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Abstract: In a hidden Markov model (HMM), one observes a sequence of emissions (Y) but lacks a Markovian 

sequence of states (X) the model went through to generate these emissions. The hidden Markov chain allows 

recovering the sequence of states from the observed data. The classic HMM formulation is too restrictive but extends 

to the pairwise Markov models (PMMs) where we assume that the pair (X, Y) is Markovian. Since (X) is not 

necessarily Markovian in such a model, a PMM is generally not a hidden Markov model. However, since (X) is 

conditionally Markovian in the PMM, an HMM-like fast processing is available. Similarly, the triplet Markov 

models (TMMs) extend the PMMs by introducing an additional unobserved discrete-valued process (U). The triplet 

(X, U, Y) is Markovian in a TMM. Such a model is more inclusive than the PMM and offers the same possibilities of 

fast processing. The aim of the paper is to present numerical studies which evaluate how these models may behave 

compared to the classic HMM. In other words, we compare different models in terms of the Bayesian Maximum 

Posterior Mode (MPM) error rate. We show that the misclassification percentage decreases by a half when using 

these advanced models. 
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1 Introduction 
The hidden Markov model HMM [1,2] is an important 

tool in the modern modelling [3-7]. Let us consider a 

hidden random sequence )...,,( 1 NXXX  and an 

observed one )...,,( 1 NYYY , which we describe by 

using the probability density function ),( yxp  of ),( YX . 

Each nX  takes its values in  K...,,1  and each nY  

takes its values in R . The pair ),( YX  is a classic HMM 

if and only if 

(i) X  is a Markov chain; 

(ii) )(...)()......( 1111 NNNN xypxypxxyyp  . 

The pairwise Markov models (PMMs) extend these 

models by assuming that ),( YX  is Markovian [8,9]. 

Since in the PMMs the hidden process X  is not 

necessarily Markov, they are strictly more general than 

HMMs. We note that in the PMM framework, a HMM-

like processing is available.  

Next, the triplet Markov models (TMMs) extend the 

PMMs by using a discrete-valued latent process 

)...,,( 1 NUUU  where each nU  belongs to a finite set 

 M...,,1 . In such a model, ),,( YUXT   is 

Markovian. Similarly to both PMMs and HMMs, any 

HMM-like processing is available in TMMs, even if the 

processes X , U , Y , ),( UX , ),( YX , and ),( YU  are 

not necessarily Markovian. 

The problem we focus on in this paper consists in 

exploring if using TMMS instead of PMMs is 

meaningful for practical applications. The next section is 

devoted to the PMMs, while the third one presents the 

TMMs. Conclusions and perspectives are in section 4.     

 

 

2 Pairwise Markov models 

 
2.1 Bayesian segmentation using pairwise 

Markov models 
The pair ),( YX  is a pairwise Markov model (PMM) if 

its distribution ),( yxp  is 

 

),( yxp      (2.1) 

),,(...),,(),( 11212211  NNNN yxyxpyxyxpyxp , 

 

which means that ),( YX  is Markovian. Since the classic 

HMM distribution is 

 

),( yxp      (2.2) 

)()(...)()()()( 12212111 NNNN xypxxpxypxxpxypxp  , 
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and the transitions ),,( 11  nnnn yxyxp  in (2.1) are 

 

 

 ),,( 11 nnnn yxyxp     (2.3) 

),,(),( 1111  nnnnnnn yxxypyxxp , 

 

a PMM is an HMM if and only if 

 

)(),( 111   nnnnn xxpyxxp  and  (2.4) 

 

)(),,( 11 nnnnnn xypyxxyp  .   (2.5) 

 

We use the maximum posterior mode (MPM) estimator 

[10], which estimates the state vector  by )ˆ...,,ˆ(ˆ
1 Nxxx  

such that for each 1n , …, N : 

 

).(maxargˆ ykxpx n
k

n 


  (2.6) 

 

