
Time-dependent Particle Densities in Finite
Particle Deposition Systems

SJOERT FLEURKE
Radio Communications Agency

Emmasingel 1, 9746 AB, Groningen
THE NETHERLANDS

sjoert.fleurke@agentschaptelecom.nl

AERNOUT VAN ENTER
Johann Bernoulli Institute
University of Groningen

Nijenborg 9, 9747 AG, Groningen
THE NETHERLANDS
a.c.d.van.enter@rug.nl

Abstract: This paper contains calculations of the time-dependent particle densities in multi-layer particle deposi-
tion systems without screening. Several calculation methods are used. These methods can be used to calculate
densities in all layers and are demonstrated with a number of examples. The densities in deposition systems of size
3 and 5 are calculated up to the third layer. It is also proven that border sites tend to have a higher density than
sites in the middle. This partly explains why finite-sized systems tend to reach higher packing densities in higher
layers than in low layers.
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1 Introduction
Consider a lattice Lpx, rq consisting of sites px, rq

with positions x P t0, 1, 2, . . . , n ` 1u and heights
r P N`. Throughout the deposition process par-
ticles arrive according to independent Poisson pro-
cesses Ntpxq i.e. P pNtpxq “ nq “ tne´t{n!. At
the border sites 0 and n ` 1 no particles arrive i.e.
Ntp0q “ Ntpn ` 1q “ 0,@tě0. When a particle ar-
rives in the system it searches vertically for the lowest
available vertex. A vertex is available for the depo-
sition of a particle if both itself and its neighboring
vertices are not occupied yet. Therefore, the horizon-
tal distance between two particles will always be at
least 2. During the process the particles pile up in the
system. For an example see Fig. 1.

More formally, our model can be represented as
follows.

1. The state-space is F :“ pL,N`qt0,1u.

2. The process κtpx, rq “ 1 if there is a particle at
px, rq at time t and 0 otherwise.

3. A particle arriving at site x at time t, will be de-
posited at htpxq“ mintr : κtpy, rq “ 0,@yPNxu,
with Nx the set of horizontally adjacent sites of
x.

Note that this model is without the screening or Tetris
feature [1]. In the model with screening particles tend

to drop on top of earlier arrived particles and, con-
trary to the model used here, they cannot pass them in
search of spaces in lower layers.

In this paper we focus on the densities of sites (or
vertices). We call ρpx,rq

t the density of site px, rq P

L which is defined as the expectation of the occu-
pancy of that site at time t. In other words, ρpx,rq

t “

Eκtpx, rq. The end-density of a site is its long-term
density and is denoted by ρ

px,rq
8 .
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Figure 1: Parking lattice consisting of n “ 5 positions where
parking is allowed. In this example five particles have already ar-
rived at positions 1, 2, 4 and 5. The next particle will be deposited
at one of the marked positions indicated with A, B, C, D or E
depending on the x-position where they arrive. The ‘ˆ’ symbols
at 0 and n ` 1 indicate that at those x-positions no particles will
arrive.
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The deposition model discussed in this paper is
related to the Car Parking Model introduced by Rényi
in 1958 [2]. In this model particles (or cars) were
dropped on a single continuous line. Later discrete
and multi-layer versions of the car parking process
were created to model random sequential adsorption
[3] [4] [5]. Higher-dimensional versions of the model
have been studied as well. For example, in [6] the
sequential frequency assignment process (SFAP) is
studied using a continuous, multi-layer disk parking
model. Recently there is growing attention among re-
searchers for these models [7] [8] [9] [10] [11] [12]
[13] [14], one of the reasons being that they can be
used to study wireless network behavior.

Most analytical results concerning this model ap-
ply only to mono- or two-layer versions [5] [15] [16]
[17]. The multi-layer versions of the particle depo-
sition model are more challenging and therefore still
many results are based on simulations [4] [6].

In this paper, some unpublished results from [18]
are further developed. We continue the work on calcu-
lating the particle densities in small multi-layer park-
ing models. We will calculate some particle densities
on finite-sized multi-layer particle deposition systems.

