z + A A
1— V4A — y2x + Ax?
1 1 D2%x? — D\/4A — 320+ A

—In
S R Yy

On the other hand, as

— arctan

)

As

) = +oo

m < 27w — arctan

VAA —y?2 — Ax
Yy

— arctan < 37

2A — D\/4AA — y2x
Dxy

the only possibility that the right term converges
to +oo is that y — 07T, as desired.
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5 Conclusion

We enlarge the study of the bifurcation diagram of
saddle/spiral BLDS to saddle/source BLDS. In par-
ticular, being 7 the trace of the source, we precise the
variation of the interval of values 0 < 7 < 7 for
which structurally stable finite periodic orbits appear:
itconvergesto 0if 7' — 0,andto 0 < 7 < 2v/A when
T — —oo, where T'is the trace of the saddle and A is
the determinant of the source (assumed fixed).

Acknowledgements: The research is supported by
DGICYTMTM2011-23892 (first and second author)
and TIN2014-52211-C2-1-R partially supported by
the Spanish Ministerio E&C and FEDER founding
(third author).

References:

[1] J. Artes, J. Llibre, J.C. Medrado and M.A. Teix-
eira, Piecewise linear differential systems with
two real saddles, Math. Comput. Simul. 95,
2013, pp. 13-22.

K. Camlibel, M. Heemels and H. Schumacher,
Stability and controllability of planar bimodal
linear complementarity systems, Proc. IEEE
Conf. Decis. Control, 2003, pp. 1651-1656.

M. Di Bernardo, D.J. Pagano and E. Ponce,
Nonhyperbolic boundary equilibrium bifurca-
tions in planar Filippov systems: a case study ap-
proach, Int. J. Bifurcation and Chaos 18, 2008,
pp. 1377-1392.

J. Ferrer, D. Magret and M. Pefia, Bimodal
piecewise linear systems. Reduced forms, Int. J.
Bifurcation and Chaos 20, 2010, pp. 2795-2808.

J. Ferrer, D. Magret and M. Pefia, Differentiable
Families of Planar Bimodal Linear Control Sys-
tems, Math. Probl. Eng., 292813, 2014, pp. 1-9.

J. Ferrer, M. Pefia and A. Susin, Structural sta-
bility of planar bimodal linear systems, Math.
Probl. Eng., 892948, 2014, pp. 1-8.

J. Ferrer, M. Pefia and A. Susin, Bifurcation di-
agram of saddle/spiral bimodal linear systems,
submitted to Int. J. Bifurcation and Chaos.

[4]

E. Freire, E. Ponce, F. Rodrigo and F. Torres,
Bifurcation sets of continuous piecewise linear
systems with two zones, Int. J. Bifurcation and
Chaos 8, 1998, pp. 2073-2097.

E. Freire, L. Pizarro and A.J. Rodriguez-Luis,
Numerical continuation of homoclinic orbits
to non-hyperbolic equilibria in planar systems,
Nonlin. Dyn. 23, 2000, pp. 353-375.

ISSN: 2367-895X

International Journal of Mathematical and Computational Methods

350

http://www.iaras.org/iaras/journals/ijmcm

[10] J. Llibre, M. Ordonez and E. Ponce, On the ex-
istence and uniqueness of limit cycles in pla-
nar continuous piecewise linear systems without
symmetry, Nonlin. Anal. 14, 2013, pp. 2002-
2012.

J. Sotomayor and R. Garcia, Structural stabil-
ity of piecewise-linear vector fields, J. Diff.
Egs. 192, 2003, pp. 553-565.

B. Xu, F. Yang, Y. Tang and M. Lin, Homoclinic
bifurcations in planar piecewise-linear systems,
Discr. Dyn. Nature and Society, 732321, 2013,

pp. 1-9.

[11]

[12]

Volume 1, 2016





