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Abstract: An analytical consideration of quantum walks in the Hilbert space is suggested for dynamical systems.
It is shown that in the semiclassical limit, statistics of the quantum recurrences relates to statistics of the Poincaré
recurrences of the classical counterpart. It is shown that the statistics of the quantum recurrences is sensitive to
the statistics of the corresponding quantum spectrum. The difference in the statistics of quantum recurrences in
the Hilbert space for the chaotic and integrable systems follows from the essential difference between the level
statistics of integrable and chaotic systems. In particular, when the integrable part of the phase space emerges due
to bifurcation, and the exponential distribution of the Poincaré recurrences of chaotic trajectories is changed into
the power law, the statistics of the quantum walks in the Hilbert space follows exactly its classical counterpart.
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1 Introduction

Statistics of Poincaré recurrences is a powerful
method for studying anomalous transport in chaotic
systems with generic phase space structures, where
regular and chaotic regions coexist [1]. The reason
is that the distribution of the Poincaré cycles (recur-
rence times) is sensitive to the topological structure
of the phase space and to the probabilistic features of
chaotic trajectories. Particularly, for the chaotic sys-
tems with a uniform mixing property, the distribution
is exponential [2]

P (τ) =
1

τrec
exp(−τ/τrec) (1)

with the mean recurrence time

τrec =

∫ ∞

0
τP (τ)dτ ∝ 1/h0 , (2)

where h0 is a metric entropy. It follows, due to the
Kac lemma, that τrec <∞ for the area preserving and
bounded dynamics [3]. In systems with non–uniform
mixing and sticky island regions, as shown in Fig. 1,
the distribution of recurrences can be algebraic in the
asymptotics of the large recurrence times:

P (τ) ∼ 1/τγ , (τ → ∞) , (3)

where γ is called the recurrence exponent [1]. As in
Eq. (2), it follows from the Kac lemma that γ > 2

[3] (see also [4, 5]). Distribution of the Poincaré re-
currences is therefore proven to be a powerful method
for verification of the space–time complexity in clas-
sical Hamiltonian dynamics with nonzero or zero Lya-
punov exponents or systems that exhibit a strong inter-
mittent behavior with flights, trappings, weak mixing,
etc. See [6] and references therein.

In quantum systems, the classical methodology
fails because of the absence of trajectories, and any
possible generalization of the notion of the Poicaré re-
currences is desirable, although it can be non–unique.
It is worthwhile to mention that, for systems with
chaotic dynamics, a sequence of recurrence times
{t}rec = {t1, t2, . . .}rec is a stochastic process with
properties that depend on the type of dynamics. One
can expect a similar process in the quantum case1

In this paper, we exploit Zaslavsky’s idea [1] to
relate statistics of recurrences of quantum walks in
the Hilbert space to the phase space topology of the
classical counterpart. We mobilize the standard no-
tion of recurrences for a finite length vector C =
(C1, . . . , CN ) in the Hilbert space, where a distance

1One should not confuse this with the phenomenon of periodic
revivals of the wave functions, see e.g., Refs. [7]. In this case, it is
possible a truncation of the energy expansion near some level n0,
namely, En = En0 +E

′
n0

(n− n0) +E
′′
n0

(n− n0)
2 +O[(n−

n0)
3].
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Figure 1: Phase portrait of the AMI, where (a) and
(b) are sequences of the island chain of the first and
the second generations correspondingly with periods
3 and 8 for K∗ = 6.908745; plots (c) and (d) are
the first and the second generations and correspond to
5− 11− . . . island chain for K∗ = 6.476339.

between any vectors Ca and Cb is defined as

d2ab = |Ca −Cb|2 =
N∑
j=1

|Ca
j − Cb

j |2 (4)

and, particularly, the dynamics of an initial state C(0)
reads

d2(t) = |C(t)−C(0)|2 . (5)

With definition (5), one can introduce a notion of the
quantum recurrence (QR) as the condition

d2j (τ) ≤ ϵ, , (∀j)
dj = |Cj(τ)− Cj(0)| , (∀j) . (6)

Here, we use a complete analogy with the classical
Poincaré recurrences: like a classical trajectory re-
turns to some finite area of the chaotic region, the
quantum state returns to some ϵ-cone in the Hilbert
space, where τ is the QR time. We follow this
heuristic definition to show how quantum walks in
the Hilbert space reflect the topology of the classi-
cal phase space and how it can distinguish between
different cases, particularly between the case with the
classically almost uniformly mixing dynamics and the
case of the strongly intermittent dynamics.