In [19] a general formula was given for the densi-
ties of the center site in a system of size n “ 3. Here
we extend this work and calculate the densities of the
border sites of the first two layers. Next we calcu-
late the densities of the center sites of the system with
n “ 5.

Finally, we give general formulas for the calcu-
lation of the center and border sites deposition densi-
ties at the first layer. We use this result to prove that
the average density of the border site at the first layer
grows higher than that of the site in the center. This
result is expected to occur on higher layers too and is
further support for the theory that explains the inter-
esting phenomenon of growing layer end-densities.

2 Notation and Definitions

For the purpose of this paper the following definitions
and notations are used.

Definition 1 The one-sided densities f
pnq
t p.q and the

pre-image motives D
pi,nq
t p.q of a particle system of

size n ˆ L are given by

f
pnq
t ps1, . . . , skq “ Ptpm1 “ s1, . . .

. . . ,mk “ sk | Ntp0q “ 0, Ntpn ` 1q “ 0q (1)

D
pi,nq
t psi, . . . , si`lq “ Ptpmi “ si, . . .

. . . ,mi`l “ si`l| Ntp0q “ 0, Ntpn ` 1q “ 0q (2)

where si P t0, 1, . . .u and Ntpjq denotes the Poisson
counting process of particle arrivals at site j and mj

is defined as

mjptq “

L
ÿ

i“1

2i´11layer i is occupied at site jptq (3)

where L is the maximum layer that is regarded in the
calculation. The lattice L itself may have an infinite
number of layers regardless of the value of L.

Note that f pnq
t ps1, . . . skq “ D

p1,nq
t ps1, . . . , skq.

The f pnq
t ’s and D

pi,nq
t ’s are useful tools for the cal-

culation of densities. For example, take a look at Fig.
1. If we were interested in calculating the probability
of the occurrence of exactly this pattern of particles
(or "image") at time t we can make a list of all the
pre-image motives that may lead to the image of Fig.
1. In this particular case there are two pre-image mo-
tives which are displayed in Fig. 2 and Fig. 3.
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Figure 2: Pre-image motive D
p1,5q
t p3, 0, 0, 1, 2q. An arrival at

position 2 will cause a desirable transition to the pattern of Fig. 1.
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Figure 3: Pre-image motive D
p1,5q
t p3, 4, 0, 1, 0q. An arrival at

position 5 will cause a desirable transition to the pattern of Fig. 1.
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Figure 4: The image of Fig. 1 itself (Dp1,5q
t p3, 4, 0, 1, 2q) has a

negative impact on its own occurrence. An arrival at one of the
positions 3, 4 or 5 will cause a transition to another pattern. It
should be clear that eventually this pattern will die out.
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Furthermore, the occurrence of the pattern in Fig.
1 itself will eventually disappear. This is also to be
taken into account (see Fig. 4).

We can now formulate the following formula for
the derivative of Dp1,5q

t p3, 4, 0, 1, 2q.

9D
p1,5q
t p3, 4, 0, 1, 2q “ D

p1,5q
t p3, 0, 0, 1, 2q

` D
p1,5q
t p3, 4, 0, 1, 0q

´ 3D
p1,5q
t p3, 4, 0, 1, 2q (4)

When the pre-image motives on the right-hand side
are known it is possible to solve this equation using
standard techniques.

The method demonstrated here will be used ex-
tensively in the remainder of this paper.

3 Results

The following theorem concerning one-sided densi-
ties is important for the greater part of the calculations
in this section.