Thus, we compute )( ynxp  for each 1n , …, N . Let 

us briefly recall the PMM-related forward-backward 

algorithm. The forward and backward probabilities

)...,,,()( 1 nnnn yyxpx  , ),...,,()( 1 nnNnnn yxyypx   

arise from the following recursions: 

 

),()( 1111 yxpx  ,  

)(),,()( 1111 nn

x

nnnnnn xyxyxpx

n

 


  ; (2.7) 

 

1)( NN x ,  

)(),,()( 1111

1








 nn

x

nnnnnn xyxyxpx

n

 . (2.8) 

  

and then we have 

 






nx

nnnn

nnnn
n

xx

xx
xp

)()(

)()(
)(




y .  (2.9) 

 

Thus, the complexity of this algorithm is linear in n . 

The well known HMM version of this algorithm appears 

when we meet the conditions (2.4) and (2.5). Of course, 

we have )()(),,( 11111   nnnnnnnn xypxxpyxyxp  if 

),( YX  is a HMM, what links this version of the 

algorithm to the conventional relations on forward-

backward probabilities. 
 

 

 

2.2 Stationary invertible PMMs 
In what follows, we consider the stationary PMM for 

which ),,,( 11  nnnn yxyxp  does not depend on n . Thus, 

the whole distribution derives from ),,,( 2211 yxyxp . In 

addition, we assume that the transition kernel is 

invertible, i.e. ),,(),,( 1111   nnnnnnnn yxyxpyxyxp . 

Let us consider the following PMM sub-models: 

(i) The genuine PMM in which the noise may be 

correlated and in which X  may not be Markovian. We 

call it PMM with correlated noise (PMM-CN). The 

transitions ),,( 1122 yxyxp  are of the general form 

 

),,(),,(),,( 21121121122 xyxypyxxpyxyxp   (2.10) 

 

and the distribution ),,,( 2211 yxyxp  is also of the 

general form, since we have  

 

),,(),(),,,( 2121212211 xxyypxxpyxyxp  ; (2.11) 

 

(ii) PMM with independent noise (PMM-IN), where X  

might not be Markovian and where the observation noise 

is independent from X . We have 

 

),(),(),,( 2121121122 xxypyxxpyxyxp   (2.12) 

 

and  

 

),(),(),(),,,( 212211212211 xxypxxypxxpyxyxp  . (2.13) 

 

We can show that nY  and )...,,,( 221 nXXX  are 

independent conditional on 1nX  in a PMM-IN cf. Fig. 

2, and the same holds for )...,,,( 32 Nnn XXX   at each 

11  Nn . That is why the distribution of  nY  

conditional on X  is the same as the distribution of nY  

conditional on ),,( 11  nnn XXX . 

(iii) HMMs with correlated noise (HMM-CN). The 

related transition kernel is 

 

),,(),(),,( 1212121122 yxxypxxpyxyxp   (2.14) 

 

and )(),( 22212 xypxxyp  , which is not guaranteed to 

hold in the case of PMM-IN (2.11)  (see Remark 1). We 

have 
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).,(),(),(),,,( 212211212211 xxypxxypxxpyxyxp   (2.15) 

(iv) HMMs with independent noise, denoted with HMM-

IN, which are the classic HMMs. The related transition 

kernel is 

)()(),,( 22121122 xypxxpyxyxp    (2.16) 

 

and ),,,( 2211 yxyxp  verifies 

 

)()(),(),,,( 2211212211 xypxypxxpyxyxp  . (2.17) 

 

We supply the graphical representations of these sub-

models in Fig. 1-4. 

 

Remark 1 

We show that X  is Markovian in HMM-CN and HMM-

IN. We also state that X  is not necessarily Markovian in 

PMM-CN and PMM-IN by making use of a property 

that can be find in [9]. For a reversible and stationary 

pair ),( YX , the property is that X  is Markovian if and 

only if  the equation )(),( 22212 xypxxyp   holds.  