Nevertheless, the relation between the QR and the
classical Poincaré recurrences is not so straightfor-
ward, since the quantum dynamics is a quasi-periodic
process, and it is independent of the integrability prop-
erty of the classical counterpart. Note that quantum
localization time ∼ 1/h̃2, when the classical chaotic
dynamics exhibits in quantum one, is incomparably

small than QR times. Here, h̃ is a dimensionless effec-
tive Planck constant. Therefore, we follow the results
on integrable and chaotic spectrum: in the semiclas-
sical limit h̃ → 0, the quantum spectrum follows the
classical dynamics. Namely, for the integrable sys-
tems with uncorrelated spectrum, the probability dis-
tribution of the spacing between successive levels is
Poisson distribution [19]

P (i)(∆) =
1

∆0
exp(−∆/∆0) , (7)

where ∆0 is the mean level spacing. In contrast, for
chaotic systems, the corresponding quantum spectrum
is strongly correlated (repelled), and the level spacing
is described by the Wigner-Dyson statistics of random
matrices [20, 21]. Following discussion in Ref. [22],
it can be presented in the form

P (c)(∆) = Cβ(∆0)∆
β exp(−∆2/∆2

0) , (8)

where Cβ(∆0) is the normalization constant and
β = 1, 2, 4 for the orthogonal, unitary, and symplec-
tic Gaussian ensembles, respectively. According to
Berry-Robnik’s assumption [22], there exist the both
kind of the spectrum statistics simultaneously, Pois-
son and Wigner-Dyson, in the presence of any inte-
grable/regular part of the phase space. Following their
calculations [22], the authors expressed the idea that
“ each connected regular or irregular classical phase-
space region in ∆E gives rise to its own sequence of
regular or irregular levels” and the level spacing distri-
bution follows Eq. (7) for the regular part of the phase
space, and for the chaotic motion it follows Eq. (8).

2 Quantum recurrences

Important part of our analysis is application of a the-
ory of almost periodic functions. The theory of almost
periodic functions is well developed and its main fea-
tures has been created in the third decade of 20th cen-
tury, see monograph by A.S. Besicovitch [23]. Some
basic ideas of the theory, which are used here is pre-
sented in Appendix A.

Let us consider the dynamics of an initial wave
function Ψ0, which is controlled by the evolution op-
erator Û with the Hamiltonian H and with the en-
ergy/quasienrgy spectrum Ek such that Û(t)ψk =
e−iEktψk is due the expression

Ψ(t) = Û(t)Ψ0 =
∑
k

ak exp(−iEkt)ψk . (9)

This yields the evolution of the distance, or the QRs
(6) in the Hilbert space

d2(t) = |Ψ(t)−Ψ0|2 =
∑
k

|ak|2|e−iEkt−1|2 . (10)
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As seen, this expression is the squared translation
function (A. 2). Therefore, the QRs exist with the
recurrence, or translation time τ and integer N such
that

d2(τ) =
N∑
k=1

|ak|2|e−iEkτ − 1|2 < ϵ2 . (11)

Note that this result also follows from the quantum
mechanical consideration [24, 25]. As shown in Ref.
[24], the quasi-periodic quantum motion, reflected in
Eq. (11), corresponds to the dynamics of a collec-
tion of N classical harmonic oscillators with frequen-
cies (E1, . . . , EN ) taking place in the N -dimensional
torus. The dynamics is described by the action-angle
coordinates (I1, ϕ1, . . . , IN , ϕN ). If the oscillators
have the initial conditions Ik = ak and ϕ(0) = 0,
therefore, a set of numbers ake−iEkt corresponds to
motion on theN -torus, and the results on the classical
Poincaré recurrences of N oscillators are valid now.

Since the wave function is normalized∑
k |ak|2 = 1, there exists an integer N such

that
∞∑

k=N+1

|ak|2 < ϵ2 ≪ 1 .