Theorem 2 In the case L “ 2 the vector f
pnq
t “

pf
pnq
t p0q, f

pnq
t p1q, f

pnq
t p2q, f

pnq
t p1, 0qqt, n ě 1 obeys

the linear ODE

9f
pn`1q
t p0q “ ´f

pnq
t p0qe´t ´ f

pnq
t p1qe´t

´f
pnq
t p2qe´t (5)

9f
pn`1q
t p1q “ f

pnq
t p0qe´t ` f

pnq
t p2qe´t

´f
pn`1q
t p1, 0q (6)

9f
pn`1q
t p2q “ f

pnq
t p1qe´t (7)

9f
pn`1q
t p1, 0q “ f

pnq
t p0qe´t

´

´

f
pn´1q
t p0q ` f

pn´1q
t p1q

¯

ˆte´2t ´ f
pn`1q
t p1, 0q (8)

with initial conditions f
pnq
0 “ pf

pnq
0 p0q, f

pnq
0 p1q,

f
pnq
0 p2q, f

pnq
0 p1, 0qqt “ p1, 0, 0, 0qt.

Proof: Confer Theorem 6 in [17] which is a special
case of this Theorem with n infinitely large. Since
this special case was already proven there, it is suf-
ficient here to show that the system of the left hand
side of these equations contains 1 position less than
the system on the right hand side. This is straightfor-
ward from the proof provided in [17]. Therefore we
demonstrate here only the proof for the case of equa-

tion (7).

9f
pn`1q
t p2q “ 9P

pn`1q
t pm1 “ 2q (9)

“ P
pn`1q
t pm1 “ 0,m2 “ 1q (10)

“ P
pn`1q
t pm1 “ 0,m2 “ 1

|Ntp0q “ 0qP pNtp0q “ 0q (11)

“ P
pn`1q
t pm1 “ 1|Ntp0q “ 0qe´t (12)

“ P
pnq
t pm1 “ 1qe´t (13)

“ f
pnq
t p1qe´t (14)

Notice that the transition to the system with n posi-
tions took place between equation (12) and (13). [\

The significance of Theorem 2 is that we can now
create the one-sided density functions of arbitrarily
large systems using those of smaller systems. For the
purpose of this paper we provide below the results of
the cases n “ 1, n “ 2 and n “ 3.

It can easily checked by hand that

f
p1q
t “

¨

˚

˚

˚

˝

f
p1q
t p0q

f
p1q
t p1q

f
p1q
t p2q

f
p1q
t p1, 0q

˛

‹

‹

‹

‚

“

¨

˚

˚

˝

e´t

te´t

0
te´t

˛

‹

‹

‚

(15)

For example, in a system with only one position the
probability that 0 particles are on the first and second
layer means simply that there have been no arrivals at
all. Therefore f

p1q
t p0q “ P pNtp1q “ 0q “ e´t, etc.

Starting with these f
p1q
t ’s all the f

p2q
t ’s are calculated

using Theorem 2. This yields

f
p2q
t “

¨

˚

˚

˝

1
4 ` 3

4e
´2t ` 1

2 te
´2t

1
4 ´ 1

4e
´2t ` 1

2 te
´2t

1
4 ´ 1

4e
´2t ´ 1

2 te
´2t

te´2t

˛

‹

‹

‚

(16)

Applying Theorem 2 again on f
p2q
t gives

f
p3q
t “

¨

˚

˚

˚

˚

˝

1
9 ` 3

4e
´t ` 5

36e
´3t ` 1

6 te
´3t

8
27 ´ 1

4e
´t ` 1

4 te
´t ´ 5

108e
´3t

`13
36 te

´3t ` 1
6 t

2e´3t

2
9 ´ 1

4e
´t ` 1

36e
´3t ´ 1

6 te
´3t

1
4 te

´t ` 3
4 te

´3t ` 1
2 t

2e´3t

˛

‹

‹

‹

‹

‚

(17)

3.1 The Particle Deposition System with 3
Vertices

In this section the densities of the particle system of
size n “ 3 are calculated for the first three layers us-
ing the results above. For reasons of symmetry it suf-
fices to calculate the densities ρp1,3q

t p1q and ρ
p2,3q
t p1q at
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layer 1, ρp1,3q
t p2q and ρ

p2,3q
t p2q at layer 2, and ρ

p1,3q
t p3q

and ρ
p2,3q
t p3q at layer 3.