 

1y                          2y                            3y                            4y  

 

 

 

 

 

 

1x                          2x                            3x                            4x  

 

Fig. 1.  The dependence graph of the PMM-CN. 

 

1y                          2y                            3y                            4y  

 

 

 

 

 

 

1x                          2x                            3x                            4x  

 

Fig. 2. The dependence graph of the PMM-IN. 
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Fig. 3. The dependence graph of the HMM-CN. 
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1x                          2x                            3x                            4x  

 

Fig. 4. The dependence graph of the HMM-IN. 

 

 

3 Triplet Markov models 
Let us consider hidden )...,,( 1 NXXX  and observed 

)...,,( 1 NYYY  sequences as we did previously. The 

triplet Markov model (TMM) requires another discrete-

valued process )...,,( 1 NUUU , where each nU  belongs 

to a finite set  M...,,1 . We suppose that the triplet 

),,( YUXT   is Markovian. The TMM is at a next level 

of evolution of HMM towards more inclusive models cf. 

Remark 2. 

Similarly to HMM and PMM, the TMM allows 

recovering )...,,( 1 NXXX  from )...,,( 1 NYYY  in a 

reasonable time. We do it thanks to the substitution 

),( UXV   which allows recovering V  from Y  in the 

),( YV -PMM framework and then we extract X  from 

V .  The TMMs have been successfully used to solve 

different problems in several domains [11]. Besides, U  

is an add-on latent variable to extend the PMM and may 

have a case-related interpretation. We believe that the 

TMMs have an incredible potential of modelization, 

where U  would be multivariate like )...,,( 1 s
UU  so each 

sequence 
i

U  models a separate property. For example, 

the non-stationary hidden semi-Markov chains can be 

seen as a TMM ),,,( 21
YUUXT   in which 

1
U  models 

the semi-Markovianity and 
2

U  is for the non-

stationarity [11]. 

Let us now consider a stationary invertible TMM with 
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the distribution defined by 

 

).()()()(),(

),,,,,(

2222111121

222111

uypuxpuxpuypuup

yuxyuxp 
 (3.1) 

 

Then the transitions are  

 

).()()(),,,,( 222212111222 uypuxpuupyuxyuxp   (3.2) 

 

We call this model “simplified TMM” (STMM) and we 

observe that a STMM (cf. Fig. 5) is not a PMM; for 

example, we have ),(),,,( 22222112 xyupxyyxup  . We 

announced earlier that the objective of the paper was to 

provide a numerical comparison among different PMMs; 

however, we also provide a comparison between STMM 

and the classic HMM-IN. 

 

1y                          2y                            3y                            4y  

 

 

 

 

 

 

1u                            2u                            3u                           4u  

 

 

 

 

1x                            2x                            3x                           4x  

 

Fig. 5. The dependence graph of the STMM. 

 

 

Remark 2 

The TMMs are strictly more general than PMMs. In 

fact, one can use the result from [9] for the case of the 

stationary reversible systems. Let ),,( YUXT   be a 

TMM; we set ),( YXZ   to make appear ),( ZUT   as 

a PMM. Thus, ),( YXZ   is Markovian if and only if 

),(),,,( 22222112 xyupxyyxup  . Thus, we obtain a 

reversible stationary TMM ),,( YUXT   with non 

Markovian ),( YX  by choosing a distribution such that 

),(),,,( 22222112 xyupxyyxup  . 

 

 

 

 

 

4 Experiments 

 
4.1 Pairwise Markov models 
We present different experiments to compare PMMs-

CN, PMMS-IN, HMMs-CN and HMMs-IN from 

Section II. We decide to set           for the sake of 

simplicity. 

We begin with sampling data points of the most 

inclusive model (PMM-CN), for which we choose 

 

     ;15.01),(
212121  xxxxxxp    

 
 

.,),,(
2,

2

2,

,
2

,
1

2121
21

21

21

21






































xx

xx

xx

xx

xxyyp







1N   

 

The coefficients   (the probability of regime-

switching) and   (the conditional correlation) depend 

on the experimental setting. The values of the remaining 

parameters are per each pair ),( 11 xx  are in the table 

below. 