In our analysis, we follow the theory of almost peri-
odic functions [23], where all the translation numbers
belong to set E = E

{
ϵ2, d2(t)

}
. Therefore, due to the

theorem (A. 5), all numbers τ of the set E satisfy the
following N Diophantine inequalities

|e−iEkτ − 1|2 < δ21 . (12)

Substituting Eq. (12) in Eq. (11), one obtains that

N∑
k=1

|ak|2|e−iEkτ − 1|2 < δ21

N∑
k=1

|ak|2 < ϵ2 .

Therefore, δ1 ∼ ϵ≪ 1. We also obtain from Eq. (12)

|e−iEkτ − 1|2 = 4 sin2
(
Ekτ

2

)
< δ21 ∼ ϵ2 . (13)

As seen, this condition is stronger than Theorem (A.
3), since now we have N Diophantine inequalities de-
termined by δ1 ∼ ϵ ≪ 1 and not by δ < π as in (A.
3). Therefore, these conditions yield

|Ekτ − 2πnk| < ϵ(δ1) , (14)

where nk are integer numbers, which corresponds to
the energies Ek. Equation (13) can be rewritten in the
form

Ekτ = 2πnk + ηk , |ηk| < ϵ . (15)

From these expressions, one can also define nk con-
sidering the level spacing of the ordered spectrum
E1 < E2, . . . < EN < EN+1

∆k = Ek − Ek+1 , k = 1, 2, . . . , N .

Note that the energy level EN+1 does exist. Using
Eq. (15), one obtains the following chain of transfor-
mations for the argument of the sine-function in Eq.
(13)

sin2
(
Ekτ
2

)
= sin2

[
1
2(Ekτ ± Ek+1τ)

]
=

sin2
[
1
2(∆kτ + Ek+1τ)

]
= sin2

[
1
2(∆kτ ± 2ϵ)

]
< ϵ2

4 , (16)

where we used Eq. (15) |Ekτ − Ek+1τ | = |2π(nk −
nk+1 + ηk − ηk|2π = |ηk − ηk| < |ηk| + |ηk| <
2ϵ. From Eq. (16), one obtains | sin

[
∆kτ
2

]
| − |ϵ| <

| sin
[
1
2(∆kτ ± 2ϵ)

]
| < ϵ/2 This eventually yields N

Diophantine inequalities

| sin
[
∆kτ

2

]
| < 3ϵ2

2
. (17)

Substituting this result in Eq. (10), one obtains that
QRs with the translation times τ are determined from
the level spacings ∆k

d2(τ) =
N∑
k=1

|ak|2|ei∆kτ − 1|2

= 4
N∑
k=1

|ak|2 sin2
[
∆kτ

2

]
< 9ϵ2 . (18)

Here we also use the change −∆k → ∆k > 0. There-
fore, the structure of the recurrent-translation times is
determined by N Diophantine inequalities

|∆kτ − 2πmk| < ϵ1 , (19)

where ϵ1 = 3ϵ and mk are integers.
Now using the approach, developed for the QRs,

which relates to a set of translations of u.a.p. func-
tions, we consider the QRs as quantum returns to a fi-
nite area in the Hilbert space. Therefore, N Diophan-
tine inequalities (19) determine QR, τ or translations
forming a set E{ϵ1, d(t)}, where the structure of the
translations is

τ = 2π
m̃({∆k})

∆k
. (20)

Here m̃({∆k}) is a functions of N random variables
∆k such that

|m̃({∆k})−mk| <
ϵ1
2π

, k = 1, . . . , N . (21)
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These quantum walks correspond to independent ran-
dom processes for every trial of returning/recurrence
in the dynamics of the wave function in the
Hilbert space with a set of translations - recurrences
E{ϵ1, d(t)} constructed by a system of N Diophan-
tine inequalities (14), (17), and (19). Obviously, this
set can be easily enlarged by increasing ϵ1 (see Eq.
(A. 1) in Appendix).