Let us first focus on the densities at the border
sites. Obviously, for the first two layers we can use
the result of f p3q

t in (17) because ρp1,3q
t p1q “ f

p3q
t p1q`

f
p3q
t p3q and ρ

p1,3q
t p2q “ f

p3q
t p2q ` f

p3q
t p3q. Therefore,

we have

ρ
p1,3q
t p1q “ f

p3q
t p1q ` f

p3q
t p3q (18)

“ f
p3q
t p1q `

ż t

0
f p3q
u p1, 0qdu (19)

“
8

27
´

1

4
e´t `

1

4
te´t ´

ˆ

5

108

`
13

36
t `

1

6
t2

˙

e´3t

`
10

27
´

1

4
e´t ´

1

4
te´t ´

ˆ

13

108

`
39

108
t `

1

6
t2

˙

e´3t (20)

“
2

3
´

1

2
e´t ´

1

6
e´3t (21)

The particle density ρ
p1,3q
t p2q can be calculated simi-

larly and this yields.

ρ
p1,3q
t p2q “

16

27
´

1

2
e´t ´

1

4
te´t

´

ˆ

5

54
`

19

36
t `

1

6
t2

˙

e´3t (22)

Let us now calculate the densities at the center
site. Here too the one-sided densities are of help.
The derivatives of these functions can be expressed
in terms of pre-image motives as below.

9ρ
p2,3q
t p1q “ D

p1,3q
t p0, 0, 0q (23)

9ρt
p2,3qp2q “ 2D

p1,3q
t p0, 0, 1q

`D
p1,3q
t p1, 0, 1q ` D

p1,3q
t p0, 1, 0q (24)

9ρ
p2,3q
t p3q “ 2D

p1,3q
t p0, 0, 3q ` 2D

p1,3q
t p1, 0, 3q

`D
p1,3q
t p3, 0, 3q ` 2D

p1,3q
t p0, 1, 2q

`D
p1,3q
t p2, 1, 2q ` 2D

p1,3q
t p0, 2, 1q

`D
p1,3q
t p1, 2, 1q ` D

p1,3q
t p0, 3, 0q (25)

The quantities of the form D
p1,3q
t px, 0, yq, with x, y P

t0, 1, 3, 7u can be calculated directly using

D
pk,nq
t px, 0, yq “ f

pkq
t pxqf

pkq
t pyqe´t (26)

The one-sided densities with k “ 1 can be written
down immediately as they follow from the definition

of the Poisson process, i.e.

f
p1q
t p0q “ e´t (27)

f
p1q
t p1q “ te´t (28)

f
p1q
t p3q “

t2

2
e´t (29)

f
p1q
t p7q “ 1 ´ e´t ´ te´t ´

t2

2
e´t (30)

The other Dt’s can be calculated using the follow-
ing differential equations

9D
p1,3q
t p0, 1, 0q “ D

p1,3q
t p0, 0, 0q

´ 3D
p1,3q
t p0, 1, 0q

9D
p1,3q
t p0, 1, 2q “ D

p1,3q
t p0, 1, 0q

´ 3D
p1,3q
t p0, 1, 2q

9D
p1,3q
t p2, 1, 2q “ 2D

p1,3q
t p0, 1, 2q

´ 3D
p1,3q
t p2, 1, 2q

9D
p1,3q
t p0, 2, 1q “ D

p1,3q
t p0, 0, 1q

´ 3D
p1,3q
t p0, 2, 1q

9D
p1,3q
t p1, 2, 1q “ D

p1,3q
t p1, 0, 1q

` 2D
p1,3q
t p0, 2, 1q

´ 3D
p1,3q
t p1, 2, 1q

9D
p1,3q
t p0, 3, 0q “ D

p1,3q
t p0, 1, 0q

´ 3D
p1,3q
t p0, 3, 0q

(31)

Solving these equations is straightforward and re-
sults in

D
p1,3q
t p0, 1, 0q “ te´3t (32)

D
p1,3q
t p0, 1, 2q “ t2e´3t{2 (33)