 

),( 11 xx  21 ,
1

xx  21 ,
2

xx  21 ,
1

xx  21 ,
2

xx  

 ),( 11   -5 -5 14 14 

),( 21   -3 3 7 9 

),( 12   3 -3 9 7 

),( 22   5 5 20 20 

   

Next, we compute X  from Y  by using the PMM 

backward-forward algorithm for the “projections” of the 

known parameters into each sub-model. Finally, we 

compute a relative error rate, referring to the PMMs-CN 

(in percents): 

 

.
err

errerr

CN-PMM

CN-PMMmodel     (4.1) 

 

For example, if the relative error rate reaches 100%, 

then it means that the reference model decreases the 

misclassification percentage by a half when compared to 

the proposal one. 

The values in Table 1 are the relative error rates (in 

percents) of the three models compared to PMMs-CN 

for various probabilities of regime-switching changes. 

Each value is averaged over the values of the correlation 

coefficient.  

The values in Table 2 are the relative error rates of the 

three models compared to PMMs-CN for various 

correlation coefficients. Each value is averaged over the 
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values of the probabilities of regime-switching.  

We simulate    random chains for each pair of       

and 1000 elements per each chain.  

 
 

  
Model compared to PMM-CN 

HMM-IN HMM-CN PMM-IN 

0.025 40.7 4.9 35.7 

0.125 34.9 11.0 18.5 

0.275 55.5 13.6 21.1 

0.425 57.2 13.3 48.8 

Average 46.8 11.6 27.0 

 

Table 1. Relative error rates (4.1) of the three models for 

varying probability of regime-switching. 

 

 

  Model compared to PMM-CN 

HMM-IN HMM-CN PMM-IN 

0.05 19.3 10.2 0.3 

0.25 22.3 10.1 3.6 

0.75 56.9 12.4 37.9 

0.95 142.0 17.6 112.7 

Average 60,1 12,6 38,6 

 

Table 2. Relative error rates (4.1) of the three models for 

varying noise correlation coefficient. 

 

 

These tables can be seen as “cuts” of the 3-D surface 

plot from Fig. 6.  

 
 

 
 

Fig. 6. Surface plot of the relative error rate. The height is a 

function which assigns to each pair (ε,ρ) the corresponding 

relative error (4.1). 

 

 

 

4.2 STMM compared to the HMM-IN 
In this sub-section we investigate if the STMM from 

Section 3 is competitive with the HMM-IN. 

 

We decide to set           for X ,     for U . 

We choose the state space distribution: 

 

 

    ;01.0149.01),(
212121 uuuuuup    

    ;01.0199.01)(
112111 uxuxuxp    

 

Regarding the observation space, we have 

 

          
   N            

          
   N          . 

 

Then we compute the error rates relative to the HHM-

IN- and STMM-based MPM state estimations for 

various values of  . We present our results in Fig. 7. 

They appear promising enough to be worth researching. 
 

 
Fig. 7. Comparison between the performances of STMM 

and HMM-IN for various noise levels. 

 

 

5 Conclusion 
The primary objective of the paper is to compare 

efficiencies of Bayesian classifiers based on four 

different models: the classic HMM, the general PMM, 

and two intermediary models. Different results of 

experiments, some of which are presented in the paper, 

show that the PMMs potentially outperform the HMMs 

in “real-world” applications. Indeed, the PMM allows 

reducing the misclassification ratio by 10%-30% and 

even more. Such a gap is particularly visible if the 

observation noise is heavily correlated and if the hidden 

chain is too far from being Markovian. We also studied 

an example of a simplified triplet Markov chain, as 

simple as a HMM but very different from the latter.  
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The further work will include exploring more 

advanced TMMs, PMMs [12, 13] and their inter-

comparisons with the on a similar methodology basis.  
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