3 Statistics of quantum recurrences

The property of these random walks can be specified
by their distribution function ρQR(τ). To find the dis-
tribution function ρQR(τ) of QRs, we determine the
averaged value of the translation numbers and aver-
aged value of the squared translation numbers. To this
end we use the following properties of the QRs. First
of all, recurrence times τ are huge values, while the
second important property is the finitness of the mean
value of the QRs, which follows from the Kac lemma
[3]. Therefore, this reads for finite N

⟨τ⟩ =
∫
ρQR(τ)τdτ <∞ , (22)

where ρQR(t) is the distribution function of the quan-
tum recurrences defined above. Therefore, in our
case, the Kac lemma states that for both integrable
and chaotic spectral statistics the averaged recurrence
times are the finite values:

⟨τ⟩ =
∫
τ({∆})P ({∆})

N∏
k=1

d∆k , (23)

where P ({∆}) is a many dimensional joint level spac-
ing distribution function.

Let us first calculate the averaged values of the
QR/translations for the integrable case that corre-
sponds to the Poisson statistics (7). In this case, the
sequence of levels Ej is a random set without correla-
tions, see for example [26], and the joint distribution
P ({∆}) is a product of distributions (7)

⟨τ⟩(i) = 2π

∆0

∫ ∞

0

⟨m̃(∆)⟩
∆

e
− ∆

∆0 d∆ <∞ . (24)

Here ⟨m̃(∆)⟩ is the function of only one variable, ob-
tained by integration of m̃({∆k}) overN−1 variables
∆k. The main problem of the integration in Eq. (24)
is the lower limit ∆ → 0 due to the singular-pole be-
havior of the integrand. Due to the Kac lemma this
integral is finite, therefore one obtains in the vicinity
of the lower limit ⟨m̃(∆)⟩ ∼ M∆γ with 0 < γ ≪ 1
and M ≫ 1. Note that it is an important condition

since τ are very large numbers for any ∆k → 0. Tak-
ing this into account, one obtains that the integral in
eq. Eq. (24) is the Gamma function Γ(γ)

⟨τ⟩(i) ∼ 2πMΓ(γ) . (25)

Therefore, the correct structure of QRs is

τ = 2π∆γ−1
k M({∆k}) , (26)

where M({∆k}) can be singular in the vicinity of
∆ → 0 not stronger than

∏
l ̸=k ∆

−δl
l with 0 < δl < 1.

This also yields a crude estimation of the QRs length
τ ∝

∏N
k=1∆

−δk
k ∼ ∆−Nδ, where ∆, δ ≪ 1

Evidently, for this integrand, the second moment
and the variance are divergent, ⟨τ2⟩(i) = ∞. There-
fore, the recurrent times are distributed according the
power law

ρ
(i)
QR(τ) ∼

(
τ0

τ0 + τ

)α

, 2 < α < 3 , (27)

where τ0 is a characteristic time scale that is taken in
such a way that

∫
ρ
(i)
QR(τ)τdτ = 2πMΓ(γ).

In contrast, for the chaotic dynamics, when the
level spacing statistics is governed by the Wigner-
Dyson distribution (8), the same arguments on the av-
eraging procedure, as presented above, ensures the ex-
istence of the second moment/variance even for GOE
with β = 1. The main picularity here is the corre-
lations between the levels Ej . In this case the joint
ditribution of levels is (see for example [26])

P ({∆}) = Cβ(A)

×
1...N∏
k<l

|Ek − El|β exp
(
−A

N∑
k=1

E2
k

)
,

(28)

where A fixes the unit of enerege (for example it can
be the mean squared level spacing, as Eq. (8)) and
Cβ is a normalization constant. The existence of the
first and the second moments for the GUE and GSE
follows immidietely from the joint distribution (28)
and the structure of the QRs. In the rest we show that
the second moment for the GOE is finite as well.

Let us consider the integration

⟨τ2⟩(c) =
∫ ∞

0
τ2ρQR(τ)dτ

= C̃

∫ ∞

−∞

1...N∏
k<l

|Ek −El| exp
(
−A

N∑
k=1

E2
k

)
×

∏
r ̸=s

|Er − Er+1|−2δl |Es − Es+1|2γ−2dNE

≡ C̃

∫ ∞

−∞
|Es − Es+1|2γ−2F({Ej})dNE ,

(29)
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Here, for brevity sake, we define the rest of the inte-
grand in Eq. (29) by F({Ej}) and dNE ≡

∏N
j=1 dEj ,

and C̃ = (2π)2C1(A). Let us rewrite this integra-
tion in the form of an additional integration with the δ
function. Using the definition ∆ = Es+1 − Es, one
obtains