D
p1,3q
t p2, 1, 2q “ t3e´3t{3 (34)

D
p1,3q
t p0, 2, 1q “ t2e´3t{2 (35)

D
p1,3q
t p1, 2, 1q “ 2 t3e´3t{3 (36)

D
p1,3q
t p0, 3, 0q “ t2e´3t{2 (37)

Solving (23)-(25) with the use of (26) and the solu-
tions (32)-(37), gives the following average densities
in the first 3 layers.
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ρ
p2,3q
t p1q “

1

3
´

1

3
e´3t (38)

ρ
p2,3q
t p2q “

11

27
´

ˆ

11

27
`

11

9
t `

1

3
t2

˙

e´3t (39)

ρ
p2,3q
t p3q “

35

81
´

ˆ

35

81
`

35

27
t `

35

18
t2

`
7

9
t3 `

1

12
t4

˙

e´3t (40)

In [19] the same results were found through the use of
a general formula for the center sites at all layers of a
system with 3 positions.

3.2 The Particle Deposition System with 5
Vertices

The densities at layer one and two of the center site
p3, 5q obey the differential equations

9ρ
p3,5q
t p1q “ D

p2,5q
t p0, 0, 0q

` 2D
p2,5q
t p0, 0, 2q ` D

p2,5q
t p2, 0, 2q (41)

9ρ
p3,5q
t p2q “ 2D

p2,5q
t p0, 0, 1q ` D

p2,5q
t p1, 0, 1q

` D
p2,5q
t p0, 1, 0q (42)

The densities of the form D
p2,5q
t px, 0, yq, with x, y P

t0, 1, 2u can be calculated directly using equation (26)
and vector f

p2q
t . The density D

p2,5q
t p0, 1, 0q will be

treated separately.

D
p2,5q
t p0, 0, 0q “

9

16
e´5t `

3

8
e´3t

`
1

16
e´t `

3

4
e´5tt

`
1

4
e´3tt `

1

4
e´5tt2 (43)

D
p2,5q
t p0, 0, 1q “ ´

3

16
e´5t `

1

8
e´3t

`
1

16
e´t `

1

4
e´5tt

`
1

4
e´3tt `

1

4
e´5tt2 (44)

D
p2,5q
t p1, 0, 1q “

1

16
e´5t ´

1

8
e´3t

`
1

16
e´t ´

1

4
e´5tt

`
1

4
e´3tt `

1

4
e´5tt2 (45)

D
p2,5q
t p0, 0, 2q “ ´

3

16
e´5t `

1

8
e´3t

`
1

16
e´t ´

1

2
e´5tt

´
1

4
e´5tt2 (46)

D
p2,5q
t p2, 0, 2q “

1

16
e´5t ´

1

8
e´3t

`
1

16
e´t `

1

4
e´5tt

´
1

4
e´3tt `

1

4
e´5tt2 (47)

Solving equation (41) and using ρ
p3,5q
0 p1q “ 0 results

in

ρ
p3,5q
t p1q “

7

15
´

1

4
e´t ´

1

6
e´3t ´

1

20
e´5t (48)

For the calculation of the density on the second layer
it is necessary to calculate Dp2,5q

t p0, 1, 0q as well. The
following differential equation has to be solved.

9D
p2,5q
t p0, 1, 0q “ D

p2,5q
t p0, 0, 0q

´ D
p2,5q
t p0, 1, 0q

´ 2D
p2,5q
t p0, 1, 0, 0q

´ 2D
p2,5q
t p0, 1, 0, 1q

(49)

It is easy to see that

D
p2,5q
t p0, 1, 0, 0q “ f

p2q
t p0, 1qf

p1q
t p0qe´t (50)

D
p2,5q
t p0, 1, 0, 1q “ f

p2q
t p0, 1qf

p1q
t p1qe´t (51)

So we can now solve (49) immediately. It has the
solution

D
p3,5q
t p0, 1, 0q “

1

32
p7 ` 2tqe´t

´
1

16

`

1 ´ 8t ´ 4t2
˘

e´3t

´
5

32

`

1 ´ 6t ´ 4t2
˘

e´5t

(52)

Knowing the expressions for D
p2,5q
t p0, 0, 1q,

D
p2,5q
t p1, 0, 1q, and D

p2,5q
t p0, 1, 0q, (42) can be solved

as well using the usual techniques.
For the densities in the first and second layer of
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the vertex in the center it follows that

ρ
p3,5q
t p1q “

7

15
´

1

4
e´t ´

1

6
e´3t

´
1

20
e´5t (53)

ρ
p3,5q
t p2q “

46823

108000
´

407219

2160000
e´t

´
1

16
te´t ´

3

16
e´2t

´
1

8
te´2t ´

1

36
e´3t

´
5

24
te´3t ´

79

864
e´4t

´
13

72
te´4t ´

1

12
t2e´4t

`
1429

16000
e´5t ´

49

800
te´5t

´
11

80
t2e´5t ´

7457

270000
e´6t

´
847

9000
te´6t ´

31

300
t2e´6t

´
1

30
t3e´6t (54)

The limiting densities are close to each other: 7
15 «

0.467 ą 46823
108000 « 0.434. Apparently, in the system

with n “ 5 positions the density of the center vertex
is slightly lower in the second layer than in the first
layer. This is contrary to the situation in the system
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Figure 5: Particle densities at the border and in the center of the
deposition systems of several sizes as calculated with the methods
demonstrated in this paper. The higher lines represent the devel-
opment of the border site densities in time. The fact that center
densities are dominated by the border densities as proven in The-
orem 4. Note however that the difference decreases for larger
systems.

with infinite positions [17] and the system with 3 po-
sitions as can be checked by comparing (38) and (39).

3.3 Relations between vertex densities at the
first layer

Lemma 3 Consider a parking system with n vertices.
During the particle deposition process the center ver-
tex at the first layer pm, 1q has the particle density

ρ
pm,nq
t p1q “

ż t

0
rf pm´1q

u p0qs2e´udu (55)

if n “ 2m ´ 1, or

ρ
pm,nq
t p1q “

ż t

0
f pm´1q
u p0qf pmq

u p0qe´udu (56)

if n “ 2m. The border vertex p1, 1q has the particle
density

ρ
p1,nq
t p1q “

ż t

0
f pn´1q
u p0qe´udu (57)

This result was earlier reported in a slightly different
form by Cohen and Reiss [5]. The proof is straight-
forward.

Proof: Let px, 1q, x P t1, 2, . . . , Nu be a ver-
tex on lattice L. The density on site x may increase
only if the site itself and its neighbors are free,
therefore we have

9ρ
px,nq
t p1q “ D

p1,nq
t pv1, v2, . . .

. . . , vx´2, 0, 0, 0, vx`2, . . . , vnq (58)

where vi can be 0 or 1. Notice that the value of vx and
its neighbors must be 0 which means that there were
no arrivals in vx at all. But in that case the develop-
ments at the left side of x are independent of the devel-
opments at the right side. Therefore we may continue
with

9ρ
px,nq
t p1q “ D

p1,x´1q
t pv1, . . . , vx´2, 0q

ˆ P pNtpxq “ 0q

ˆ D
p1,n´x`1q
t p0, v2, . . . , vn´x`1q (59)

“ f
px´1q
t p0qf

pn´x`1q
t p0qe´t (60)

Taking the integral on both sides and applying suitable
values for x and n yields the results of the lemma. [\

Theorem 4 The density in the center vertex is lower
than the density in a border vertex.