⟨τ2⟩(c) =

∫ ∞

0
d∆|∆|2γ−2

×
∫ ∞

−∞
δ(∆ + Es − Es+1)F({Ej})dNE

≡
∫ ∞

0
d∆|∆|2γ−2P (c)(∆) . (30)

Illuminating discussions presented e.g., in [26, 27] ex-
plain impossibility to obtain analytical expressions for
the nearest neighbor spacing destributions for N ×N
matrices. However, the destribution (8) obtained for
2 × 2 random matrices is a very good approximation
for N × N matrices [20, 26, 27]. Therefore, integra-
tion over the N dimensional energy space can be re-
placed by the distribytion (8) for P (c)(∆. Eventually,
one arives at the following integration

⟨τ2⟩(c) ∼ πMC1(∆0)

∫ ∞

0
∆2γ−1e

−∆2

∆2
0 d∆

= πMC1(∆0)∆
2γ−2
0 Γ(γ) . (31)

The existence of the first and the second moments
for the Gaussian recurrent process means that the re-
current times (as some trapping times outside the ϵ1-
cone) are distributed exponentially, see e.g., [28]

ρ
(c)
QR(τ) ∼

1

τ0
exp

(
− τ/τ0

)
, (32)

where τ0 now is the averaged recurrence time:

τ0 = 2πMC1(∆0)

∫ ∞

0
∆β−1+γe

−∆2

∆2
0 d∆

= 2πMC1(∆0)∆
β+γ
0 Γ

(
β + γ

2

)
. (33)

4 Conclusion

The present analysis is an analytical estimation of
statistics of quantum recurrences in the Hibert space.
As shown, the statistics of the quantum recurrences is
sensitive to the statistics of the corresponding quan-
tum spectrum. This leads to the essential difference in
the statistics of the quantum recurrences in the Hilbert
space for the chaotic and integrable systems, which
results from the essential difference between the level
statistics of integrable and chaotic systems. This also

results from the fact that the quantum walks in the
Hilbert space are random and the returning times are
functions of the level spacings ∆, which are random
variables with different distributions. Although, the
analytical form of τ = τ(∆) is the same for both
integrable and chaotic cases, the averaged behavior
is completely different that reflects the different na-
tures of the quantum recurrences for chaotic and inte-
grable (or generic) quantum systems. Obviously, for
the generic case, the Poisson level spacing distribu-
tion is dominant, since the latter leads to the divergent
second moment. Another important point is the semi-
classical limit for h̃ → 0, when there are so many
levels inside the integrable islands that the averaged
procedures in Eqs. (23) have meaning.

However, the nature of recurrences in the classi-
cal and quantum dynamics are completely different.
As seen from the analysis, this phenomenon of quan-
tum random walks in the Hilbert space is more general
than Zaslavsky’s conjecture on quantum recurrences,
which is strictly related to the bifurcative emerging of
regular islands. One should understand that the nature
of the classical recurrences of a chaotic trajectory dif-
fers essentially from the quantum recurrences in the
Hilbert space. First of all in the classical case, the
dynamics is performed inside some invariant volume
(measure) of the 2D phase space related to a chaotic
trajectory [1]. The quantum dynamics is integrable
and is described by the almost periodic wave functions
[23, 24, 25]. It should be stressed, that the relation
between the Poincaré recurrences in the classical and
quantum recurrences is due to the reconstruction of
the spectrum from E(c) to E(i) and changes the level
spacing distribution from the Wigner-Dayson (8) to
the Poisson (7).

Another important difference is that the statistics
of the classical recurrences is numerically achievable.
Contrary to that, the quantum recurrences take place
on the N dimensional torus that corresponds to the
dynamics of N harmonic oscillators, where N ≫ 1,
since Zaslavsky’s conjecture is valid for the semiclas-
sical limit h̃ ∼ 1/N ≪ 1. In this case, numeri-
cal observation of quantum recurrences is impossible,
since the probability that N ≫ 1 phases Ekτ are si-
multaneously equitable, for example, in the interval
(0, θ < π/2) modulo 2π is extremely small and τ of
QRs are prohibitive times, and their numerical obser-
vation is irrelevant.
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Appendix A: Few properties of almost
periodic functions

Important part of our analysis is application of a the-
ory of almost periodic functions. The theory of al-
most periodic functions is well developed and its main
features has been created in the third decade of 20th
century, see monograph by A.S. Besicovitch [23]. In
this section, we present some basic ideas of the the-
ory, which are used in the present analysis. We follow
Ref. [23].

• Definition 1: A set E of real numbers is said to
be relatively dense (r.d.) if there exists a number
l > 0 such that any interval of length l contains
at least one number of E . Any such number is
called an inclusion interval of the set E .

Thus, the sets of numbers ±n, or ±
√
n, where

n takes all the positive integer values, are both
r.d. On the other hand, neither of the sets of all
positive numbers, of all prime numbers ±pn is
r.d.

• Definition 2:

Let f(t) be a real or complex function defined
for all real values of t. A number τ is called a
translation number of f(t) belonging to ϵ ≥ 0 if

sup−∞<t<∞|f(t+ τ)− f(t)| ≤ ϵ .

We admit here the complete correspondence of this
definition with the definition of the distance in the
Hilbert space in Eq. (4) and the QR in Eq. (5). The
following properties of translation numbers are fol-
lowed from the above definition

• Property (i): A translation number belonging to
ϵ, belongs also to any ϵ′ > ϵ.

• Property (ii): If τ is a translation number belong-
ing to ϵ, then so is −τ .

• Property (iii): If τ1, τ2 are translation numbers
belonging respectively to ϵ1, ϵ2, then τ1± τ2 is a
translation number belonging to ϵ1 + ϵ2.

The set of all translation numbers of a function
f(t) belonging to ϵ is denoted by E {ϵ, f(t)}. From
Property (i) follows that

E {ϵ, f(t)} ⊂ E
{
ϵ′, f(t)

}
(A. 1)

for any ϵ′ > ϵ.

• Definition 3: A continuous function f(t) is called
uniformly almost periodic (u.a.p.) if for any ϵ >
0 the set E {ϵ, f(t)} is r.d.

• Corollary: A uniformly convergent series∑∞
n=1 ane

iλnt, where λ1, λ2 , . . . are real, is a
u.a.p. function.

This Corollary expresses an important relation
between a class u.a.p. functions and the evolution
of a wave functions in quantum mechanics Ψ(t) =∑
ane

iEntψn, where En is the spectrum with corre-
sponding eigenfunctions ψn.

The following properties of a translation function
establishes the complete relation between the dynam-
ics of wave functions in the Hilbert space and u.a.p.
functions. This willbe relates to the distance (4) and
(5).

• The translation function vf (τ) of a u.a.p. func-
tion f(t) is defined by equation

vf (τ) = sup
−∞<t<∞

|f(t+ τ)− f(t)| . (A. 2)

Evidently, the set E {ϵ, f(t)} is identical with the set
E {vf (τ) ≤ ϵ} of values of τ for which vf (τ) ≤ ϵ.
The function v(τ) ≡ vf (τ) satisfies the following
conditions:

(a) v(τ) ≥ 0 , v(0) = 0,

(b) v(−τ) = v(τ),

(c) v(τ1 + τ2) ≤ v(τ1) + v(τ2),

(d) v(τ is u.a.p.

Any function v(τ) satisfying the conditions
(a),(b),(c),(d) is a translation function of a u.a.p.
function.

The following theorems will be helpful to provide
the main results of the present research.

• Theorem 1: Given a u.a.p. function f(t) ∼∑∞
n=1Ane

iΛnt, to any positive integer N and a
positive number δ < π corresponds a positive ϵ
such that all numbers τ of the set E {ϵ, f(t)} sat-
isfy the following Diophantine inequalities

|Λnτ − 2πk| < δ , (n = 1, 2 . . . , N) (A. 3)

Evidently the inequality (A. 3), or |Λnτ | <
δ(mod2π) is equivalent to the ordinary inequal-
ity

|eiΛnτ − 1| < |eiδ − 1| = δ1 . (A. 4)
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• Theorem 2: Given a u.a.p. function f(t) ∼∑∞
n=1Ane

iΛnt, to any ϵ > 0 corresponds a posi-
tive integer N and a positive δ < π such that any
number τ satisfying the N Diophantine inequal-
ities

|Λnτ | < δ(mod2π) , (n = 1, 2 . . . , N)
(A. 5)

belong to E {ϵ, f(t)}.
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