ρ
px,2x´1q
t p1q ă ρ

p1,2x´1q
t p1q (61)
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Proof: For the purpose of this proof we will use
the short-hand notation fm “ f

pmq
t p0q. From lemma

3 we know that 9ρ
pm,nq
t p1q “ f2

pm´1q
e´t. From simu-

lation results we know that the end-density of border
vertices on the first layer typically lies between 1{2 to
2{3 depending on the size of the system. In any case,
suppose ρp1,m´1q “ ρp1,2m´2q ` d, for some d. Then
we may write

9ρ
pm,2m´1q
t p1qet “ f2

pm´1q (62)

“ p1 ´ ρ
p1,m´1q
t q2 (63)

“ p1 ´ pρ
p1,2m´2q
t ` dqq2 (64)

“ 1 ´ 2pρ
p1,2m´2q
t ` dq

` pρ
p1,2m´2q
t ` dq2 (65)

“ 1 ´ ρ
p1,2m´2q
t

` ρ
p1,2m´2q
t pρ

p1,2m´2q
t ` dq

´ ρ
p1,2m´2q
t

` dpρ
p1,2m´2q
t ` dq ´ d (66)

“ 1 ´ ρ
p1,2m´2q
t

´ ρ
p1,2m´2q
t p1 ´ ρ

p1,m´1q
t q

´ dp1 ´ ρ
p1,m´1q
t q (67)

“ 1 ´ ρ
p1,2m´2q
t

´ ρ
p1,m´1q
t p1 ´ ρ

p1,m´1q
t q

ď 1 ´ ρ
p1,2m´2q
t (68)

“ fp2m´2q (69)

So, we have

9ρ
pm,2m´1q
t p1q ď fp2m´2qe

´t (70)

“ 9ρ
p1,2m´1q
t p1q (71)

It follows that the density of a border site grows faster
and reaches a higher value than the site in the center.
For the case n “ 2m this proof is similar. [\

This result should not be surprising. In finite-
sized systems particles at border sites have only one
neighboring site while all others have two neighbors.
Therefore a particle arriving at the border is more
likely to be accepted in the first layer than particles
arriving in the center.

Although not proven here, it is logical to assume
that the same applies to the second layer and higher.
After a while this would result in a lower maximum
height at the border sites. Then newly arriving parti-
cles at the sites next to the border will only see neigh-
bors on one side instead of two when they arrive,

etcetera. Eventually it becomes increasingly unlikely
that gaps of size 2 are created, which implies a higher
particle density. This is exactly what our simulations
have shown [19].

4 The Particle Deposition System
with Screening

The model discussed in this paper is not to be con-
fused with the deposition model with screening. In
the model with screening particles are not capable of
passing through layers that have no space for them.
This results in a lower layer-density compared with
the model without screening treated here. In our ear-
lier work we reported about some properties of the
model with screening [20]. One result was that the
density of higher layers tends to

lim
r,tÑ8

ρ
p2,3q
t prq “

1

2 ` 1
5

?
5

« 0.408628 (72)

while in the model without screening it was proven
[19] that the value of the end-density goes to exactly
1
2 .

Unfortunately, in the same paper, the section
about the densities on the first 3 layers contains an
error. Below are the correct formulas of the densities
for the first 3 layers of the center vertex.

ρ
p2,3q
t p1q “

1

3
´

1

3
e´3t (73)

ρ
p2,3q
t p2q “

11

27
´

ˆ

11

27
`

11

9
t `

1

3
t2

˙

e´3t (74)

ρ
p2,3q
t p3q “

11

27
´

ˆ

11

27
`

11

9
t ` `

11

6
t2

`
2

3
t3 `

1

12
t4

˙

e´3t (75)

Note that at the first two layers the densities for the
model with and without screening are exactly the
same. This is not surprising because the screening
feature at a system with only 3 positions is not able
to block arrivals in the center of the first two layers.

5 Conclusion
The results in this paper show that it is possible to
calculate time-dependent particle densities in finite-
sized particle deposition systems. Sometimes it is
even possible to choose between several techniques.
However, the calculation of densities of sites in higher
layers requires, even in relatively small systems, an
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increasing effort. It was also proven that border sites
have a larger chance to be filled than sites near the
center. Simulations have shown an increasing layer
end-density. Lower layers are less dense packed than
higher layers. The mechanism behind it is believed to
be understood but proving this analytically remains a
challenge.
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